图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LT1722CS5#TRMPBF
  • 制造商: LINEAR TECHNOLOGY
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LT1722CS5#TRMPBF产品简介:

ICGOO电子元器件商城为您提供LT1722CS5#TRMPBF由LINEAR TECHNOLOGY设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LT1722CS5#TRMPBF价格参考。LINEAR TECHNOLOGYLT1722CS5#TRMPBF封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 1 电路 TSOT-23-5。您可以下载LT1722CS5#TRMPBF参考资料、Datasheet数据手册功能说明书,资料中有LT1722CS5#TRMPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)

描述

IC OPAMP VFB 200MHZ TSOT23-5

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Linear Technology

数据手册

http://www.linear.com/docs/1627

产品图片

产品型号

LT1722CS5#TRMPBF

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

TSOT-23-5

其它名称

LT1722CS5#PBF
LT1722CS5#PBF-ND
LT1722CS5#TRMPBFCT

包装

剪切带 (CT)

压摆率

70 V/µs

增益带宽积

200MHz

安装类型

表面贴装

封装/外壳

SOT-23-5 细型,TSOT-23-5

工作温度

0°C ~ 70°C

放大器类型

电压反馈

标准包装

1

电压-电源,单/双 (±)

5 V ~ 10 V, ±2.5 V ~ 5 V

电压-输入失调

150µV

电流-电源

3.7mA

电流-输入偏置

40nA

电流-输出/通道

50mA

电路数

1

输出类型

-

推荐商品

型号:ADA4091-2ACPZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MC33204DTB

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:MAX4125ESA-T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LTC6910-3CTS8#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:EL8173ISZ-T13

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:ACPL-785J-000E

品牌:Broadcom Limited

产品名称:集成电路(IC)

获取报价

型号:TLV2264IDRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1787IS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LT1722CS5#TRMPBF 相关产品

MCP6242T-E/MS

品牌:Microchip Technology

价格:

LTC6242HVCDHC#PBF

品牌:Linear Technology/Analog Devices

价格:

MAX4450EUK-T

品牌:Maxim Integrated

价格:

OPA356AIDG4

品牌:Texas Instruments

价格:

TLC4502AMD

品牌:Texas Instruments

价格:

OPA4228PA

品牌:Texas Instruments

价格:¥48.45-¥98.34

LT6202CS5#TRMPBF

品牌:Linear Technology/Analog Devices

价格:

ADA4096-4ARUZ

品牌:Analog Devices Inc.

价格:

PDF Datasheet 数据手册内容提取

LT1722/LT1723/LT1724 Single, Dual, Quad 200MHz Low Noise Precision Op Amps FEATURES D ESCRIPTION n 3.8nV/√Hz Input Noise Voltage The LT®1722/LT1723/LT1724 are single/dual/quad, low n 3.7mA Supply Current noise, low power, high speed operational amplifi ers. These n 200MHz Gain Bandwidth products feature lower input offset voltage, lower input bias n Low Total Harmonic Distortion: –85dBc at 1MHz current and higher DC gain than devices with comparable n 70V/μs Slew Rate bandwidth. The 200MHz gain bandwidth ensures high n 400μV Maximum Input Offset Voltage open-loop gain at video frequencies. n 300nA Maximum Input Bias Current The low input noise voltage is achieved with reduced n Unity-Gain Stable supply current. The total noise is optimized for a source n Capacitive Load Stable Up to 100pF resistance between 0.8k and 12k. Due to the input bias n 23mA Minimum Output Current current cancellation technique used, the resistance seen n Specifi ed at ±5V and Single 5V by each input does not need to be balanced. n Low Profi le (1mm) SOT-23 (ThinSot™) Package The output drives a 150Ω load to ±3V with ±5V supplies. APPLICATIONS On a single 5V supply the output swings from 1.5V to 3.5V with a 500Ω load connected to 2.5V. The amplifi er n Video and RF Amplifi cation is unity-gain stable (C ≤ 100pF). n ADSL, HDSL II, VDSL Receivers LOAD n Active Filters The LT1722/LT1723/LT1724 are manufactured on Linear n Wideband Amplifi ers Technology’s advanced low voltage complementary n Buffers bipolar process. The LT1722 is available in the SO-8 and n Data Acquisition Systems 5-pin SOT-23 packages. The LT1723 is available in the SO-8 and MS8 packages. The LT1724 is available in the L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other 14-lead SO package. trademarks are the property of their respective owners. TYPICAL APPLICATION Differential Video Line Driver C1 5pF R3 Line Driver Mulitburst Video Signal 750Ω R5 2k – 62R.57Ω 0.5+VV/ODUIVT 1/2LT1723 + VIN 125Ω VIN C2 5pF TWISCTAETD-5 PAIR VIN/2 62.5Ω 1V/DVIIVN 75Ω R2 +VOUT LOAD SOURCE 2k R4 2k –VOUT –VOUT 62.5Ω 0.5V/DIV –VIN/2 LOAD R1 – R6 75Ω 62.5Ω 1723 TA02 1/2 LT1723 1723 TA01 + –VIN 172234fb 1

