ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LT1213CS8#PBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LT1213CS8#PBF产品简介:
ICGOO电子元器件商城为您提供LT1213CS8#PBF由LINEAR TECHNOLOGY设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LT1213CS8#PBF价格参考。LINEAR TECHNOLOGYLT1213CS8#PBF封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 8-SO。您可以下载LT1213CS8#PBF参考资料、Datasheet数据手册功能说明书,资料中有LT1213CS8#PBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC) |
描述 | IC OPAMP GP 28MHZ 8SO |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps |
品牌 | Linear Technology |
数据手册 | http://www.linear.com/docs/3133 |
产品图片 | |
产品型号 | LT1213CS8#PBF |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | - |
产品目录页面 | |
供应商器件封装 | 8-SO |
其它名称 | LT1213CS8PBF |
包装 | 管件 |
压摆率 | 12 V/µs |
增益带宽积 | 28MHz |
安装类型 | 表面贴装 |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
工作温度 | 0°C ~ 70°C |
放大器类型 | 通用 |
标准包装 | 100 |
电压-电源,单/双 (±) | 2.5 V ~ 36 V, ±1.25 V ~ 18 V |
电压-输入失调 | 150µV |
电流-电源 | 3.4mA |
电流-输入偏置 | 90nA |
电流-输出/通道 | 50mA |
电路数 | 2 |
输出类型 | - |
LT1213/LT1214 m 28MHz, 12V/ s, Single Supply Dual and Quad Precision Op Amps FEATURES DESCRIPTIOU Slew Rate: 12V/m s Typ The LT®1213 is a dual, single supply precision op amp with n Gain-Bandwidth Product: 28MHz Typ a 28MHz gain-bandwidth product and a 12V/m s slew rate. n Fast Settling to 0.01% The LT1214 is a quad version of the same amplifier. The 2V Step to 200m V: 500ns Typ DC precision of the LT1213/LT1214 eliminates trims in 10V Step to 1mV: 1.1m s Typ most systems while providing high frequency perfor- n Excellent DC Precision in All Packages mance not usually found in single supply amplifiers. Input Offset Voltage: 275m V Max The LT1213/LT1214 will operate on any supply greater Input Offset Voltage Drift: 6m V/(cid:176) C Max than 2.5V and less than 36V total. These amplifiers are Input Offset Current: 40nA Max specified at single 3.3V, single 5V and – 15V supplies, and Input Bias Current: 200nA Max only require 2.7mA of quiescent supply current per ampli- Open-Loop Gain: 1200V/mV Min fier. The inputs can be driven beyond the supplies without n Single Supply Operation damage or phase reversal of the output. The minimum Input Voltage Range Includes Ground output drive is 30mA, ideal for driving low impedance Output Swings to Ground While Sinking Current loads. n Low Input Noise Voltage: 10nV/(cid:214) Hz Typ n Low Input Noise Current: 0.2pA/(cid:214) Hz Typ APPLICATIOU S n Specified at 3.3V, 5V and – 15V n Large Output Drive Current: 30mA Min n 2.5V Full-Scale 12-Bit Systems: V £ 0.45LSB OS n Low Supply Current per Amplifier: 3.5mA Max n 10V Full-Scale 16-Bit Systems: VOS £ 1.8LSB n Dual in 8-Pin DIP and SO-8 n Active Filters n Quad in 14-Pin DIP and NARROW SO-16 n Photodiode Amplifiers n DAC Current-to-Voltage Amplifiers Note: For applications requiring higher slew rate, see the LT1215/LT1216 data sheet. For lower power and lower slew rate, see the LT1211/LT1212 data n Battery-Powered Systems sheet. , LTC and LT are registered trademarks of Linear Technology Corporation. TYPICAL APPLICATIOU Frequency Response Single Supply 3-Pole 1MHz Butterworth Filter 10 0 C2 V+ 0.1m F 200pF –10 R3 R2 R1 VIN 680W 680W 680W + dB) –20 C3 C1 1/2 N ( 390pF 150pF LT1213 VOUT GAI –30 – –40 4.12k –50 AV = 2 MAXIMUM OUTPUT OFFSET = 714m V –60 10k 100k 1M 10M 5pF 1213/14 TA01 FREQUENCY (Hz) 1213/14 TA02 1 4.12k
LT1213/LT1214 ABSOLUTE WAXIWUW RATIUGS (Note 1) Total Supply Voltage (V+ to V–) ............................. 36V Storage Temperature Range................ –65(cid:176) C to 150(cid:176) C Input Current..................................................... – 15mA Junction Temperature (Note 3) Output Short-Circuit Duration (Note 2)........ Continuous Plastic Package (N8, S8, N, S) ........................ 150(cid:176) C Operating Temperature Range Ceramic Package (J8) (OBSOLETE)................. 175(cid:176) C LT1213C/LT1214C ............................ –40(cid:176) C to 85(cid:176) C Lead Temperature (Soldering, 10 sec)................. 