图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LT1365CS#PBF
  • 制造商: LINEAR TECHNOLOGY
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LT1365CS#PBF产品简介:

ICGOO电子元器件商城为您提供LT1365CS#PBF由LINEAR TECHNOLOGY设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LT1365CS#PBF价格参考。LINEAR TECHNOLOGYLT1365CS#PBF封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 4 电路 16-SO。您可以下载LT1365CS#PBF参考资料、Datasheet数据手册功能说明书,资料中有LT1365CS#PBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)

描述

IC OPAMP VFB 70MHZ 16SO

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Linear Technology

数据手册

http://www.linear.com/docs/2342

产品图片

产品型号

LT1365CS#PBF

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

C-Load™

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

16-SO

其它名称

LT1365CSPBF

包装

管件

压摆率

1000 V/µs

增益带宽积

70MHz

安装类型

表面贴装

封装/外壳

16-SOIC(0.154",3.90mm 宽)

工作温度

0°C ~ 70°C

放大器类型

电压反馈

标准包装

50

电压-电源,单/双 (±)

5 V ~ 36 V, ±2.5 V ~ 18 V

电压-输入失调

500µV

电流-电源

6.3mA

电流-输入偏置

600nA

电流-输出/通道

60mA

电路数

4

输出类型

-

推荐商品

型号:AD8207WBRZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MAX4322EUK+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MCP625-E/MF

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:THS4502IDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LF353DRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM7301IM5

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1819IS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AD797BR-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LT1365CS#PBF 相关产品

AD827SQ/883B

品牌:Analog Devices Inc.

价格:¥426.20-¥426.20

EL5362ISZ-T13

品牌:Renesas Electronics America Inc.

价格:

LMP7709MT/NOPB

品牌:Texas Instruments

价格:¥17.31-¥32.15

OP2177ARZ

品牌:Analog Devices Inc.

价格:¥23.56-¥36.52

ADN2892ACPZ-RL

品牌:Analog Devices Inc.

价格:

AD8418WBRMZ-RL

品牌:Analog Devices Inc.

价格:

TL082IDRG4

品牌:Texas Instruments

价格:

MAX4376HASA

品牌:Maxim Integrated

价格:

PDF Datasheet 数据手册内容提取

LT1364/LT1365 Dual and Quad m 70MHz, 1000V/ s Op Amps FEATURES DESCRIPTIOU n 70MHz Gain Bandwidth The LT1364/LT1365 are dual and quad high speed opera- n 1000V/m s Slew Rate tional amplifiers with outstanding AC and DC perfor- n 7.5mA Maximum Supply Current per Amplifier mance. The amplifiers feature much lower supply current n Unity-Gain Stable and higher slew rate than devices with comparable band- n C-LoadTM Op Amp Drives All Capacitive Loads width. The circuit topology is a voltage feedback amplifier n 9nV/(cid:214) Hz Input Noise Voltage with matched high impedance inputs and the slewing n 1.5mV Maximum Input Offset Voltage performance of a current feedback amplifier. The high n 2m A Maximum Input Bias Current slew rate and single stage design provide excellent settling n 350nA Maximum Input Offset Current characteristics which make the circuit an ideal choice for n 50mA Minimum Output Current data acquisition systems. Each output drives a 150W load n – 7.5V Minimum Output Swing into 150W to – 7.5V with – 15V supplies and to – 3.4V on – 5V sup- n 4.5V/mV Minimum DC Gain, R =1k plies. The amplifiers are stable with any capacitive load L n 50ns Settling Time to 0.1%, 10V Step making them useful in buffer or cable driving applications. n 0.06% Differential Gain, A =2, R =150W V L The LT1364/LT1365 are members of a family of fast, high n 0.04(cid:176) Differential Phase, A =2, R =150W V L performance amplifiers using this unique topology and n Specified at – 2.5V, – 5V, and – 15V employing Linear Technology Corporation’s advanced bipolar complementary processing. For a single amplifier APPLICATIOUS version of the LT1364/LT1365 see the LT1363 data sheet. For 50MHz devices with 4mA supply currents see the n Wideband Amplifiers LT1360 through LT1362 data sheets. For lower supply n Buffers current amplifiers see the LT1354 to LT1359 data sheets. n Active Filters Singles, duals, and quads of each amplifier are available. n Video and RF Amplification n Cable Drivers , LTC and LT are registered trademarks of Linear Technology Corporation. n Data Acquisition Systems C-Load is a trademark of Linear Technology Corporation TYPICAL APPLICATIOU Cable Driver Frequency Response A = –1 Large-Signal Response V 2 0 VS = – 15V VS = – 2.5V dB) –2 VSV =S –= 5–V10V N ( GAI –4 IN +1/2 75W OUT LT1364 – 75W –6 510W 510W –8 1 10 100 FREQUENCY (MHz) 1364/1365 TA02 1364/1365 TA01 1