LT1722/LT1723/LT1724 ABSOLUTE MAXIMUM RATINGS (Note 1) Total Supply Voltage (V+ to V–) .............................12.6V Operating Temperature Range (Note 4) ...–40°C to 85°C Input Voltage .............................................................±V Specifi ed Temperature Range (Note 5) ....–40°C to 85°C S Differential Input Voltage (Note 2) .........................±0.7V Maximum Junction Temperature ..........................150°C Input Current (Note 2) ..........................................±10mA Storage Temperature Range ..................–65°C to 150°C Output Short-Circuit Duration (Note 3) ............Indefi nite Lead Temperature (Soldering, 10 sec)...................300°C PIN CONFIGURATION LT1722 TOP VIEW LT1722 TOP VIEW LT1723 TOP VIEW NC 1 8 NC OUT 1 5 V+ OUT A 1 8 V+ –IN 2 – 7 V+ V– 2 + – –IN A 2 A 7 OUT B +IN 3 + 6 OUT +IN 3 4 –IN +IN A 3 6 –IN B V– B V– 4 5 NC S5 PACKAGE 4 5 +IN B 5-LEAD PLASTIC TSOT-23 S8 PACKAGE TJMAX = 150°C, θJA = 250°C/W S8 PACKAGE 8-LEAD PLASTIC SO 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 150°C/W TJMAX = 150°C, θJA = 190°C/W LT1723 TOP VIEW LT1724 TOP VIEW OUT A 1 8V+ OUT A 1 14 OUT D –IN A 2 7OUT B A +IN A 3 6–IN B –IN A 2 – – 13 –IN D V– 4 B 5+IN B +IN A 3 +A D+ 12 +IN D MS8 PACKAGE V+ 4 11 V– 8-LEAD PLASTIC MSOP TJMAX = 150°C, θJA = 250°C/W +IN B 5 + + 10 +IN C B C –IN B 6 – – 8 –IN C OUT B 7 8 OUT C S PACKAGE 14-LEAD PLASTIC SO TJMAX = 150°C, θJA = 100°C/W 172234fb 2

LT1722/LT1723/LT1724 ORDER INFORMATION SPECIFIED LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE LT1722CS8#PBF LT1722CS8#TRPBF 1722 8-Lead Plastic SO 0°C to 70°C LT1722IS8#PBF LT1722IS8#TRPBF 1722I 8-Lead Plastic SO –40°C to 85°C LT1722CS5#PBF LT1722CS5#TRPBF LTZB 5-Lead Plastic TSOT-23 0°C to 70°C LT1722IS5#PBF LT1722IS5#TRPBF LTZB 5-Lead Plastic TSOT-23 –40°C to 85°C LT1723CS8#PBF LT1723CS8#TRPBF 1723 8-Lead Plastic SO 0°C to 70°C LT1723IS8#PBF LT1723IS8#TRPBF 1723I 8-Lead Plastic SO –40°C to 85°C LT1723CMS8#PBF LT1723CMS8#TRPBF LTYC 8-Lead Plastic MSOP 0°C to 70°C LT1723IMS8#PBF LT1723IMS8#TRPBF LTZA 8-Lead Plastic MSOP –40°C to 85°C LT1724CS#PBF LT1724CS#TRPBF LT1724CS 14-Lead Plastic SO 0°C to 70°C LT1724IS#PBF LT1724IS#TRPBF LT1724IS 14-Lead Plastic SO –40°C to 85°C Consult LTC Marketing for parts specifi ed with wider operating temperature ranges. *The temperature grade is identifi ed by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based fi nish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifi cations, go to: http://www.linear.com/tapeandreel/ 172234fb 3

LT1722/LT1723/LT1724 ELECTRICAL CHARACTERISTICS T = 25°C, V = ±5V, V = 0V, unless otherwise noted. A S CM SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V Input Offset Voltage (Note 6) 100 400 μV OS LT1722 SOT-23 and LT1723 MS8 150 650 μV I Input Offset Current 40 300 nA OS I Input Bias Current 40 300 nA B e Input Noise Voltage f = 10kHz 3.8 nV/√Hz n i Input Noise Current f = 10kHz 1.2 pA/√Hz n R Input Resistance V = ±3.5V 5 35 MΩ IN CM Differential 50 kΩ C Input Capacitance 2 pF IN Input Voltage Range + 3.5 4 V Input Voltage Range – –4 –3.5 V CMRR Common Mode Rejection Ratio V = ±3.5V 80 100 dB CM PSRR Power Supply Rejection Ratio V = ±2.3V to ±5.5V 78 90 dB S A Large-Signal Voltage Gain V = ±3V, R = 500Ω 10 17 V/mV VOL OUT L VOUT = ±3V, RL = 150Ω 7 14 V/mV V Output Swing R = 500Ω, V = ±10mV ±3.2 ±3.8 V OUT L IN RL = 150Ω, VIN = ±10mV ±3.1 ±3.4 V I Output Current V = ±3V, 10mV Overdrive 23 50 mA OUT OUT I Short-Circuit Current V = 0V, V = ±1V 35 90 mA SC OUT IN SR Slew Rate A = –1, (Note 7) 45 70 V/μs V Full Power Bandwidth 3V Peak, (Note 8) 3.7 MHz GBW Gain Bandwidth f = 200kHz 115 200 MHz t Settling Time A = –1, 2V, 0.1% 91 ns S V A = –1, 2V, 0.01% 112 ns V t, t Rise Time, Fall Time A = 1, 10% to 90%, V = 0.2V , R = 150Ω 6 ns r f V IN P-P L Overshoot A = 1, V = 0.2V , R = 150Ω, R = 0Ω 15 % V IN P-P L F Propagation Delay 50% V to 50% V = 0.2V , R = 150Ω 3 ns IN OUT P-P L R Output Resistance A = 1, f = 1MHz 0.15 Ω O V Channel Separation V = ±3V, R = 150Ω 82 90 dB OUT L I Supply Current Per Amplifi er 3.7 4.5 mA S T = 25°C. V = 5V, V = 2.5V, R to 2.5V, unless otherwise noted. A S CM L V Input Offset Voltage (Note 6) 250 550 μV OS LT1722 SOT-23 and LT1723 MS8 350 800 μV I Input Offset Current 20 300 nA OS I Input Bias Current 20 300 nA B en Input Noise Voltage f = 10kHz 4 nV/√Hz in Input Noise Current f = 10kHz 1.1 pA/√Hz R Input Resistance V = 1.5V to 3.5V 5 32 MΩ IN CM Differential 55 kΩ C Input Capacitance 2 pF IN Input Voltage Range + 3.5 4 V Input Voltage Range – 1 1.5 V 172234fb 4