300(cid:176) C LT1213M (OBSOLETE)............... –55(cid:176) C to 125(cid:176) C PACKAGE/ORDER IUFORWATIOU TOP VIEW ORDER PART ORDER PART OUT A 1 8 V+ NUMBER NUMBER TOP VIEW –IN A 2 7 OUT B +IN A 3 A 6 –IN B LT1213CN8 OUT A 1 8 V+ LT1213CS8 B LT1213ACN8 V– 4 5 +IN B –IN A 2 7 OUT B A +IN A 3 6 –IN B N8 PACKAGE B S8 PART MARKING 8-LEAD PLASTIC DIP V– 4 5 +IN B TJMAX = 150(cid:176)C, q JA = 100(cid:176)C/W (N) 1213 S8 PACKAGE J8 PACKAGE LT1213MJ8 8-LEAD PLASTIC SOIC 8-LEAD CERAMIC DIP TJMAX = 175(cid:176)C, q JA = 100(cid:176)C/W (J) LT1213AMJ8 TJMAX = 150(cid:176)C, q JA = 150(cid:176)C/W OBSOLETE PACKAGE Consider S8 or N8 Packages for Alternate Source ORDER PART ORDER PART TOP VIEW TOP VIEW NUMBER NUMBER OUT A 1 16 OUT D OUT A 1 14 OUT D –IN A 2 15 –IN D –IN A 2 13 –IN D LT1214CN A D LT1214CS A D +IN A 3 14 +IN D +IN A 3 12 +IN D V+ 4 13 V– V+ 4 11 V– +IN B 5 12 +IN C +IN B 5 10 +IN C B C B C –IN B 6 11 –IN C –IN B 6 9 –IN C OUT B 7 10 OUT C OUT B 7 8 OUT C NC 8 9 NC N PACKAGE 14-LEAD PLASTIC DIP S PACKAGE TJMAX = 150(cid:176)C, q JA = 70(cid:176)C/W 16-LEAD PLASTIC SOIC TJMAX = 150(cid:176)C, q JA = 100(cid:176)C/W Consult LTC Marketing for parts specified with wider operating temperature ranges. AVAILABLE OPTIOU S PACKAGE NUMBER OF MAX TC V CERAMIC DIP PLASTIC DIP SURFACE MOUNT OS OP AMPS T RANGE MAX V (25(cid:176) C) (D V /D T) (J) (N) (S) A OS OS Two (Dual) –40(cid:176) C to 85(cid:176) C 150m V 1.5m V/(cid:176) C LT1213ACN8 275m V 3m V/(cid:176) C LT1213CN8 275m V 6m V/(cid:176) C LT1213CS8 Two (Dual) –55(cid:176) C to 125(cid:176) C 150m V 1.5m V/(cid:176) C LT1213AMJ8 275m V 3m V/(cid:176) C LT1213MJ8 Four (Quad) –40(cid:176) C to 85(cid:176) C 275m V 6m V/(cid:176) C LT1214CN LT1214CS 2
LT1213/LT1214 5V ELECTRICAL CHARACTERISTICS V = 5V, V = 0.5V, V = 0.5V, T = 25(cid:176) C, unless otherwise noted. S CM OUT A LT1213AC LT1213C/LT1213M LT1213AM LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 75 150 100 275 m V OS D V Long-Term Input Offset 0.5 0.6 m V/Mo OS D Time Voltage Stability I Input Offset Current 5 30 5 40 nA OS I Input Bias Current 80 160 100 200 nA B Input Noise Voltage 0.1Hz to 10Hz 200 200 nV P-P e Input Noise Voltage Density f = 10Hz 10 10 nV/(cid:214) Hz n O f = 1000Hz 10 10 nV/(cid:214) Hz O i Input Noise Current Density f = 10Hz 0.9 0.9 pA/(cid:214) Hz n O f = 1000Hz 0.2 0.2 pA/(cid:214) Hz O Input Resistance (Note 4) Differential Mode 10 40 10 40 MW Common Mode 200 200 MW Input Capacitance f = 1MHz 10 10 pF Input Voltage Range 3.5 3.8 3.5 3.8 V 0 –0.3 0 –0.3 V CMRR Common Mode Rejection Ratio V = 0V to 3.5V 90 105 86 105 dB CM PSRR Power Supply Rejection Ratio V = 2.5V to 12.5V 93 116 90 116 dB S A Large-Signal Voltage Gain V = 0.05V to 3.7V, R = 500W 250 850 250 850 V/mV VOL O L Maximum Output Voltage Swing Output High, No Load 4.30 4.39 4.30 4.39 V (Note 5) Output High, I = 1mA 4.20 4.30 4.20 4.30 V SOURCE Output High, I = 20mA 3.80 3.92 3.80 3.92 V SOURCE Output Low, No Load 0.004 0.007 0.004 0.007 V Output Low, I = 1mA 0.033 0.050 0.033 0.050 V SINK Output Low, I = 20mA 0.475 0.620 0.475 0.620 V SINK I Maximum Output Current (Note 10) – 30 – 50 – 30 – 50 mA O SR Slew Rate A = –2 8.5 8.5 V/m s V GBW Gain-Bandwidth Product f = 100kHz 26 26 MHz I Supply Current per Amplifier 2.0 2.7 3.8 2.0 2.7 3.8 mA S Minimum Supply Voltage Single Supply, V = 0V 2.2 2.5 2.2 2.5 V CM Full Power Bandwidth A = 1, V = 2.5V 1.0 1.0 MHz V O P-P t, t Rise Time, Fall Time A = 1, 10% to 90%, V = 100mV 24 24 ns r f V O OS Overshoot A = 1, V = 100mV 30 30 % V O t Propagation Delay A = 1, V = 100mV 17 17 ns PD V O t Settling Time 0.01%, A = 1, D V = 2V 500 500 ns S V O Open-Loop Output Resistance I = 0mA, f = 10MHz 50 50 W O THD Total Harmonic Distortion A = 1, V = 1V , 20Hz to 20kHz 0.001 0.001 % V O RMS 3
LT1213/LT1214 5V ELECTRICAL CHARACTERISTICS V = 5V, V = 0.5V, V = 0.5V, 0(cid:176) C £ T £ 70(cid:176) C, unless otherwise noted. S CM OUT A LT1213AC LT1213C/LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 100 175 150 375 m V OS D V Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 m V/(cid:176) C OS D T (Note 4) 14-Pin DIP, SOIC Package 2 6 m V/(cid:176) C I Input Offset Current 10 45 10 55 nA OS I Input Bias Current 90 190 110 230 nA B Input Voltage Range 3.4 3.5 3.4 3.5 V 0.1 –0.1 0.1 –0.1 V CMRR Common Mode Rejection Ratio V = 0.1V to 3.4V 89 105 85 105 dB CM PSRR Power Supply Rejection Ratio V = 2.5V to 12.5V 92 114 89 114 dB S A Large-Signal Voltage Gain V = 0.05V to 3.7V, R = 500W 200 580 200 580 V/mV VOL O L Maximum Output Voltage Swing Output High, No Load 4.20 4.33 4.20 4.33 V (Note 5) Output High, I = 1mA 4.10 4.25 4.10 4.25 V SOURCE Output High, I = 15mA 3.84 3.96 3.84 3.96 V SOURCE Output Low, No Load 0.005 0.008 0.005 0.008 V Output Low, I = 1mA 0.036 0.055 0.036 0.055 V SINK Output Low, I = 15mA 0.370 0.530 0.370 0.530 V SINK I Supply Current per Amplifier 1.8 2.9 4.0 1.8 2.9 4.0 mA S V = 5V, V = 0.5V, V = 0.5V, –40(cid:176) C £ T £ 85(cid:176) C, unless otherwise noted. (Note 6) S CM OUT A LT1213AC LT1213C/LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 120 200 175 500 m V OS D V Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 m V/(cid:176) C OS D T (Note 4) 14-Pin DIP, SOIC Package 2 6 m V/(cid:176) C I Input Offset Current 15 50 20 75 nA OS I Input Bias Current 100 200 120 250 nA B Input Voltage Range 3.1 3.2 3.1 3.2 V 0.2 0 0.2 0 V CMRR Common Mode Rejection Ratio V = 0.2V to 3.1V 88 104 84 104 dB CM PSRR Power Supply Rejection Ratio V = 2.5V to 12.5V 91 113 88 113 dB S A Large-Signal Voltage Gain V = 0.05V to 3.7V, R = 500W 200 510 200 510 V/mV VOL O L Maximum Output Voltage Swing Output High, No Load 4.15 4.25 4.15 4.25 V (Note 5) Output High, I = 1mA 4.00 4.16 4.00 4.16 V SOURCE Output High, I = 15mA 3.72 3.89 3.72 3.89 V SOURCE Output Low, No Load 0.006 0.009 0.006 0.009 V Output Low, I = 1mA 0.037 0.060 0.037 0.060 V SINK Output Low, I = 15mA 0.380 0.550 0.380 0.550 V SINK I Supply Current per Amplifier 1.5 2.9 4.0 1.5 2.9 4.0 mA S 4