LT1364/LT1365 ABSOLUTE WMAXIWMUWM RATINUGS (Note 1) Total Supply Voltage (V+ to V–)............................... 36V Operating Temperature Range (Note 8)...–40(cid:176) C to 85(cid:176) C Differential Input Voltage Specified Temperature Range (Note 9)....–40(cid:176) C to 85(cid:176) C (Transient Only, Note 2).................................... – 10V Maximum Junction Temperature (See Below) Input Voltage............................................................– V Plastic Package ................................................150(cid:176) C S Output Short-Circuit Duration (Note 3)............Indefinite Storage Temperature Range..................–65(cid:176) C to 150(cid:176) C Lead Temperature (Soldering, 10 sec)..................300(cid:176) C PACKAGE/ORDER IUNFORWMATIOUN TOP VIEW ORDER PART TOP VIEW ORDER PART OUT A 1 8 V+ NUMBER OUT A 1 8 V+ NUMBER –IN A 2 7 OUT B –IN A 2 7 OUT B A LT1364CN8 A LT1364CS8 +IN A 3 6 –IN B +IN A 3 6 –IN B B B V– 4 5 +IN B V– 4 5 +IN B S8 PART MARKING N8 PACKAGE S8 PACKAGE 8-LEAD PDIP 8-LEAD PLASTIC SO 1364 TJMAX = 150(cid:176)C, q JA = 130(cid:176)C/W TJMAX = 150(cid:176)C, q JA = 190(cid:176)C/W TOP VIEW ORDER PART TOP VIEW ORDER PART NUMBER NUMBER OUT A 1 14 OUT D OUT A 1 16 OUT D –IN A 2 13 –IN D –IN A 2 15 –IN D A D LT1365CN A D LT1365CS +IN A 3 12 +IN D +IN A 3 14 +IN D V+ 4 11 V– V+ 4 13 V– +IN B 5 10 +IN C +IN B 5 12 +IN C B C B C –IN B 6 9 –IN C –IN B 6 11 –IN C OUT B 7 8 OUT C OUT B 7 10 OUT C NC 8 9 NC N PACKAGE 14-LEAD PDIP S PACKAGE 16-LEAD PLASTIC SO TJMAX = 150(cid:176)C, q JA = 110(cid:176)C/W TJMAX = 150(cid:176)C, q JA = 150(cid:176)C/W Consult factory for Industrial and Military grade parts. ELECTRICAL CHARACTERISTICS T = 25(cid:176) C, V = 0V unless otherwise noted. A CM SYMBOL PARAMETER CONDITIONS V MIN TYP MAX UNITS SUPPLY V Input Offset Voltage (Note 4) – 15V 0.5 1.5 mV OS – 5V 0.5 1.5 mV – 2.5V 0.7 1.8 mV I Input Offset Current – 2.5V to – 15V 120 350 nA OS I Input Bias Current – 2.5V to – 15V 0.6 2.0 m A B e Input Noise Voltage f = 10kHz – 2.5V to – 15V 9 nV/(cid:214) Hz n i Input Noise Current f = 10kHz – 2.5V to – 15V 1 pA/(cid:214) Hz n R Input Resistance V = – 12V – 15V 12 50 MW IN CM Input Resistance Differential – 15V 5 MW C Input Capacitance – 15V 3 pF IN 2