LT1722/LT1723/LT1724 ELECTRICAL CHARACTERISTICS T = 25°C. V = 5V, V = 2.5V, R to 2.5V, unless otherwise noted. A S CM L SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS CMRR Common Mode Rejection Ratio V = 1.5V to 3.5V 80 100 dB CM A Large-Signal Voltage Gain V = 1.5V to 3.5V, R = 500Ω 4 10 V/mV VOL OUT L V Output Swing+ R = 500Ω, V = ±10mV 3.6 3.8 V OUT L IN Output Swing– R = 500Ω, V = ±10mV 0.9 1.4 V L IN I Output Current V = 3.5V or 1.5V, 10mV Overdrive 10 20 mA OUT OUT I Short-Circuit Current V = 2.5V, V = ±1V 22 55 mA SC OUT IN SR Slew Rate AV = –1, (Note 7) 40 70 V/µs Full Power Bandwidth 1V Peak, (Note 8) 8.7 MHz GBW Gain Bandwidth (Note 10) f = 200kHz 115 180 MHz tr, tf Rise Time, Fall Time AV = 1, 10% to 90%, VIN = 0.2VP-P, RL = 500Ω 5 ns Overshoot AV = 1, VIN = 0.2VP-P, RL = 500Ω 16 % Propagation Delay 50% VIN to 50% VOUT, 0.1V, RL = 500Ω 3 ns R Output Resistance A = 1, f = 1MHz 0.19 Ω O V Channel Separation V = 1.5V to 3.5V, R = 500Ω 82 90 dB OUT L I Supply Current Per Amplifi er 3.8 5 mA S The ● denotes the specifi cations which apply over the temperature range of 0°C ≤ T ≤ 70°C. V = ±5V, V = 0V, A S CM unless otherwise noted. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V Input Offset Voltage (Note 6) l 700 μV OS LT1722 SOT-23 and LT1723 MS8 l 850 μV Input V Drift (Note 9) l 3 7 μV/°C OS I Input Offset Current l 350 nA OS I Input Bias Current l 350 nA B Input Voltage Range + l 3.5 V Input Voltage Range – l –3.5 V CMRR Common Mode Rejection Ratio V = ±3.5V l 75 dB CM PSRR Power Supply Rejection Ratio V = ±2.3V to ±5.5V l 76 dB S AVOL Large-Signal Voltage Gain VOUT = ±3V, RL = 500Ω l 9 V/mV VOUT = ±3V, RL = 150Ω l 6 V/mV V Output Swing R = 500Ω, V = ±10mV l ±3.15 V OUT L IN R = 150Ω, V = ±10mV l ±3.05 V L IN I Output Current V = ±3V, 10mV Overdrive l 22 mA OUT OUT I Short-Circuit Current V = 0V, V = ±1V l 30 mA SC OUT IN SR Slew Rate A = –1, (Note 7) l 35 V/μs V GBW Gain Bandwidth f = 200kHz l 100 MHz Channel Separation V = ±3V, R = 150Ω l 81 dB OUT L I Supply Current Per Amplifi er l 5.45 mA S 172234fb 5

LT1722/LT1723/LT1724 ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range of 0°C ≤ T ≤ 70°C. V = 5V, V = 2.5V, R to 2.5V, unless otherwise noted. (Note 5) A S CM L SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V Input Offset Voltage (Note 6) l 850 μV OS LT1722 SOT-23 and LT1723 MS8 l 950 μV Input V Drift (Note 9) l 3 7 μV/°C OS I Input Offset Current l 350 nA OS I Input Bias Current l 350 nA B Input Voltage Range + l 3.5 V Input Voltage Range – l 1.5 V CMRR Common Mode Rejection Ratio V = 1.5V to 3.5V l 75 dB CM AVOL Large-Signal Voltage Gain VOUT = 1.5V to 3.5V, RL = 500Ω l 3 V/mV V Output Swing+ R = 500Ω, V = ±10mV l 3.55 V OUT L IN Output Swing– R = 500Ω, V = ±10mV l 1.45 V L IN I Output Current V = 3.5V, or 1.5V, 10mV Overdrive l 9 mA OUT OUT I Short-Circuit Current V = 2.5V, V = ±1V l 11 mA SC OUT IN SR Slew Rate A = –1, (Note 7) l 30 V/μs V GBW Gain Bandwidth (Note 10) f = 200kHz l 100 MHz Channel Separation V = 1.5V to 3.5V, R = 500Ω l 81 dB OUT L I Supply Current l 5.95 mA S The l denotes the specifi cations which apply over the temperature range of –40°C ≤ T ≤ 85°C. V = ±5V, V = 0V, A S CM unless otherwise noted. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V Input Offset Voltage (Note 6) l 900 μV OS LT1722 SOT-23 and LT1723 MS8 l 1100 μV Input V Drift (Note 9) l 3 10 μV/°C OS I Input Offset Current l 400 nA OS I Input Bias Current l 400 nA B Input Voltage Range + l 3.5 V Input Voltage Range – l –3.5 V CMRR Common Mode Rejection Ratio V = ±3.5V l 75 dB CM PSRR Power Supply Rejection Ratio V = ±2.0V to ±5.5V l 75 dB S A Large-Signal Voltage Gain V = ±3V, R = 500Ω l 8 V/mV VOL OUT L VOUT = ±3V, RL = 150Ω l 5 V/mV V Output Swing R = 500Ω, V = ±10mV l ±3.1 V OUT L IN R = 150Ω, V = ±10mV l ±3.0 V L IN I Output Current V = ±3V, 10mV Overdrive l 20 mA OUT OUT I Short-Circuit Current V = 0V, V = ±1V l 25 mA SC OUT IN SR Slew Rate A = –1, (Note 7) l 25 V/μs V GBW Gain Bandwidth f = 200kHz l 90 MHz Channel Separation V = ±3V, R = 150Ω l 80 dB OUT L I Supply Current l 5.95 mA S 172234fb 6