LT1213/LT1214 5V ELECTRICAL CHARACTERISTICS V = 5V, V = 0.5V, V = 0.5V, –55(cid:176) C £ T £ 125(cid:176) C, unless otherwise noted. S CM OUT A LT1213AM LT1213M SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 140 250 200 500 m V OS D V Input Offset Voltage Drift 0.7 1.5 1.0 3.0 m V/(cid:176) C OS D T (Note 4) I Input Offset Current 20 70 25 100 nA OS I Input Bias Current 105 210 125 275 nA B Input Voltage Range 3.1 3.2 3.1 3.2 V 0.4 0.2 0.4 0.2 V CMRR Common Mode Rejection Ratio V = 0.4V to 3.1V 87 104 83 104 dB CM PSRR Power Supply Rejection Ratio V = 2.5V to 12.5V 90 113 87 113 dB S A Large-Signal Voltage Gain V = 0.05V to 3.7V, R = 500W 150 300 150 300 V/mV VOL O L Maximum Output Voltage Swing Output High, No Load 4.05 4.20 4.05 4.20 V (Note 5) Output High, I = 1mA 3.90 4.10 3.90 4.10 V SOURCE Output High, I = 15mA 3.60 3.80 3.60 3.80 V SOURCE Output Low, No Load 0.007 0.012 0.007 0.012 mV Output Low, I = 1mA 0.040 0.070 0.040 0.070 mV SINK Output Low, I = 15mA 0.400 0.750 0.400 0.750 mV SINK I Supply Current per Amplifier 1.3 3.0 4.2 1.3 3.0 4.2 mA S +15V ELECTRICAL CHARACTERISTICS – V = – 15V, V = 0V, V = 0V, T = 25(cid:176) C, unless otherwise noted. S CM OUT A LT1213AC LT1213C/LT1213M LT1213AM LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 125 400 150 550 m V OS I Input Offset Current 5 30 5 40 nA OS I Input Bias Current 70 150 90 190 nA B Input Voltage Range 13.5 13.8 13.5 13.8 V –15.0 –15.3 –15.0 –15.3 V CMRR Common Mode Rejection Ratio V = –15V to 13.5V 90 107 86 107 dB CM PSRR Power Supply Rejection Ratio V = – 2V to – 18V 93 116 90 116 dB S A Large-Signal Voltage Gain V = 0V to – 10V, R = 2k 1200 4000 1200 4000 V/mV VOL O L Maximum Output Voltage Swing Output High, I = 20mA 13.7 13.9 13.7 13.9 V SOURCE Output Low, I = 20mA –14.3 –14.5 –14.3 –14.5 V SINK I Maximum Output Current (Note 10) – 30 – 50 – 30 – 50 mA O SR Slew Rate A = –2 (Note 7) 10 12 10 12 V/m s V GBW Gain-Bandwidth Product f = 100kHz 15 28 15 28 MHz I Supply Current per Amplifier 2.0 3.4 4.7 2.0 3.4 4.7 mA S Channel Separation V = – 10V, R = 2k 128 140 128 140 dB O L Minimum Supply Voltage Equal Split Supplies – 1.2 – 2.0 – 1.2 – 2.0 V Full-Power Bandwidth A = 1, V = 20V 150 150 kHz V O P-P Settling Time 0.01%, A = 1, D V = 10V 1.1 1.1 m s V O 5
LT1213/LT1214 +15V ELECTRICAL CHARACTERISTICS – V = – 15V, V = 0V, V = 0V, 0(cid:176) C £ T £ 70(cid:176) C, unless otherwise noted. S CM OUT A LT1213AC LT1213C/LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 150 425 200 650 m V OS D V Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 m V/(cid:176) C OS D T (Note 4) 14-Pin DIP, SOIC Package 2 6 m V/(cid:176) C I Input Offset Current 10 35 10 45 nA OS I Input Bias Current 90 160 95 200 nA B Input Voltage Range 13.4 13.5 13.4 13.5 V –14.9 –15.1 –14.9 –15.1 V CMRR Common Mode Rejection Ratio V = –14.9V to 13.4V 89 105 85 105 dB CM PSRR Power Supply Rejection Ratio V = – 2V to – 18V 92 115 89 115 dB S A Large-Signal Voltage Gain V = 0V to – 10V, R = 2k 1000 4000 1000 4000 V/mV VOL O L Maximum Output Voltage Swing Output High, I = 15mA 13.8 14.0 13.8 14.0 V SOURCE Output Low, I = 15mA –14.4 –14.6 –14.4 –14.6 V SINK I Supply Current per Amplifier 1.8 3.7 5.0 1.8 3.7 5.0 mA S V = – 15V, V = 0V, V = 0V, –40(cid:176) C £ T £ 85(cid:176) C, unless otherwise noted. (Note 6) S CM OUT A LT1213AC LT1213C/LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 175 450 250 700 m V OS D V Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 m V/(cid:176) C OS D T (Note 4) 14-Pin DIP, SOIC Package 2 6 m V/(cid:176) C I Input Offset Current 10 40 20 75 nA OS I Input Bias Current 95 180 105 220 nA B Input Voltage Range 13.1 13.2 13.1 13.2 V –14.8 –15.0 –14.8 –15.0 V CMRR Common Mode Rejection Ratio V = –14.8V to 13.1V 88 104 84 104 dB CM PSRR Power Supply Rejection Ratio V = – 2V to – 18V 91 114 88 114 dB S A Large-Signal Voltage Gain V = 0V to – 10V, R = 2k 1000 4000 1000 4000 V/mV VOL O L Maximum Output Voltage Swing Output High, I = 15mA 13.7 13.9 13.7 13.9 V SOURCE Output Low, I = 15mA –14.4 –14.6 –14.4 –14.6 V SINK I Supply