LT1364/LT1365 ELECTRICAL CHARACTERISTICS T = 25(cid:176) C, V = 0V unless otherwise noted. A CM SYMBOL PARAMETER CONDITIONS V MIN TYP MAX UNITS SUPPLY Input Voltage Range + – 15V 12.0 13.4 V – 5V 2.5 3.4 V – 2.5V 0.5 1.1 V Input Voltage Range – – 15V –13.2 –12.0 V – 5V –3.2 –2.5 V – 2.5V –0.9 –0.5 V CMRR Common Mode Rejection Ratio V = – 12V – 15V 84 90 dB CM V = – 2.5V – 5V 76 81 dB CM V = – 0.5V – 2.5V 66 71 dB CM PSRR Power Supply Rejection Ratio V = – 2.5V to – 15V 90 100 dB S A Large-Signal Voltage Gain V = – 12V, R = 1k – 15V 4.5 9.0 V/mV VOL OUT L V = – 10V, R = 500W – 15V 3.0 6.5 V/mV OUT L V = – 7.5V, R = 150W – 15V 2.0 3.8 V/mV OUT L V = – 2.5V, R = 500W – 5V 3.0 6.4 V/mV OUT L V = – 2.5V, R = 150W – 5V 2.0 5.6 V/mV OUT L V = – 1V, R = 500W – 2.5V 2.5 5.2 V/mV OUT L V Output Swing R = 1k, V = – 40mV – 15V 13.5 14.0 – V OUT L IN R = 500W , V = – 40mV – 15V 13.0 13.7 – V L IN R = 500W , V = – 40mV – 5V 3.5 4.1 – V L IN R = 150W , V = – 40mV – 5V 3.4 3.8 – V L IN R = 500W , V = – 40mV – 2.5V 1.3 1.7 – V L IN I Output Current V = – 7.5V – 15V 50 60 mA OUT OUT V = – 3.4V – 5V 23 29 mA OUT I Short-Circuit Current V = 0V, V = – 3V – 15V 70 105 mA SC OUT IN SR Slew Rate A = –2, (Note 5) – 15V 750 1000 V/m s V – 5V 300 450 V/m s Full Power Bandwidth 10V Peak, (Note 6) – 15V 15.9 MHz 3V Peak, (Note 6) – 5V 23.9 MHz GBW Gain Bandwidth f = 200kHz – 15V 50 70 MHz – 5V 35 50 MHz – 2.5V 40 MHz t, t Rise Time, Fall Time A = 1, 10%-90%, 0.1V – 15V 2.6 ns r f V – 5V 3.6 ns Overshoot A = 1, 0.1V – 15V 36 % V – 5V 23 % Propagation Delay 50% V to 50% V , 0.1V – 15V 4.6 ns IN OUT – 5V 5.6 ns t Settling Time 10V Step, 0.1%, A = –1 – 15V 50 ns s V 10V Step, 0.01%, A = –1 – 15V 80 ns V 5V Step, 0.1%, A = –1 – 5V 55 ns V Differential Gain f = 3.58MHz, A = 2, R = 150W – 15V 0.03 % V L – 5V 0.06 % f = 3.58MHz, A = 2, R = 1k – 15V 0.01 % V L – 5V 0.01 % Differential Phase f = 3.58MHz, A = 2, R = 150W – 15V 0.10 Deg V L – 5V 0.04 Deg f = 3.58MHz, A = 2, R = 1k – 15V 0.05 Deg V L – 5V 0.25 Deg R Output Resistance A = 1, f = 1MHz – 15V 0.7 W O V Channel Separation V = – 10V, R = 500W – 15V 100 113 dB OUT L I Supply Current Each Amplifier – 15V 6.3 7.5 mA S Each Amplifier – 5V 6.0 7.2 mA 3

LT1364/LT1365 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range 0(cid:176) C £ T £ 70(cid:176) C, V = 0V unless otherwise noted. A CM SYMBOL PARAMETER CONDITIONS V MIN TYP MAX UNITS SUPPLY V Input Offset Voltage (Note 4) – 15V l 2.0 mV OS – 5V l 2.0 mV – 2.5V l 2.2 mV Input V Drift (Note 7) – 2.5V to – 15V l 10 13 m V/(cid:176) C OS I Input Offset Current – 2.5V to – 15V l 500 nA OS I Input Bias Current – 2.5V to – 15V l 3 m A B CMRR Common Mode Rejection Ratio V = – 12V – 15V l 82 dB CM V = – 2.5V – 5V l 74 dB CM V = – 0.5V – 2.5V l 64 dB CM PSRR Power Supply Rejection Ratio V = – 2.5V to – 15V l 88 dB S A Large-Signal Voltage Gain V = – 12V, R = 1k – 15V l 3.6 V/mV VOL OUT L V = – 10V, R = 500W – 15V l 2.4 V/mV OUT L V = – 2.5V, R = 500W – 5V l 2.4 V/mV OUT L V = – 2.5V, R = 150W – 5V l 1.5 V/mV OUT L V = – 1V, R = 500W – 2.5V l 2.0 V/mV OUT L V Output Swing R = 1k, V = – 40mV – 15V l 13.4 – V OUT L IN R = 500W , V = – 40mV – 15V l 12.8 – V L IN R = 500W , V = – 40mV – 5V l 3.4 – V L IN R = 150W , V = – 40mV – 5V l 3.3 – V L IN R = 500W , V = – 40mV – 2.5V l 1.2 – V L IN I Output Current V = – 12.8V – 15V l 25 mA OUT OUT V = – 3.3V – 5V l 22 mA OUT I Short-Circuit Current V = 0V, V = – 3V – 15V l 55 mA SC OUT IN SR Slew Rate A = –2, (Note 5) – 15V l 600 V/m s V – 5V l 225 V/m s GBW Gain Bandwidth f = 200kHz – 15V l 44 MHz – 5V l 31 MHz Channel Separation V = – 10V, R = 500W – 15V l 98 dB OUT L I Supply Current Each Amplifier – 15V l 8.7 mA S Each Amplifier – 5V l 8.4 mA The l denotes the specifications which apply over the temperature range –40(cid:176) C £ T £ 85(cid:176) C, V = 0V unless otherwise noted. (Note 9) A CM SYMBOL PARAMETER CONDITIONS V MIN TYP MAX UNITS SUPPLY V Input Offset Voltage (Note 4) – 15V l 2.5 mV OS – 5V l 2.5 mV – 2.5V l 2.7 mV Input V Drift (Note 7) – 2.5V to – 15V l 10 13 m V/(cid:176) C OS I Input Offset Current – 2.5V to – 15V l 600 nA OS I Input Bias Current – 2.5V to – 15V l 3.6 m A B CMRR Common Mode Rejection Ratio V = – 12V – 15V l 82 dB CM V = – 2.5V – 5V l 74 dB CM V = – 0.5V – 2.5V l 64 dB CM PSRR Power Supply Rejection Ratio V = – 2.5V to – 15V l 87 dB S A Large-Signal Voltage Gain V = – 12V, R = 1k – 15V l 2.5 V/mV VOL OUT L V = – 10V, R = 500W – 15V l 1.5 V/mV OUT L V = – 2.5V, R = 500W – 5V l 1.5 V/mV OUT L V = – 2.5V, R = 150W – 5V l 1.0 V/mV OUT L V = – 1V, R = 500W – 2.5V l 1.3 V/mV OUT L 4