LT1722/LT1723/LT1724 ELECTRICAL CHARACTERISTICS The ● denotes the specifi cations which apply over the temperature range of –40°C ≤ T ≤ 85°C. V = 5V, V = 2.5V, R to 2.5V, unless otherwise noted. (Note 5) A S CM L SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS VOS Input Offset Voltage (Note 6) l 1000 µV LT1722 SOT-23 and LT1723 MS8 l 1200 µV Input V Drift (Note 9) l 3 10 μV/°C OS I Input Offset Current l 400 nA OS I Input Bias Current l 400 nA B Input Voltage Range + l 3.5 V Input Voltage Range – l 1.5 V CMRR Common Mode Rejection Ratio V = 1.5V to 3.5V l 75 dB CM AVOL Large-Signal Voltage Gain VOUT = 1.5V to 3.5V, RL = 500Ω l 2 V/mV VOUT Output Swing+ RL = 500Ω, VIN = ±10mV l 3.5 V Output Swing– RL = 500Ω, VIN = ±10mV l 1.5 V I Output Current V = 3.5V or 1.5V, 30mV Overdrive l 8 mA OUT OUT I Short-Circuit Current V = 2.5V, V = ±1V l 10 mA SC OUT IN SR Slew Rate A = –1, (Note 7) l 20 V/μs V GBW Gain Bandwidth (Note 10) f = 200kHz l 90 MHz Channel Separation VOUT = 1.5V to 3.5V, RL = 500Ω l 80 dB I Supply Current l 6.45 mA S Note 1: Stresses beyond those listed under Absolute Maximum Ratings designed, characterized and expected to meet specifi ed performance from may cause permanent damage to the device. Exposure to any Absolute –40°C to 85°C but are not tested or QA sampled at these temperatures. Maximum Rating condition for extended periods may affect device The LT1722I/LT1723I/LT1724I are guaranteed to meet specifi ed reliability and lifetime. performance from –40°C to 85°C. Note 2: The inputs are protected by back-to-back diodes. If the differential Note 6: Input offset voltage is pulse tested and is exclusive of warm-up input voltage exceeds 0.7V, the input current should be limited to less than drift. 10mA. Note 7: Slew rate is measured between ±2V on the output with ±3V input Note 3: A heat sink may be required to keep the junction temperature for ±5V supplies and ±1V on the output with ±1.5V input for single 5V below the absolute maximum rating when the output is shorted supply. (For 5V supply, the voltage levels are 2.5V referred.) indefi nitely. Note 8: Full power bandwidth is calculated from the slew rate: Note 4: The LT1722C/LT1722I, LT1723C/LT1723I, LT1724C/LT1724I are FPBW = SR/2πVP guaranteed functional over the operating temperature range of Note 9 : This parameter is not 100% tested. –40°C to 85°C. Note 10 : This parameter is guaranteed through correlation with slew rate. Note 5: The LT1722C/LT1723C/LT1724C are guaranteed to meet specifi ed performance from 0°C to 70°C. The LT1722C/LT1723C/LT1724C are 172234fb 7

LT1722/LT1723/LT1724 TYPICAL PERFORMANCE CHARACTERISTICS Input Common Mode Range Input Bias Current Supply Current vs Temperature vs Supply Voltage vs Common Mode Voltage 5.0 0.5 400 PER AMPLIFIER V+ VS = ±5V 300 4.5 V)–0.5 SUPPLY CURRENT (mA) 334...050 VS = 5V VS = ±5V T COMMON MODE RANGE (–––11121.....05205 (cid:7)TA(V =O S2)5 °<C 500μV NPUT BIAS CURRENT (nA)––2112000000000 TA = T–A4 5=° T2CA5 °=C 85°TCA = 125°C U I 2.5 INP 1.0 –300 0.5 2.0 V– –400 –50 –25 0 25 50 75 100 125 0 1 2 3 4 5 6 7 –5 –4 –3 –2 –1 0 1 2 3 4 5 TEMPERATURE (°C) SUPPLY VOLTAGE (±V) INPUT COMMON MODE VOLTAGE (V) 1723 G01 1723 G02 1723 G03 Input Bias Current Open-Loop Gain vs Temperature Input Noise Spectral Density vs Resistive Load 60 100 10 89.0 TA = 25°C A) 40 √Hz) INPU 86.5 VS = ±5V, VO = ±3V INPUT BIAS CURRENT (n ––2420000 VSIIII =BBBB ––++5V INPUT VOLTAGE NOISE (nV/ 10 einn 1 T CURRENT NOISE (pA/√Hz) OPEN-LOOP GAIN (dB)87784961....0055 VS = ±2.5V, VO = ±1V VS = ±5V –60 1 0.1 74.0 –50 –25 0 25 50 75 100 125 0.01 0.1 1 10 100 100 1000 10000 TEMPERATURE (°C) FREQUENCY (kHz) LOAD RESISTANCE (Ω) 1723 G04 1723 G05 1723 G06 Total Noise vs Unmatched Source Resistance Warm-Up Drift vs Time V Shift vs V and V OS CM S 100 30 300 VTAS == 2±55°VC LTTA 1=7 2252°SC8 VS = ±6.3V TTAY P=I C2A5°LC PART TOTAL NOISE VOLTAGE (nV/√Hz) 110 f = 10kHz TOTAL NOISRERESSIST+OR NOISE OFFSET VOLTAGE DRIFT (μV) 121200555 TYPICAL DATA VVSS = = ± ±25.5VV V SHIFT (μV)OS––1122000000000 VSV =S ± =5V V±S4 V=V S± 3=V ±2V.S5 V= ±6V – 0.1 0 –300 0.01 0.1 1 10 100 0 10 20 30 40 50 60 70 80 90 100 –5 –4 –3 –2 –1 0 1 2 3 4 5 SOURCE RESISTANCE, RS (kΩ) TIME AFTER POWER-UP (SEC) COMMON MODE VOLTAGE (V) 1723 G07 1723 G08 1723 G09 172234fb 8