Current per Amplifier 1.5 3.7 5.1 1.5 3.7 5.1 mA S V = – 15V, V = 0V, V = 0V, –55(cid:176) C £ T £ 125(cid:176) C, unless otherwise noted. S CM OUT A LT1213AM LT1213M SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 200 500 300 800 m V OS D V Input Offset Voltage Drift 0.7 1.5 1 3 m V/(cid:176) C OS D T (Note 4) I Input Offset Current 15 60 25 90 nA OS I Input Bias Current 100 200 110 250 nA B Input Voltage Range 13.1 13.2 13.1 13.2 V –14.6 –14.8 –14.6 –14.8 V CMRR Common Mode Rejection Ratio V = –14.6V to 13.1V 87 104 83 104 dB CM PSRR Power Supply Rejection Ratio V = – 2V to – 15V 90 114 87 114 dB S A Large-Signal Voltage Gain V = 0V to – 10V, R = 2k 800 1100 800 1100 V/mV VOL O L Maximum Output Voltage Swing Output High, I = 15mA 13.6 13.8 13.6 13.8 V SOURCE Output Low, I = 15mA –14.2 –14.5 –14.2 –14.5 V SINK I Supply Current per Amplifier 1.3 4.0 5.4 1.3 4.0 5.4 mA S 6
LT1213/LT1214 3.3V ELECTRICAL CHARACTERISTICS V = 3.3V, V = 0.5V, V = 0.5V, T = 25(cid:176) C, unless otherwise noted. (Note 8) S CM OUT A LT1213AC LT1213C/LT1213M LT1213AM LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 75 150 100 275 m V OS Input Voltage Range (Note 9) 1.8 2.1 1.8 2.1 V 0 –0.3 0 –0.3 V Maximum Output Voltage Swing Output High, No Load 2.60 2.69 2.60 2.69 V Output High, I = 1mA 2.50 2.60 2.50 2.60 V SOURCE Output High, I = 20mA 2.10 2.22 2.10 2.22 V SOURCE Output Low, No Load 0.004 0.007 0.004 0.007 V Output Low, I = 1mA 0.033 0.050 0.033 0.050 V SINK Output Low, I = 20mA 0.475 0.620 0.475 0.620 V SINK I Maximum Output Current – 30 – 50 – 30 – 50 mA O V = 3.3V, V = 0.5V, V = 0.5V, 0(cid:176) C £ T £ 70(cid:176) C, unless otherwise noted. (Note 8) S CM OUT A LT1213AC LT1213C/LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 100 175 150 375 m V OS Input Voltage Range (Note 9) 1.7 1.8 1.7 1.8 V 0.1 –0.1 0.1 –0.1 V Maximum Output Voltage Swing Output High, No Load 2.50 2.63 2.50 2.63 V Output High, I = 1mA 2.40 2.55 2.40 2.55 V SOURCE Output High, I = 15mA 2.14 2.26 2.14 2.26 V SOURCE Output Low, No Load 0.005 0.008 0.005 0.008 V Output Low, I = 1mA 0.037 0.055 0.037 0.055 V SINK Output Low, I = 15mA 0.400 0.530 0.400 0.530 V SINK V = 3.3V, V = 0.5V, V = 0.5V, –40(cid:176) C £ T £ 85(cid:176) C, unless otherwise noted. (Note 6, 8) S CM OUT A LT1213AC LT1213C/LT1214C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 120 200 175 500 m V OS Input Voltage Range (Note 9) 1.4 1.5 1.4 1.5 V 0.2 0 0.2 0 V Maximum Output Voltage Swing Output High, No Load 2.45 2.55 2.45 2.55 V Output High, I = 1mA 2.30 2.46 2.30 2.46 V SOURCE Output High, I = 15mA 2.02 2.19 2.02 2.19 V SOURCE Output Low, No Load 0.006 0.009 0.006 0.009 V Output Low, I = 1mA 0.040 0.060 0.040 0.060 V SINK Output Low, I = 15mA 0.410 0.550 0.410 0.550 V SINK V = 3.3V, V = 0.5V, V = 0.5V, –55(cid:176) C £ T £ 125(cid:176) C, unless otherwise noted. (Note 8) S CM OUT A LT1213AM LT1213M SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS V Input Offset Voltage 130 250 200 500 m V OS Input Voltage Range (Note 9) 1.4 1.5 1.4 1.5 V 0.4 0.2 0.4 0.2 V Maximum Output Voltage Swing Output High, No Load 2.35 2.50 2.35 2.50 V Output High, I = 1mA 2.20 2.40 2.20 2.40 V SOURCE Output High, I = 15mA 1.90 2.10 1.90 2.10 V SOURCE Output Low, No Load 0.007 0.012 0.007 0.012 V Output Low, I = 1mA 0.040 0.070 0.040 0.070 V SINK Output Low, I = 15mA 0.500 0.750 0.500 0.750 V SINK 7
LT1213/LT1214 ELECTRICAL CHARACTERISTICS Note 1: Absolute Maximum Ratings are those values beyond which the life Note 5: Guaranteed by correlation to 3.3V and – 15V tests. of a device may be impaired. Note 6: The LT1213/LT1214 are designed, characterized and expected to Note 2: A heat sink may be required to keep the junction temperature meet these extended temperature limits, but are not tested at –40(cid:176) C and below absolute maximum when the output is shorted indefinitely. 85(cid:176) C. Guaranteed I grade parts are available. Consult factory. Note 3: T is calculated from the ambient temperature T and power Note 7: Slew rate is measured between – 8.5V on an output swing of – 10V J A dissipation P according to the following formulas: on – 15V supplies. D LT1213MJ8, LT1213AMJ8: T = T + (P · 100(cid:176) C/W) Note 8: Most LT1213/LT1214 electrical characteristics change very little J A D LT1213CN8, LT1213ACN8: T = T + (P · 100(cid:176) C/W) with supply voltage. See the 5V tables for characteristics not listed in the J A D LT1213CS8: T = T + (P · 150(cid:176) C/W) 3.3V table. J A D LT1214CN: TJ = TA + (PD · 70(cid:176) C/W) Note 9: Guaranteed by correlation to 5V and – 15V tests. LT1214CS: T = T + (P · 100(cid:176) C/W) J A D Note 10: Guaranteed by correlation to 3.3V tests. Note 4: This parameter