LT1364/LT1365 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range –40(cid:176) C £ T £ 85(cid:176) C, V = 0V unless otherwise noted. (Note 9) A CM SYMBOL PARAMETER CONDITIONS V MIN TYP MAX UNITS SUPPLY V Output Swing R = 1k, V = – 40mV – 15V l 13.4 – V OUT L IN R = 500W , V = – 40mV – 15V l 12.7 – V L IN R = 500W , V = – 40mV – 5V l 3.4 – V L IN R = 150W , V = – 40mV – 5V l 3.2 – V L IN R = 500W , V = – 40mV – 2.5V l 1.2 – V L IN I Output Current V = – 12.7V – 15V l 25 mA OUT OUT V = – 3.2V – 5V l 21 mA OUT I Short-Circuit Current V = 0V, V = – 3V – 15V l 50 mA SC OUT IN SR Slew Rate A = –2, (Note 5) – 15V l 550 V/m s V – 5V l 180 V/m s GBW Gain Bandwidth f = 200kHz – 15V l 43 MHz – 5V l 30 MHz Channel Separation V = – 10V, R = 500W – 15V l 98 dB OUT L I Supply Current Each Amplifier – 15V l 9.0 mA S Each Amplifier – 5V l 8.7 mA Note 1: Absolute Maximum Ratings are those values beyond which the life Note 6: Full power bandwidth is calculated from the slew rate of a device may be impaired. measurement: FPBW = SR/2p V . P Note 2: Differential inputs of – 10V are appropriate for transient operation Note 7: This parameter is not 100% tested. only, such as during slewing. Large, sustained differential inputs will cause Note 8: The LT1364C/LT1365C are guaranteed functional over the excessive power dissipation and may damage the part. See Input operating temperature range of –40(cid:176) C to 85(cid:176) C. Considerations in the Applications Information section of this data sheet Note 9: The LT1364C/LT1365C are guaranteed to meet specified for more details. performance from 0(cid:176) C to 70(cid:176) C. The LT1364C/LT1365C are designed, Note 3: A heat sink may be required to keep the junction temperature characterized and expected to meet specified performance from –40(cid:176) C to below absolute maximum when the output is shorted indefinitely. 85(cid:176) C, but are not tested or QA sampled at these temperatures. For Note 4: Input offset voltage is pulse tested and is exclusive of warm-up drift. guaranteed I-grade parts, consult the factory. Note 5: Slew rate is measured between – 10V on the output with – 6V input for – 15V supplies and – 1V on the output with – 1.75V input for – 5V supplies. TYPICAL PERFORWMANUCE CHARACTERISTICS Supply Current vs Supply Voltage Input Common Mode Range vs Input Bias Current vs and Temperature Supply Voltage Input Common Mode Voltage 10 V+ 1.0 CURRENT (mA) 86 –21525(cid:176)55C(cid:176)(cid:176)CC MODE RANGE (V)––––1021....0505 DTAV O=S 2 <5 (cid:176)1CmV mS CURRENT (A) 00..86 IVTBAS = =‰ = 2–— I51B (cid:176)5+— CV +2— I ‰B—– SUPPLY 4 OMMON 21..05 NPUT BIA 0.4 2 C 1.0 I 0.5 0 V– 0.2 0 5 10 15 20 0 5 10 15 20 –15 –10 –5 0 5 10 15 SUPPLY VOLTAGE (– V) SUPPLY VOLTAGE (– V) INPUT COMMON MODE VOLTAGE (V) 1364/1365 G01 1364/1365 G02 1364/1365 G03 5