LT1722/LT1723/LT1724 TYPICAL PERFORMANCE CHARACTERISTICS Undistorted Output Swing Undistorted Output Swing V vs Temperature vs Frequency vs Frequency OS 200 10 5.0 TYPICAL PART VS = 5V 100 9 4.5 RL = 500Ω 2% MAX DISTORTION 8 AV = 1, RF = 0Ω, RIN = 500Ω 4.0 OFFSET VOLTAGE (μV)–––2130000000 VS = ±2.5VVS = ±5V UTPUT VOLTAGE (V)P-P 74635 AV = –1, RF = 500Ω UTPUT VOLTAGE (V)P-P 32312.....50055 AV = –A1V,R =RI NF1 ,== R 55F00 =00 ΩΩ0Ω, O O 2 1.0 –400 VS = ±5V 1 RL = 150Ω 0.5 2% MAX DISTORTION –500 0 0 –60 –40 –20 0 20 40 60 80 100 120 0.1 1 10 0.1 1 10 TEMPERATURE (°C) FREQUENCY (MHz) FREQUENCY (MHz) 1723 G10 1723 G11 1723 G12 Output Voltage Swing Output Short-Circuit Current Open-Loop Gain vs Temperature vs Supply Voltage vs Temperature 86 V+ 110 85 VS = ±5V, VO = ±3V –0.5 TVAIN = = 2 150°mCV mA)105 84 RL = 500Ω V)–1.0 RL = 500Ω NT (100 OPEN-LOOP GAIN (dB) 77887888902731 VS = 5V, VO = ±1VRL = 150RΩL = 500Ω OUTPUT VOLTAGE SWING (––122110......500505 RRRLLL === 511055000ΩΩΩ UTPUT SHORT-CIRCIUT CURRE 67889795505500 VVSS == ±55VSVOURCESSIINNKKSOURCE O 76 V– 60 –50 –25 0 25 50 75 100 125 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) SUPPLY VOLTAGE (±V) TEMPERATURE (°C) 1723 G13 1723 G08 1723 G15 Gain and Phase vs Frequency Overshoot vs Capacitive Load Output Impedance vs Frequency 90 90 80 100 80 ±5V PHASE 80 75 VRSL == ±550V0Ω TVAS == 2±55°VC 70 5V ±5V 70 70 VIN = 2VP-P 10 GAIN (dB) 46530000 GAIN 5V 46530000 PHASE (DEG ERSHOOT (%) 5645600555 f = 1MHz ARVS == 10,Ω RF = 500Ω, T IMPEDANCE (Ω) 0.11 AV = 100AV = 10 AV = 1 ) V U 20 20 O 40 AV = –1, RF = 500Ω, RS = 0Ω TP U 35 O 10 TA = 25°C 10 30 0.01 0 ARVF == R–1G = 500Ω 0 25 AV = 1, RF = 0Ω, RS = 500Ω –10 –10 20 0.001 0.01 0.1 1 10 100 10 20 30 40 50 60 70 80 90 100 0.01 0.1 1 10 100 FREQUENCY (MHz) CAPACITIVE LOAD (pF) FREQUENCY (MHz) 1723 G16 1723 G17 1723 G18 172234fb 9

LT1722/LT1723/LT1724 TYPICAL PERFORMANCE CHARACTERISTICS Gain vs Frequency, A = 1 Gain vs Frequency, A = 1 Gain vs Frequency, A = –1 V V V 9 9 9 TA = 25°C TA = 25°C TA = 25°C 8 AV = 1 8 AV = 1 8 AV = –1 CL = 100pF 7 RNFO =R 0LΩ 7 NNOO RCLL RF = 1k 7 RNFO =R RLG = 500Ω 6 ±5V 6 ±5V 6 ±5V 5V CL = 100pF 5V 5V N (dB) 54 N (dB) 54 RF = 500Ω N (dB) 54 CL = 50pF AI AI AI G 3 G 3 G 3 CL = 50pF 2 2 2 1 1 1 CL = 0pF 0 CL = 0pF 0 RF = 0Ω 0 –1 –1 –1 1 10 100 1 10 100 1 10 100 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) 1723 G19 1723 G20 1723 G21 Power Supply Rejection Ratio Common Mode Rejection Ratio Channel Separation vs Frequency vs Frequency vs Frequency –10 100 110 TA = 25°C TA = 25°C TA = 25°C –20 VROL == 165V0PΩ-P O (dB) 9800 –PSRR VASV == ±15V O (dB)10900 VS = ±5V –30 ATI +PSRR ATI R 70 R 80 B) N N STALK (d ––5400 REJECTIO 6500 REJECTIO 6700 CROS ––7600 SUPPLY 4300 N MODE 4500 ER 20 MO 30 –80 W M O 10 O 20 P C –90 0 10 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) 1723 G22 1723 G23 1723 G24 Gain Bandwidth Slew Rate vs Temperature Phase Margin vs Supply Voltage vs Supply Voltage 100 80 220 TA = 25°C TA = 25°C 90 VS = ±2.5V, SR+ VS = ±5V, SR+ 75 AVVIN = = – –120dBm 215 AVVIN = = – –120dBm s) 80 EG) 6750 RG = RF = 500Ω RL = 500Ω MHz) 210 RL = 150Ω CL = 25pF RG = RF = 500Ω SLEW RATE (V/μ 64750000 VS = ±2.5V, SR–VS = ±5V, SR– PHASE MARGIN (D 56455050 CCLL == 255ppFF RRLL == 155000ΩΩ RRLL == 115500ΩΩ GAIN BANDWIDTH ( 212109090055 CL = 5CpLF = 5pF CL =C 5L 5=p 2F5pF TA = 25°C RL = 500Ω CL = 55pF 30 ARVG == –R1F = 500Ω 40 CL = 55pF RL = 500Ω 185 20 35 180 –50 –25 0 25 50 75 100 125 2.5 3 3.5 4 4.5 5 5.5 6 2.5 3 3.5 4 4.5 5 5.5 6 TEMPERATURE (°C) SUPPLY VOLTAGE (±V) SUPPLY VOLTAGE (±V) 1723 G40 1723 G41 1723 G42 172234fb 10