is not 100% tested. TYPICAL PERFORWAUCE CHARACTERISTICS Distribution of Offset Voltage Drift Distribution of Input Offset Voltage with Temperature Distribution of Input Offset Voltage 70 50 70 VS = 5V LT1213 J8 PACKAGE VS = 5V LT1213 J8 PACKAGE VS = – 15V LT1213 J8 PACKAGE 60 LT1213 N8 PACKAGE LT1213 N8 PACKAGE 60 LT1213 N8 PACKAGE 40 %) 50 %) %) 50 S ( S ( S ( NIT 40 NIT 30 NIT 40 U U U OF OF OF NT 30 NT 20 NT 30 CE CE CE PER 20 PER PER 20 10 10 10 0 0 0 –350 –250 –150 –50 50 150 250 350 –3 –2 –1 0 1 2 3 –700 –500 –300 –100 100 300 500 700 INPUT OFFSET VOLTAGE (m V) OFFSET VOLTAGE DRIFT WITH TEMPERATURE (m V/°C) INPUT OFFSET VOLTAGE (m V) 1213/14 G01 1213/14 G02 1213/14 G03 Distribution of Offset Voltage Drift Distribution of Input Offset Voltage with Temperature Distribution of Input Offset Voltage 70 50 70 VS = 5V LT1213 S8 PACKAGE VS = 5V LT1213 S8 PACKAGE VS = – 15V LT1213 S8 PACKAGE 60 LT1214 N PACKAGE LT1214 N PACKAGE 60 LT1214 N PACKAGE LT1214 S PACKAGE 40 LT1214 S PACKAGE LT1214 S PACKAGE %) 50 %) %) 50 S ( S ( S ( NIT 40 NIT 30 NIT 40 U U U OF OF OF NT 30 NT 20 NT 30 CE CE CE PER 20 PER PER 20 10 10 10 0 0 0 –350 –250 –150 –50 50 150 250 350 –6 –4 –2 0 2 4 6 –700 –500 –300 –100 100 300 500 700 INPUT OFFSET VOLTAGE (m V) OFFSET VOLTAGE DRIFT WITH TEMPERATURE (m V/°C) INPUT OFFSET VOLTAGE (m V) 1213/14 G04 1213/14 G05 1213/14 G06 8
LT1213/LT1214 TYPICAL PERFORWAUCE CHARACTERISTICS Voltage Gain, Phase vs Gain-Bandwidth Product, Voltage Gain vs Frequency Frequency Phase Margin vs Supply Voltage 140 60 100 32 CL = 20pF PHASE 30 VOLTAGE GAIN (dB) 11208642000000 RVLS = = 2 –k15V VOLTAGE GAIN (dB) 42000 GAIN VS =V 5SV = 5VVS = – 15V 86420–000020PHASE SHIFT (DEG) N-BANDWIDTH PRODUCT (MHz)2222286420 TTAA == 2255°°CC, 1T2A5 =°C –55°TTCAA == 1–2555°°CC 65430000PHASE MARGIN (DEG) 0 CL = 20pF VS = – 15V –40 GAI 20 VS = 5V RL = 2k 10 –20 –20 –60 0 1 10 100 1k 10k 100k 1M 10M100M 100k 1M 10M 100M 1 3 5 7 10 20 30 40 FREQUENCY (Hz) FREQUENCY (Hz) TOTAL SUPPLY VOLTAGE (V) 1213/14 G07 1213/14 G08 1213/14 G09 Slew Rate vs Temperature Slew Rate vs Supply Voltage Capacitive Load Handling 18 16 80 16 RTAAVL === 2–1502°kC VS = – 15V 14 ARVL == –102k TA = 125°C 70 VS = 5V 14 60 mSLEW RATE (V/s) 11208 VS = 5V mSLEW RATE (V/s) 11208 TTAA = = – 2555°°CC OVERSHOOT (%) 543000 AV = 1 6 20 AV = 5 6 4 10 AV = 10 2 4 0 –50 –25 0 25 50 75 100 125 0 4 8 12 16 20 24 28 32 36 10 100 1000 TEMPERATURE (°C) TOTAL SUPPLY VOLTAGE (V) CAPACITIVE LOAD (pF) 1213/14 G10 1213/14 G11 1213/14 G12 Undistorted Output Swing Undistorted Output Swing Total Harmonic Distortion and vs Frequency, V = 5V vs Frequency, V = – 15V Noise vs Frequency S S 5 30 %) 0.1 4 AV = –1 VS = 5V 25 NOISE ( VVRSOL === 513VkVP-P D V)P-P AV = 1 V)P-P 20 N AN 0.01 WING ( 3 WING ( 15 ORTIO AV = 10 OUTPUT S 2 OUTPUT S 10 MONIC DIST 0.001 AV = 1 1 R 5 A H VS = – 15V AL T 0 0 TO0.0001 100 1k 10k 100k 1M 100 1k 10k 100k 1M 10 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) 1213/14 G13 1213/14 G14 1213/14 G15 9
LT1213/LT1214 TYPICAL PERFORWAUCE CHARACTERISTICS Open-Loop Voltage Gain Positive Output Saturation vs Supply Voltage Open-Loop Gain, V = 5V Voltage vs Temperature S 6k 1.4 AIN (V/mV) 54kk RL = 2k TTAA == –2555°°CC V/DIVRL = 2k + – V(V)OUT 11..20 VS = 5V ISOURCE = 20mA G m5 V OPEN-LOOP VOLTAGE 321kkk TA = 125°C INPUT, 5R00LW = 0 1 O2UTPUT (V3) 4 ATURATION VOLTAGE, 000...864 ISOURCE = 10ImSISAOOUURRCCEE = = 1 10mmAA S 1213/14 G17 0 0.2 0 4 8 12 16 20 24 28 32 36 –50 –25 0 25 50 75 100 125 TOTAL SUPPLY VOLTAGE (V) TEMPERATURE (°C) 1213/14 G16 1213/14 G18 Negative Output Saturation Voltage Gain vs Load Resistance Open-Loop Gain, V = – 15V Voltage vs Temperature S 10k 1000 TA = 25°C V) ISINK = 30mA AGE GAIN (V/mV) 1k VS = – 1V5SV = 5V mPUT, 5V/DIVRL = 2k –GE, V – V (mOUT100 ISISININKK = = 1 10mmAA OLT IN 50R0LW = LTA V O OP 100 N V 10 N-LO ATIO ISINK = 10m A E –10 0 10 R P U O OUTPUT (V) T 1213/14 G20 SA VS = 5V 10 1 10 100 1k 10k –50 –25 0 25 50 75 100 125 LOAD RESISTANCE (W ) TEMPERATURE (°C) 1213/14 G19 1213/14 G21 Output Short-Circuit Current Channel Separation vs Frequency vs Temperature Output Impedance vs Frequency 140 70 1000 ATION (dB)111132100000 VTAS == 2– 51°5CV T CURRENT (mA) 60 VSSO U=R 5CVING WANCE () 10100 VS = – 15V CHANNEL SEPAR 9876500000 PUT SHORT-CIRCUI 5400 OSRVO SSU I=RN –CK1IINN5GGV OUTPUT IMPED 0.11 AAV V= =1 0100 AV = 1 T 40 U O 30 30 0.01 10k 100k 1M 10M –50 –25 0 25 50 75 100 125 10k 100k 1M 10M FREQUENCY (Hz) TEMPERATURE (°C) FREQUENCY (Hz) 1213/14 G22 1213/14 G23 1213/14 G24 10