LT1364/LT1365 TYPICAL PERFORWMANUCE CHARACTERISTICS Input Bias Current vs Open-Loop Gain vs Temperature Input Noise Spectral Density Resistive Load 1.4 100 10 85 mPUT BIAS CURRENT (A) 01100.....42068 VIBS = ‰ = –— I1B 5—+ V 2+— I ‰B—– (cid:214)T VOLTAGE NOISE (nV/Hz) 10 in en AVTRASVS ==== 2–115010(cid:176)150CVk 1 INPUT CURRENT NOISE (pA OPEN-LOOP GAIN (dB) 877050 TAV S= =2 5–(cid:176)1C5V VS = – 5V IN 0.2 INPU /Hz)(cid:214) 65 0 1 0.1 60 –50 –25 0 25 50 75 100 125 10 100 1k 10k 100k 10 100 1k 10k TEMPERATURE ((cid:176)C) FREQUENCY (Hz) LOAD RESISTANCE (W ) 1364/1365 G04 1364/1365 G05 1364/1365 G06 Output Voltage Swing vs Output Voltage Swing vs Open-Loop Gain vs Temperature Supply Voltage Load Current 81 V+ V+ 80 VVRSOL === ±1±1k152VV V)––01..50 TA = 25(cid:176)C RL = 1k V)––01..50 VVSIN = = – 150V0mV 85(cid:176)C P GAIN (dB) 7789 AGE SWING (––21..05 RL = 500W AGE SWING (––12..50 25(cid:176)C 25(cid:176)C –40(cid:176)C O T T OPEN-LO 7767 TPUT VOL 12..50 RL = 500W TPUT VOL 12..50 –40(cid:176)C OU 1.0 RL = 1k OU 1.0 75 0.5 0.5 85(cid:176)C 74 V– V– –50 –25 0 25 50 75 100 125 0 5 10 15 20 –50–40 –30–20 –10 0 10 20 30 40 50 TEMPERATURE ((cid:176)C) SUPPLY VOLTAGE (– V) OUTPUT CURRENT (mA) 1364/1365 G07 1364/1365 G08 1364/1365 G09 Output Short-Circuit Current vs Settling Time vs Output Step Settling Time vs Output Step Temperature (Noninverting) (Inverting) 140 10 10 A) VS = – 5V 8 VS = – 15V 8 VS = – 15V NT (m130 6 ARVL == 11k 6 RAVF == 1–k1 10mV URRE120 V) 4 10mV 1mV V) 4 CF = 3pF 1mV UIT C110 TEP ( 2 TEP ( 2 RC SOURCE T S 0 T S 0 RT-CI100 SINK UTPU –2 UTPU –2 HO 90 O –4 O –4 UT S –6 10mV 1mV –6 10mV 1mV UTP 80 –8 –8 O 70 –10 –10 –50 –25 0 25 50 75 100 125 0 20 40 60 80 100 0 20 40 60 80 100 TEMPERATURE ((cid:176)C) SETTLING TIME (ns) SETTLING TIME (ns) 1364/1365 G10 1364/1365 G11 1364/1365 G12 6

LT1364/LT1365 TYPICAL PERFORWMANUCE CHARACTERISTICS Output Impedance vs Frequency Gain and Phase vs Frequency Crosstalk vs Frequency 100 70 120 –20 VTAS == 2– 51(cid:176)5CV 60 PHASE VS = – 15V 100 ––4300 TAVAVIN == = 21 05d(cid:176)BCm ) 10 AV = 100 50 80 P WTPUT IMPEDANCE ( 1 AV = 10 AV = 1 GAIN (dB) 342000 GAINVS = –V5SV = – 15VVS = – 5V 462000 HASE (DEG) CROSSTALK (dB)–––––6895700000 VS R=L ± =1 51Vk OU 0.1 10 TA = 25(cid:176)C 0 –100 VRSL == ±5050VW 0 AV = –1 RF = RG = 1k –110 0.01 –10 –120 10k 100k 1M 10M 100M 10k 100k 1M 10M 100M 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) 1364/1365 G13 1364/1365 G14 1364/1365 G21 Gain Bandwidth and Phase Frequency Response vs Frequency Response vs Margin vs Temperature Supply Voltage (A = 1) Capacitive Load V 130 50 10 15 120 PVHS A=S –E5 MVARGIN 45 8 TAAV == 215(cid:176)C 12 VTAS == 2– 51(cid:176)5CV C = C1 0=0 500p0FpF GAIN BANDWIDTH (MHz)11796810000000 PVGVHSSA AI==NS –– EB11 AM55NVVADRWGIIDNTH 342213500550 PHASE MARGIN (DEG) GAIN (dB) ––622440 RL = 1k – 5V– 15V OLTAGE MAGNITUDE (dB) ––933660 AV = –1 C =C 1=C0 50=0p 0pFF 50 10 –6 V –9 GAIN BANDWIDTH – 2.5V 40 VS = – 5V 5 –8 –12 30 0 –10 –15 –50 –25 0 25 50 75 100 125 100k 1M 10M 100M 1M 10M 100M TEMPERATURE ((cid:176)C) FREQUENCY (Hz) FREQUENCY (Hz) 1364/1365 G16 1364/1365 G17 1364/1365 G18 Gain Bandwidth and Phase Power Supply Rejection Ratio Common Mode Rejection Ratio Margin vs Supply Voltage vs Frequency vs Frequency 130 50 100 120 MHz) 111120000 PHASE MARGINTA = 25(cid:176)C 444846 PHA N RATIO (dB) 80 –+PPSSRRRR VTAS == 2– 51(cid:176)5CV N RATIO (dB)10800 VTAS == 2– 51(cid:176)5CV GAIN BANDWIDTH ( 7596800000 GAIN BANDWIDTH 3343484062 SE MARGIN (DEG) WER SUPPLY REJECTIO 426000 MMON-MODE REJECTIO 426000 40 32 O O P C 30 30 0 0 0 5 10 15 20 100 1k 10k 100k 1M 10M 100M 1k 10k 100k 1M 10M 100M SUPPLY VOLTAGE (– V) FREQUENCY (Hz) FREQUENCY (Hz) 1364/1365 G15 1364/1365 G19 1364/1365 G20 7