LT1722/LT1723/LT1724 TYPICAL PERFORMANCE CHARACTERISTICS Harmonic Distortion vs Frequency Harmonic Distortion vs Frequency Slew Rate vs Supply Voltage A = 1, V = 0.2V A = 1, V = 0.2V V O P-P V O P-P 80 –40 –40 VIN_P-P = VS, VOUT_MES VS = ±5V VS = 5V AT 2/3 OF VIN_P-P SR+ AV = 1 AV = 1 75 SR– dBc)–50 RRFIN = = 0 0ΩΩ dBc)–50 RRFIN = = 0 0ΩΩ ATE (V/μs) 7605 SR+ STORTION (––6700 VO = 0.2VP-P STORTION (––6700 VO = 0.2VP-P RL = 500Ω, 3RD W R SR– C DI RL = 150Ω, 3RD C DI RL = 150Ω, 3RD SLE 60 VIN = ±1.5V, VOUT_MES AT ±1V RMONI–80 RL = 150Ω, 2ND RMONI–80 RL = 150Ω, 2ND 55 TA = 25°C HA –90 RL = 500Ω, 2ND HA –90 RL = 500Ω, 2ND AV = –1 RL = 500Ω, 3RD RF = RG = RL = 500Ω 50 –100 –100 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 0.1 1 10 0.1 1 10 SUPPLY VOLTAGE (±V) FREQUENCY (MHz) FREQUENCY (MHz) 1723 G25 1723 G26 1723 G27 Harmonic Distortion vs Frequency Harmonic Distortion vs Frequency Harmonic Distortion vs Frequency A = 2, V = 0.2V A = 2, V = 0.2V A = 1, V = 2V V O P-P V O P-P V O P-P –40 –40 –40 VS = ±5V VS = 5V VS = ±5V AV = 2 AV = 2 AV = 1 dBc)–50 RVOF == 500.20VΩP-P dBc)–50 RVOF == 500.20VΩP-P dBc)–50 RRFIN = = 0 5Ω00Ω ON (–60 ON (–60 ON (–60 VO = 2VP-P ORTI RL = 150Ω, 3RD ORTI RL = 150Ω, 3RD ORTI ST –70 ST –70 ST –70 MONIC DI–80 RL = 150Ω, 2ND MONIC DI–80 RL = 150Ω, 2ND MONIC DI–80 RLR =L =1 5105Ω0Ω, 3, R2DND RL = 500Ω, 3RD HAR –90 RL = 500Ω, 3RD HAR –90 RL = 500Ω, 3RD HAR –90 RL = 500Ω, 2ND RL = 500Ω, 2ND RL = 500Ω, 2ND –100 –100 –100 0.1 1 10 0.1 1 10 0.1 1 10 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) 1723 G28 1723 G29 1723 G30 Harmonic Distortion vs Frequency Harmonic Distortion vs Frequency A = 1, V = 2V A = 2, V = 2V V O P-P V O P-P –40 –40 VS = 5V VS = ±5V AV = 1 AV = 2 dBc)–50 RRFIN = = 0 5Ω00Ω dBc)–50 RVOF == 520V0PΩ-P ON (–60 VO = 2VP-P ON (–60 TI TI RL = 150Ω, 2ND OR RL = 150Ω, 3RD OR RL = 150Ω, 3RD ST –70 ST –70 DI DI ONIC –80 RL = 150Ω, 2ND RL = 500Ω, 3RD ONIC –80 RL = 500Ω, 2ND M M AR RL = 500Ω, 2ND AR H –90 H –90 RL = 500Ω, 3RD –100 –100 0.1 1 10 0.1 1 10 FREQUENCY (MHz) FREQUENCY (MHz) 1723 G31 1723 G32 172234fb 11

LT1722/LT1723/LT1724 TYPICAL PERFORMANCE CHARACTERISTICS Harmonic Distortion vs Frequency A = 2, V = 2V Settling Time vs Output Step V O P-P –40 3.0 VS = 5V 2.5 AV = 2 0.1% SETTLING dBc)–50 RVOF == 520V0PΩ-P 12..50 MONIC DISTORTION (–––687000 RL = R1L5 0=Ω 1,5 20NΩD, 3RDRL = 500Ω, 2ND OUTPUT STEP (V)––1001....05500 00..0011%% SSEEVARCTTSVFFTT ====LL II05±–NNp051GGF0VΩ AR RL = 500Ω, 3RD –1.5 H –90 –2.0 0.1% SETTLING –2.5 –100 –3.0 0.1 1 10 60 70 80 90 100 110 120 130 140 FREQUENCY (MHz) SETTLING TIME (ns) 1723 G33 1723 G43 Large-Signal Transient, A = 1 Small-Signal Transient, A = 1 Small-Signal Transient, A = 1 V V V 1V/DIV 50mV/DIV 50mV/DIV AV = 1 50ns/DIV 1723 G34 AV = 1 50ns/DIV 1723 G35 AV = 1 50ns/DIV 1723 G36 RS = 500Ω RS = 0Ω RS = 0Ω RF = 0Ω RF = 0Ω RF = 0Ω CL = 0pF CL = 100pF Large-Signal Transient, A = –1 Small-Signal Transient, A = –1 Small-Signal Transient, A = –1 V V V 1V/DIV 50mV/DIV 50mV/DIV AV = –1 50ns/DIV 1723 G37 AV = –1 50ns/DIV 1723 G38 AV = –1 50ns/DIV 1723 G39 RG = 500Ω RG = 500Ω RG = 500Ω RF = 500Ω RF = 500Ω RF = 500Ω CL = 0pF CL = 100pF 172234fb 12