LT1213/LT1214 TYPICAL PERFORWAUCE CHARACTERISTICS 5V Small-Signal Response 5V Large-Signal Response 5V Large-Signal Response 3V 3V V DI V/ m 0 2 0V 0V 50ns/DIV 200ns/DIV 200ns/DIV VS = 5V VS = 5V VS = 5V AV = 1 1213/14 G25 AV = 1 1213/14 G26 AV = –1 RF = RG = 1k CF = 20pF 1213/14 G27 – 15V Small-Signal Response – 15V Large-Signal Response – 15V Large-Signal Response 10V 10V V DI V/ 0V 0V m 0 2 –10V –10V 50ns/DIV 1m s/DIV 1m s/DIV VS = – 15V VS = – 15V VS = – 15V AV = 1 1213/14 G28 AV = 1 1213/14 G29 AV = –1 RF = RG = 1k 1213/14 G30 Settling Time to 0.01% 5V Settling – 15V Settling vs Output Step 10 VS = – 15V 8 6 INVERTING NONINVERTING 500mV/DIV 250V/DIVm 2V/DIV 1mV/DIV UT STEP (V) 420 P –2 T U O –4 INVERTING –6 100ns/DIV 200ns/DIV VS = 5V VS = – 15V –8 NONINVERTING AV = 1 1213/14 G31 AV = –1 1213/14 G32 –10 300 400 500 600 700 800 900 1000 1100 SETTLING TIME (ns) 1213/14 G33 11
LT1213/LT1214 TYPICAL PERFORWAUCE CHARACTERISTICS Supply Current vs Supply Votage Supply Current vs Temperature Warm-Up Drift vs Time 4 4.2 2 A) A) URRENT PER AMPLIFIER (m 32 TTTAAA = == 1 –225555°°°CCC URRENT PER AMPLIFIER (m 3332....8406 VVSS = = – 51V5V mE IN OFFSET VOLTAGE (V) 10 UPPLY C 1 UPPLY C 2.2 CHANG –1 VRSL == 5¥ V S S 2 TYPICAL AMPLIFIERS 0 1.8 –2 0 1 2 3 4 5 –50 –25 0 25 50 75 100 125 0 20 40 60 80 100 SUPPLY VOLTAGE (V) TEMPERATURE (°C) TIME AFTER POWER-UP (SEC) 1213/14 G34 1213/14 G35 1213/14 G36 Input Bias Current vs Common Mode Range Input Bias Current vs Temperature Common Mode Voltage vs Temperature 110 0 V+ VS = 5V –20 VS = 5V 105 INPUT BIAS CURRENT (nA) 109980505 IOS +–IBIB INPUT BIAS CURRENT (nA)–––––––111146802460000000 TTAA == 1–2555°°CC TA = 25°C COMMON MODE RANGE (V)VVV++–V––+121– 80 –180 75 –200 V––1 –50 –25 0 25 50 75 100 125 –1 0 1 2 3 4 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) COMMON MODE VOLTAGE (V) TEMPERATURE (°C) 1213/14 G37 1213/14 G38 1213/14 G39 Input Noise Current, Noise Common Mode Rejection Ratio Input Referred Power Supply Voltage Density vs Frequency vs Frequency Rejection Ratio vs Frequency 20 2.0 120 130 (cid:214)INPUT NOISE VOLTAGE DENSITY (nV/Hz) 11111864208642 VTRASS === 2–05W1°5CV CVUORLTRAEGNET NNOOIISSEE 111110000.........864208642 INPUT NOISE CURRENT DENSITY (pA/Hz)(cid:214) COMMON MODE REJECTION RATIO (dB) 11109876543000000000 VS = 5V POWER SUPPLY REJECTION RATIO (dB)111210987654000000000 NEGATIVE SUPPPOLSYITIVE SUPPLVAYSV == –10105V 0 0 20 30 10 100 1k 10k 100k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) 1213/14 G40 1213/14 G41 1213/14 G42 12
LT1213/LT1214 APPLICATIOUS IUFORWATIOU Supply Voltage For example, calculate the worst case power dissipation while operating on – 15V supplies and driving a 500W load. The LT1213/LT1214 op amps are fully functional and all internal bias circuits are in regulation with 2.2V of supply. I = 4.2 + 0.048 · (30 – 5) = 5.4mA SMAX The amplifiers will continue to function with as little as P = 2 · V · I + (V – V ) · V /R DMAX S SMAX S OMAX OMAX L 1.5V, although the input common mode range and the phase margin are about gone. The minimum operating PDMAX = 2 · 15V · 5.4mA + (15V – 7.5V) · 7.5V/500 supply voltage is guaranteed by the PSRR tests which are = 0.162 + 0.113 = 0.275 Watt per Amp done with the input common mode equal to 500mV and a If this is the dual LT1213, the total power in the package is minimum supply voltage of 2.5V. The LT1213/LT1214 are guaranteed over the full –55(cid:176) C to 125(cid:176) C range with a twice that, or 0.550W. Now calculate how much the die temperature will rise above the ambient. The total power minimum supply voltage of 2.5V. dissipation times the thermal resistance of the package The positive supply pin of the LT1213/LT1214 should be gives the amount of temperature rise. For this example, in bypassed with a small capacitor (about 0.01m F) within an the SO-8 surface mount package, the thermal resistance is inch of the pin. When driving heavy loads and for good 150(cid:176) C/W junction-to-ambient in still air. settling time, an additional 4.7m F capacitor should be Temperature Rise = P · q = 0.550W · 150(cid:176) C/W used. When using split supplies, the same is true for the DMAX JA negative supply pin. = 82.5(cid:176) C The maximum junction temperature allowed in the plastic Power Dissipation package is 150(cid:176) C. Therefore the maximum ambient al- The LT1213/LT1214 amplifiers combine high speed and lowed is the maximum junction temperature less the large output current drive into very small packages. Be- temperature rise. cause these amplifiers work over a very wide supply range, Maximum Ambient = 150(cid:176) C – 82.5(cid:176) C = 67.5(cid:176) C it is possible to exceed the maximum junction temperature under certain conditions. To insure that the LT1213/ That means the SO-8 dual can be operated at or below LT1214 are used properly, calculate the worst case