LT1364/LT1365 TYPICAL PERFORWMANUCE CHARACTERISTICS Slew Rate vs Supply Voltage Slew Rate vs Temperature Slew Rate vs Input Level 2400 1400 2000 s)2112268000000000 TARSAVRF ==== 2R–—5S1G(cid:176)R —=C+ 1— 2+k S—R—– s)11200000 SARV == —–S2R—+— 2+ —SR—– S)111864000000 TVARSASVRF ===== 2R––—S511G(cid:176)R5 —=CV+ 1 —+k S—R—– mW RATE (V/111420000000 mW RATE (V/ 800 VS = – 15V mW RATE (V/11820000000 2 SLE 800 SLE 600 SLE 600 600 VS = – 5V 400 400 400 200 200 0 200 0 0 5 10 15 –50 –25 0 25 50 75 100 125 0 2 4 6 8 10 12 14 16 18 20 SUPPLY VOLTAGE (– V) TEMPERATURE ((cid:176)C) INPUT LEVEL (VP-P) 1364/1365 G22 1364/1365 G23 1364/1365 G24 Total Harmonic Distortion Undistorted Output Swing vs Undistorted Output Swing vs vs Frequency Frequency (– 15V) Frequency (– 5V) 0.01 30 10 TA = 25(cid:176)C AV = –1 %) VO = 3VRMS 25 AV = –1 STORTION ( RL = 500W GE (V)P-P 20 AV = 1 GE (V)P-P 68 AV = 1 TOTAL HARMONIC DI0.001 AAVV = = – 11 OUTPUT VOLTA 11550 VRASVL === –11,k1 15%V MAX DISTORTION OUTPUT VOLTA 24 RVSL == –1k5V AV = –1, 2% MAX DISTORTION 2% MAX DISTORTION 0.0001 0 0 10 100 1k 10k 100k 100k 1M 10M 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) 1364/1365 G25 1364/1365 G26 1364/1365 G27 2nd and 3rd Harmonic Distortion Differential Gain and Phase vs Frequency vs Supply Voltage Capacitive Load Handling D –40 0.2IF 100 F –50 VVSO == –2V15PV-P ERENT TVAS == 2– 51°5CV AV = –1 DISTORTION (dB)––7600 RAVL == 2500W 3RD HARMONIC E (DEG) 0.3 DIFFERENTIAL GAIN 00.1IAL GAIN (%) SHOOT (%) 50 MONIC –80 2ND HARMONIC L PHAS 0.2 DIFFERENTIAL PHASE OVER R A HA–90 FFERENTI 0.1 TARAVL === 22155(cid:176)0CW AV = 1 –100 DI 0.0 0 100k 200k 400k 1M 2M 4M 10M – 5 – 10 – 15 10p 100p 1000p 0.01m 0.1m 1m FREQUENCY (Hz) SUPPLY VOLTAGE (V) CAPACITIVE LOAD (F) 1364/1365 G28 1364/1365 G29 1364/1365 G30 8

LT1364/LT1365 TYPICAL PERFORWMANUCE CHARACTERISTICS Small-Signal Transient Small-Signal Transient Small-Signal Transient (A = 1) (A = –1) (A = –1, C = 200pF) V V V L 1364/1365 TA31 1364/1365 TA32 1364/1365 TA33 Large-Signal Transient Large-Signal Transient Large-Signal Transient (A = 1) (A = –1) (A = 1, C = 10,000pF) V V V L 1364/1365 TA34 1364/1365 TA35 1364/1365 TA36 APPLICATIOUNS INUFORWMATIOUN Layout and Passive Components Input Considerations The LT1364/LT1365 amplifiers are easy to use and toler- Each of the LT1364/LT1365 inputs is the base of an NPN ant of less than ideal layouts. For maximum performance and a PNP transistor whose base currents are of opposite (for example, fast 0.01% settling) use a ground plane, polarity and provide first-order bias current cancellation. short lead lengths, and RF-quality bypass capacitors Because of variation in the matching of NPN and PNP beta, (0.01m F to 0.1m F). For high drive current applications use the polarity of the input bias current can be positive or low ESR bypass capacitors (1m F to 10m F tantalum). negative. The offset current does not depend on NPN/PNP beta matching and is well controlled. The use of balanced The parallel combination of the feedback resistor and gain source resistance at each input is recommended for setting resistor on the inverting input combine with the applications where DC accuracy must be maximized. input capacitance to form a pole which can cause peaking or oscillations. If feedback resistors greater than 5kW are The inputs can withstand transient differential input volt- used, a parallel capacitor of value ages up to 10V without damage and need no clamping or source resistance for protection. Differential inputs, how- C > R x C /R F G IN F ever, generate large supply currents (tens of mA) as should be used to cancel the input pole and optimize required for high slew rates. If the device is used with dynamic performance. For unity-gain applications where sustained differential inputs, the average supply current a large feedback resistor is used, CF should be greater will increase, excessive power dissipation will result and than or equal to CIN. the part may be damaged. The part should not be used as 9