LT1722/LT1723/LT1724 APPLICATIONS INFORMATION The LT1722/LT1723/LT1724 may be inserted directly into VS+ many operational amplifi er applications improving both DC D3 D1 D5 and AC performance, as well as noise and distortion. REXT +IN Q1 Q2 –IN REXT +IN –IN Layout and Passive Components D2 D4 R D6 The LT1722/LT1723/LT1724 amplifi ers are more tolerant I1 I2 of less than ideal layouts than other high speed amplifi ers. VS– 1723 F01 For maximum performance (for example, fast settling time) Figure 1. Input Stage Protection use a ground plane, short lead lengths and RF quality bypass capacitors (0.01μF to 0.1μF). For high drive current adding resistance to balance source resistance is not applications, use low ESR supply bypass capacitors (1μF recommended. The value of the source resistor should to 10μF tantalum). The output/input parasitic coupling be below 12k as it actually degrades DC accuracy and should be minimized when high frequency performance also increases noise. is required. The parallel combination of the feedback resistor and gain Total Input Noise setting resistor on the inverting input combine with the The total input noise of the LT1722/LT1723/LT1724 is input capacitance to form a pole that can cause peaking optimized for a source resistance between 0.8k and 12k. or even oscillations. In parallel with the feedback resistor, Within this range, the total input noise is dominated by a capacitor of value: the noise of the source resistance itself. When the source CF > RG • CIN/RF resistance is below 0.8k, voltage noise of the amplifi er dominates. When the source resistance is above 12k, the should be used to cancel the input pole and optimize input noise current is the dominant contributor. dynamic performance. For unity-gain applications where a feedback resistor is used, such as an I-to-V converter, Capacitive Loading C should be fi ve times greater than C ; an optimum F IN value for C is 10pF. The LT1722/LT1723/LT1724 drive capacitive loads up to F 100pF with unity gain. As the capacitive load increases, Input Considerations both the bandwidth and the phase margin decrease causing peaking in the frequency response and overshoot in the Each of the LT1722/LT1723/LT1724 inputs is protected with transient response. When there is a need to drive a larger back-to-back diodes across the bases of the NPN input capacitive load, a 25Ω series resistance assures stability devices. If greater than 0.7V differential input voltages are with any value of load capacitor. A feedback capacitor also anticipated, the input current must be limited to less than helps to reduce any peaking. 10mA with an external series resistor. Each input also has two ESD clamp diodes—one to each supply. If an input is Power Dissipation driven beyond the supply, limit the current with an external resistor to less than 10mA. The input stage protection The LT1722/LT1723/LT1724 combine high speed and circuit is shown in Figure 1. large output drive in a small package. Maximum junction temperature (T ) is calculated from the ambient temperature The input currents of the LT1722/LT1723/LT1724 are J (T ), power dissipation per amplifi er (P ) and number of typically in the tens of nA range due to the bias current A D amplifi ers (n) as follows: cancellation technique used at the input. As the input offset current can be greater than either input current, T = T + (n • P • θ ) J A D JA 172234fb 13

LT1722/LT1723/LT1724 APPLICATIONS INFORMATION Power dissipation is composed of two parts. The fi rst is Circuit Operation due to the quiescent supply current and the second is due The LT1722/LT1723/LT1724 circuit topology is a voltage to on-chip dissipation caused by the load current. feedback amplifi er. The operation of the circuit can be Worst-case instantaneous power dissipation for a given understood by referring to the Simplifi ed Schematic. The resistive load in one amplifi er occurs at the maximum fi rst stage is a folded cascode formed by the transistors supply current and when the output voltage is at half of Q1 through Q4. A degeneration resistor, R, is used in the either supply voltage (or the maximum swing if less than input stage. The current mirror Q5, Q6 is bootstrapped half supply voltage). by Q7. The capacitor, C, assures the bandwidth and the slew rate performance. The output stage is formed by Therefore P in one amplifi er is: D(MAX) complementary emitter followers, Q8 through Q11. The PD(MAX) = (V+ – V–)(IS(MAX)) + (V+/2)2/RL diodes D1 and D2 protect against input reversed biasing. The remaining part of the circuit assures optimum voltage or and current biases for all stages. P = (V+ – V–)(I ) + D(MAX) S(MAX) (V+ – V )(V /R ) Low noise, reduced current supply, high speed and O(MAX) O(MAX) L DC accurate parameters are distinctive features of the Example. Worst-case conditions are: both op amps in LT1722/LT1723/LT1724. the LT1723IS8 are at T = 85°C, V = ±5V, R = 150Ω, A S L V = 2.5V. OUT P = 2 •[(10V)(5.95mA) + (2.5V)2/150Ω] = 203mW D(MAX) T = 85°C + (203mW)(190°C/W) = 124°C J(MAX) which is less than the absolute maximum rating at 150°C. SIMPLIFIED SCHEMATIC VS+ R1 R2 I5 Q4 Q3 VBIAS C D1 Q10 Q1 Q2 +IN ?–IN Q7 OUT Q8 D2 Q5 Q6 Q9 R Q11 I1 I2 I3 I4 VS– 1723 SS 172234fb 14