power 67.5(cid:176) C on – 15V supplies with a 500W load. dissipation, define the maximum ambient temperature, As a guideline to help in the selection of the LT1213/ select the appropriate package and then calculate the LT1214, the following table describes the maximum sup- maximum junction temperature. ply voltage that can be used with each part based on the The worst case amplifier power dissipation is the total of following assumptions: the quiescent current times the total power supply voltage 1. The maximum ambient is 70(cid:176) C or 125(cid:176) C depending on plus the power in the IC due to the load. The quiescent the part rating. supply current of the LT1213/LT1214 has a positive tem- 2. The load is 500W including the feedback resistors. perature coefficient. The maximum supply current of each 3. The output can be anywhere between the supplies. amplifier at 125(cid:176) C is given by the following formula: PART MAX SUPPLIES MAX POWER AT MAX T I = 4.2 + 0.048 · (V – 5) in mA A SMAX S LT1213MJ8 18.0V or – 14.1V 500mW LT1213CN8 23.7V or – 18.0V 800mW V is the total supply voltage. S LT1213CS8 18.7V or – 14.7V 533mW The power in the IC due to the load is a function of the LT1214CN 19.5V or – 15.4V 1143mW LT1214CS 15.8V or – 12.2V 800mW output voltage, the supply voltage and load resistance. The worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply. 13
LT1213/LT1214 APPLICATIOUS IUFORWATIOU Inputs positive rail, is about 100W as the output starts to source current; this resistance drops to about 20W as the current Typically at room temperature, the inputs of the LT1213/ increases. Therefore when the output sources 1mA, the LT1214 can common mode 400mV below ground (V–) output will swing to within 0.7V of the positive supply. and to within 1.2V of the positive supply with the amplifier While sourcing 30mA, it is within 1.25V of the positive still functional. However, the input bias current and offset supply. voltage will shift as shown in the characteristic curves. For full precision performance, the common mode range The output of the LT1213/LT1214 will swing to within 4mV should be limited between ground (V–) and 1.5V below the of the negative supply while sinking zero current. Thus, in positive supply. a typical single supply application with the load going to ground, the output will go to within 4mV of ground. The When either of the inputs is taken below ground (V–) by open-loop output resistance when the output is driven more than about 700mV, that input current will increase hard into the negative rail is about 29W at low currents and dramatically. The current is limited by internal 100W reduces to about 23W at high currents. Therefore when resistors between the input pins and diodes to each the output sinks 1mA, the output is about 33mV above the supply. The output will remain low (no phase reversal) for negative supply and while sinking 30mA, it is about inputs 1.3V below ground (V–). If the output does not have 690mV above it. to sink current, such as in a single supply system with a 1k load to ground, there is no phase reversal for inputs up to The output of the LT1213/LT1214 has reverse-biased 8V below ground. diodes to each supply. If the output is forced beyond either supply, unlimited currents will flow. If the current is There are no clamps across the inputs of the LT1213/ transient and limited to several hundred mA, no damage LT1214 and therefore each input can be forced to any will occur. voltage between the supplies. The input current will re- main constant at about 100nA over most of this range. Feedback Components When an input gets closer than 1.5V to the positive supply, that input current will gradually decrease to zero until the Because the input currents of the LT1213/LT1214 are less input goes above the supply, then it will increase due to the than 200nA, it is possible to use high value feedback previously mentioned diodes. If the inverting input is held resistors to set the gain. However, care must be taken to more positive than the noninverting input by 200mV or insure that the pole that is formed by the feedback resis- more, while at the same time the noninverting input is tors and the input capacitance does not degrade the within 300mV of ground (V–), then the supply current will stability of the amplifier. For example, if a single supply, increase by 2mA and the noninverting input current will noninverting gain of two is set with two 10k resistors, the increase to about 10m A. This should be kept in mind in LT1213/LT1214 will probably oscillate. This is because comparator applications where the inverting input stays the amplifier goes open-loop at 6MHz (6dB of gain) and above ground (V–) and the noninverting input is at or near has 45(cid:176) of phase margin. The feedback resistors and the ground (V–). 10pF input capacitance generate a pole at 3MHz that introduces 63(cid:176) of phase shift at 6MHz! The solution is Output simple, lower the values of the resistors or add a feedback capacitor of 10pF or more. The output of the LT1213/LT1214 will swing to within 0.61V of the positive supply with no load. The open-loop output resistance, when the output is driven hard into the 14