LT1364/LT1365 APPLICATIOUNS INUFORWMATIOUN a comparator, peak detector or other open-loop applica- output step in a gain of 10 has only a 1V input step, tion with large, sustained differential inputs. Under whereas the same output step in unity gain has a 10 times normal, closed-loop operation, an increase of power dis- greater input step. The curve of Slew Rate vs Input Level sipation is only noticeable in applications with large slewing illustrates this relationship. The LT1364/LT1365 are tested outputs and is proportional to the magnitude of the for slew rate in a gain of –2 so higher slew rates can be differential input voltage and the percent of the time that expected in gains of 1 and –1, and lower slew rates in the inputs are apart. Measure the average supply current higher gain configurations. for the application in order to calculate the power dissipa- The RC network across the output stage is bootstrapped tion. when the amplifier is driving a light or moderate load and has no effect under normal operation. When driving a Capacitive Loading capacitive load (or a low value resistive load) the network The LT1364/LT1365 are stable with any capacitive load. is incompletely bootstrapped and adds to the compensa- This is accomplished by sensing the load induced output tion at the high impedance node. The added capacitance pole and adding compensation at the amplifier gain node. slows down the amplifier which improves the phase As the capacitive load increases, both the bandwidth and margin by moving the unity-gain frequency away from the phase margin decrease so there will be peaking in the pole formed by the output impedance and the capacitive frequency domain and in the transient response as shown load. The zero created by the RC combination adds phase in the typical performance curves. The photo of the small to ensure that even for very large load capacitances, the signal response with 200pF load shows 62% peaking. The total phase lag can never exceed 180 degrees (zero phase large signal response shows the output slew rate being margin) and the amplifier remains stable. limited to 10V/m s by the short-circuit current. Coaxial cable can be driven directly, but for best pulse fidelity a Power Dissipation resistor of value equal to the characteristic impedance of The LT1364/LT1365 combine high speed and large output the cable (i.e., 75W ) should be placed in series with the drive in small packages. Because of the wide supply output. The other end of the cable should be terminated voltage range, it is possible to exceed the maximum with the same value resistor to ground. junction temperature under certain conditions. Maximum junction temperature (T ) is calculated from the ambient Circuit Operation J temperature (T ) and power dissipation (P ) as follows: A D The LT1364/LT1365 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a LT1364CN8: T = T + (P x 130(cid:176) C/W) J A D current feedback amplifier. The operation of the circuit can LT1364CS8: T = T + (P x 190(cid:176) C/W) J A D be understood by referring to the simplified schematic. LT1365CN: T = T + (P x 110(cid:176) C/W) J A D The inputs are buffered by complementary NPN and PNP LT1365CS: T = T + (P x 150(cid:176) C/W) J A D emitter followers which drive a 500W resistor. The input voltage appears across the resistor generating currents Worst case power dissipation occurs at the maximum which are mirrored into the high impedance node. Comple- supply current and when the output voltage is at 1/2 of mentary followers form an output stage which buffers the either supply voltage (or the maximum swing if less than gain node from the load. The bandwidth is set by the input 1/2 supply voltage). For each amplifier P is: DMAX resistor and the capacitance on the high impedance node. P = (V+ – V–)(I ) + (V+/2)2/R The slew rate is determined by the current available to DMAX SMAX L charge the gain node capacitance. This current is the Example: LT1365 in S16 at 70(cid:176) C, V = – 5V, R = 150W S L differential input voltage divided by R1, so the slew rate is P = (10V)(8.4mA) + (2.5V)2/150W = 126mW DMAX proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10V TJMAX = 70(cid:176) C + (4 x 126mW)(150(cid:176) C/W) = 145(cid:176) C 10