LT1722/LT1723/LT1724 PACKAGE DESCRIPTION S5 Package 5-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1635) 0.62 0.95 2.90 BSC MAX REF (NOTE 4) 1.22 REF 1.50 – 1.75 3.85 MAX 2.62 REF 1.4 MIN 2.80 BSC (NOTE 4) PIN ONE RECOMMENDED SOLDER PAD LAYOUT 0.30 – 0.45 TYP 0.95 BSC PER IPC CALCULATOR 5 PLCS (NOTE 3) 0.80 – 0.90 0.20 BSC 0.01 – 0.10 1.00 MAX DATUM ‘A’ 0.30 – 0.50 REF 0.09 – 0.20 1.90 BSC NOTE: (NOTE 3) S5 TSOT-23 0302 REV B 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. JEDEC PACKAGE REFERENCE IS MO-193 172234fb 15

LT1722/LT1723/LT1724 PACKAGE DESCRIPTION S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 .045 ±.005 (4.801 – 5.004) .050 BSC NOTE 3 8 7 6 5 .245 MIN .160 ±.005 .150 – .157 .228 – .244 (3.810 – 3.988) (5.791 – 6.197) NOTE 3 .030 ±.005 TYP 1 2 3 4 RECOMMENDED SOLDER PAD LAYOUT .010 – .020 (cid:115) 45° .053 – .069 (0.254 – 0.508) (1.346 – 1.752) .004 – .010 .008 – .010 (0.203 – 0.254) 0°– 8° TYP (0.101 – 0.254) .016 – .050 .014 – .019 .050 (0.406 – 1.270) (0.355 – 0.483) (1.270) NOTE: INCHES TYP BSC 1. DIMENSIONS IN (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) SO8 0303 MS8 Package 8-Lead Plastic MSOP (Reference LTC DWG # 05-08-1660 Rev F) 3.00 ± 0.102 0.889 ± 0.127 (.118 ± .004) 0.52 (.035 ± .005) (NOTE 3) 8 7 6 5 (.0205) REF 5.23 3.20 – 3.45 3.00 ± 0.102 (.206) 4.90 ± 0.152 MIN (.126 – .136) 0.254 DETAIL “A” (.193 ± .006) (.118 ± .004) (NOTE 4) (.010) 0° – 6° TYP GAUGE PLANE 0.42 ± 0.038 0.65 (.0165 ± .0015) (.0256) 1 2 3 4 TYP BSC 0.53 ± 0.152 (.021 ± .006) 1.10 0.86 RECOMMENDED SOLDER PAD LAYOUT (.043) (.034) DETAIL “A” MAX REF 0.18 (.007) SEATING NOTE: PLANE 0.22 – 0.38 0.1016 ± 0.0508 1. DIMENSIONS IN MILLIMETER/(INCH) (.009 – .015) (.004 ± .002) 2. DRAWING NOT TO SCALE TYP 0.65 MSOP (MS8) 0307 REV F (.0256) 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. BSC MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX 172234fb 16

LT1722/LT1723/LT1724 PACKAGE DESCRIPTION S Package 14-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .337 – .344 .045 ±.005 (8.560 – 8.738) .050 BSC NOTE 3 14 13 12 11 10 9 8 N N .245 MIN .160 ±.005 .228 – .244 .150 – .157 (5.791 – 6.197) (3.810 – 3.988) NOTE 3 1 2 3 N/2 N/2 .030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT 1 2 3 4 5 6 7 .010 – .020 (cid:115) 45° .053 – .069 (0.254 – 0.508) (1.346 – 1.752) .008 – .010 .004 – .010 (0.203 – 0.254) 0° – 8° TYP (0.101 – 0.254) .016 – .050 .014 – .019 .050 (0.406 – 1.270) (0.355 – 0.483) (1.270) TYP BSC NOTE: INCHES S14 0502 1. DIMENSIONS IN (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 172234fb Information furnished by Linear Technology Corporation is believed to be accurate and reliable. 17 However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa- tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT1722/LT1723/LT1724 TYPICAL APPLICATION 4- to 2-Wire Local Echo Cancellation Differential Receiver Amplifi er 10pF 2k – 1/2 LT1739 50Ω 1k 1k + – (n = 1) 1/2 LT1723 n:1 + LINVDE 100VΩL • •RL VLIRNE DRIVER LINE n2 RECEIVER + 1/2 LT1723 – + 50Ω 1k 1k 1/2 LT1739 – 2k 1723 TA03 10pF RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LT1677 Single, Low Noise Rail-to-Rail Amplifi er 3V Operation, 2.5mA Supply Current, 4.5nV/√Hz Max en, 60µV Max V OS LT1800/LT1801/LT1802 Single/Dual/Quad, Low Power, 80MHz Rail-to-Rail 1.6mA Supply Current, 350µV V , 2.3V Operation OS Precision Amplifi er LT1806/LT1807 Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifi ers 2.5V Operation, 550µVMAX VOS, 3.5nV/√Hz LT1809/LT1810 Single/Dual, Low Distortion 180MHz Rail-to-Rail Amplifi ers 2.5V Operation, –90dBc at 5MHz Distortion LT1812/LT1813/LT1814 Single/Dual/Quad, 3mA, 750V/µs Amplifi ers 5V Operation, 3.6mA Supply Current, 40mA Min Output Current LT6202/LT6203/LT6204 Single/Dual/Quad, 100MHz, Low Noise Rail-to-Rail Op Amps 2nV/√Hz, 2.5mA on Single 3V Supply 172234fb 18 Linear Technology Corporation LT 0909 REV B • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2002