LT1364/LT1365 SIWPLIFIED SCHEWATIC V+ 50R01W +IN RC CC –IN OUT C V– 1364/1365 SS01 PACKAGE DESCRIPTIOUN Dimension in inches (millimeters) unless otherwise noted. N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510) 0.400* (10.160) 0.300 – 0.325 0.045 – 0.065 0.130 – 0.005 MAX (7.620 – 8.255) (1.143 – 1.651) (3.302 – 0.127) 8 7 6 5 0.065 0.255 – 0.015* (1.651) 0.009 – 0.015 TYP (6.477 – 0.381) (0.229 – 0.381) 0.125 (3.175) 0.020 (0.325–+00..003155) 0.100 0.018 – 0M.0I0N3 (0M.5I0N8) 1 2 3 4 8.255+0.889 (2.54) (0.457 – 0.076) –0.381 BSC N8 1098 *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510) 0.770* (19.558) 0.300 – 0.325 0.130 – 0.005 0.045 – 0.065 MAX (7.620 – 8.255) (3.302 – 0.127) (1.143 – 1.651) 14 13 12 11 10 9 8 0.020 (0.508) 0.255 – 0.015* MIN 0.065 (6.477 – 0.381) 0.009 – 0.015 (1.651) (0.229 – 0.381) TYP (0.325–+00..003155) 0.125 0.005 0.018 – 0.003 1 2 3 4 5 6 7 8.255–+00..838891 (3M.1I7N5) (0M.1I2N5) 0.100 (0.457 – 0.076) (2.54) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. BSC MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) N14 1098 Information furnished by Linear Technology Corporation is believed to be accurate and reliable. 11 However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT1364/LT1365 TYPICAL APPLICATIONUS Two Op Amp Instrumentation Amplifier 2MHz, 4th Order Butterworth Filter R5 R4 220W 10k 464W 549W R1 R2 47pF 10k 1k 22pF 464W 1.33k –LT11/3264 R1k3 – VIN 220pF –LT11/3264 549W 1.13k – – + LT11/3264 VOUT + 470pF LT11/3264 VOUT VIN + + + (cid:71)(cid:65)(cid:73)(cid:78)=غŒŒ(cid:82)(cid:82)(cid:52)(cid:51)øßœœ غŒŒŒ(cid:49)+(cid:230)Ł(cid:231) (cid:50)(cid:49)(cid:246)ł(cid:247) (cid:230)Ł(cid:231) (cid:82)(cid:82)(cid:50)(cid:49)+(cid:82)(cid:82)(cid:52)(cid:51)(cid:246)ł(cid:247) +((cid:82)(cid:50)(cid:82)+(cid:53)(cid:82)(cid:51))øßœœœ =(cid:49)(cid:48)(cid:50) 1364/1365 TA04 TRIM R5 FOR GAIN TRIM R1 FOR COMMON-MODE REJECTION BW = 700kHz 1364/1365 TA01 PACKAGE DESCRIPTIOUN Dimension in inches (millimeters) unless otherwise noted. S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.189 – 0.197* (4.801 – 5.004) 0.010 – 0.020· 45(cid:176) 0.053 – 0.069 8 7 6 5 (0.254 – 0.508) (1.346 – 1.752) 0.004 – 0.010 0.008 – 0.010 (0.203 – 0.254) 0°– 8° TYP (0.101 – 0.254) 0.228 – 0.244 0.150 – 0.157** 0.016 – 0.050 0.014 – 0.019 0.050 (5.791 – 6.197) (3.810 – 3.988) (0.406 – 1.270) (0.355 – 0.483) (1.270) TYP BSC *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD 1 2 3 4 FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE SO8 1298 S Package 16-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.386 – 0.394* (9.804 – 10.008) (00..021504 –– 00..052008)· 45(cid:176) 0.053 – 0.069 0.004 – 0.010 16 15 14 13 12 11 10 9 (1.346 – 1.752) (0.101 – 0.254) 0.008 – 0.010 (0.203 – 0.254) 0° – 8° TYP 0.228 – 0.244 0.150 – 0.157** (5.791 – 6.197) (3.810 – 3.988) 0.014 – 0.019 0.050 0.016 – 0.050 (0.355 – 0.483) (1.270) (0.406 – 1.270) TYP BSC *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD 1 2 3 4 5 6 7 8 FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE S16 1098 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LT1363 70MHz, 1000V/m s Op Amp Single Version of LT1364/LT1365 LT1361/LT1362 Dual and Quad 50MHz, 800V/m s Op Amps Lower Power Version of LT1364/LT1365, V = 1mV, 4mA/Amplifier OS LT1358/LT1359 Dual and Quad 25MHz, 600V/m s Op Amps Lower Power Version of LT1364/LT1365, V = 0.6mV, 2mA/Amplifier OS LT1813 Dual 100MHz, 700V/m s Op Amps Low Voltage, Low Power LT1364/LT1365, 3mA/Amplifier 12 Linear Technology Corporation 13645fa LT/TP 0400 2K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 l FAX: (408) 434-0507 l w ww.linear-tech.com ª LINEAR TECHNOLOGY CORPORATION 1994

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: LT1364CN8 LT1365CS#TR LT1364CS8#PBF LT1364CS8#TR LT1365CN LT1364CS8#TRPBF LT1365CS LT1365CS#TRPBF LT1365CS#PBF LT1364CS8 LT1364CN8#PBF LT1365CN#PBF