LT1213/LT1214 APPLICATIOUS IUFORWATIOU Comparator Applications following photos. These amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic Sometimes it is desirable to use an op amp as a compara- being driven may oscillate due to the long transition time. tor. When operating the LT1213/LT1214 on a single 3.3V The output can be speeded up by adding 20mV or more of or 5V supply, the output interfaces directly with most TTL hysteresis (positive feedback), but the offset is then a and CMOS logic. function of the input direction. The response time of the LT1213/LT1214 is a strong function of the amount of input overdrive as shown in the LT1213 Comparator Response (+) LT1213 Comparator Response (–) 20mV, 10mV, 5mV, 2mV Overdrives 20mV, 10mV, 5mV, 2mV Overdrives 4 4 OUTPUT (V) 2 OUTPUT (V) 2 0 0 mV) 100 mV) 100 INPUT ( 0 INPUT ( 0 5m s/DIV 5m s/DIV VRSL == 5¥ V 1213/14 AI01 VRSL == ¥5V 1213/14 AI02 SIWPLIFIED SCHEWATIC V+ I1 I2 I3 I4 I5 I6 CM BIAS Q13 Q14 Q3 Q4 Q15 –IN +IN Q1 Q2 Q11 OUT RF Q7 Q12 CF Q10 Q8 Q16 Q5 Q9 Q6 I7 CO I8 CI V– 1213/14 SS 15
LT1213/LT1214 PACKAGE DESCRIPTIOU J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) CORNER LEADS OPTION 0.405 (4 PLCS) (10.287) 0.005 MAX (0.127) MIN 8 7 6 5 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.025 0.220 – 0.310 0.045 – 0.068 (0.635) (5.588 – 7.874) (1.143 – 1.727) RAD TYP FULL LEAD OPTION 1 2 3 4 0.200 0.300 BSC (5.080) (0.762 BSC) MAX 0.015 – 0.060 (0.381 – 1.524) 0.008 – 0.018 0° – 15° (0.203 – 0.457) 0.045 – 0.065 0.125 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE (1.143 – 1.651) OR TIN PLATE LEADS 3.175 MIN 0.014 – 0.026 0.100 (0.360 – 0.660) (2.54) BSC J8 1298 OBSOLETE PACKAGE 16
LT1213/LT1214 PACKAGE DESCRIPTIOU N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) 0.400* (10.160) MAX 8 7 6 5 0.255 – 0.015* (6.477 – 0.381) 1 2 3 4 0.300 – 0.325 0.045 – 0.065 0.130 – 0.005 (7.620 – 8.255) (1.143 – 1.651) (3.302 – 0.127) 0.065 (1.651) 0.009 – 0.015 TYP (0.229 – 0.381) 0.125 (3.175) 0.020 (0.325–+00..003155) 0.100 0.018 – 0M.0I0N3 (0M.5I0N8) 8.255+0.889 (2.54) (0.457 – 0.076) –0.381 BSC N8 1098 *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) 0.770* (19.558) MAX 14 13 12 11 10 9 8 0.255 – 0.015* (6.477 – 0.381) 1 2 3 4 5 6 7 0.300 – 0.325 0.130 – 0.005 0.045 – 0.065 (7.620 – 8.255) (3.302 – 0.127) (1.143 – 1.651) 0.020 (0.508) MIN 0.065 0.009 – 0.015 (1.651) (0.229 – 0.381) TYP +0.035 (0.325–0.015) 0.125 0.005 0.018 – 0.003 8.255–+00..838891 (3M.1I7N5) (0M.1I2N5) 0.100 (0.457 – 0.076) (2.54) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. BSC MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) N14 1098 17
LT1213/LT1214 PACKAGE DESCRIPTIOU S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) 0.189 – 0.197* (4.801 – 5.004) 8 7 6 5 0.228 – 0.244 0.150 – 0.157** (5.791 – 6.197) (3.810 – 3.988) SO8 1298 1 2 3 4 0.010 – 0.020 · 45(cid:176) 0.053 – 0.069 (0.254 – 0.508) (1.346 – 1.752) 0.004 – 0.010 0.008 – 0.010 (0.203 – 0.254) 0°– 8° TYP (0.101 – 0.254) 0.016 – 0.050 0.014 – 0.019 0.050 (0.406 – 1.270) (0.355 – 0.483) (1.270) TYP BSC *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 18
LT1213/LT1214 PACKAGE DESCRIPTIOU S Package 16-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) 0.386 – 0.394* (9.804 – 10.008) 16 15 14 13 12 11 10 9 0.228 – 0.244 0.150 – 0.157** (5.791 – 6.197) (3.810 – 3.988) 1 2 3 4 5 6 7 8 0.010 – 0.020 · 45(cid:176) 0.053 – 0.069 (0.254 – 0.508) (1.346 – 1.752) 0.004 – 0.010 0.008 – 0.010 (0.203 – 0.254) 0° – 8° TYP (0.101 – 0.254) 0.014 – 0.019 0.050 0.016 – 0.050 (0.355 – 0.483) (1.270) (0.406 – 1.270) TYP BSC S16 1098 *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, 19 no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
LT1213/LT1214 TYPICAL APPLICATIOUS Instrumentation Amplifier with Guard/Shield Driver and Input Bias Current Cancellation V+ 0.1m F + 1/4 1k 10k** 1M LT1214 GUARD – A RF Input Bias Current vs 1020W Common Mode Voltage + RG 100 113W V+ = 5V 200W 1/4 + + 1/4 nA) 80 INPUTS LT1214 5000pF LT1214 OUTPUT T ( B – – C REN UR 60 1M* C – S A BI 1M R11G3W NPUT 40 GUARD 22pF H I AC 20 E RF – 1020W 1/4 1k 10k 0 LT1214 0.01 0.1 1 10 + D COMMON MODE VOLTAGE (V) 1213/14 TA03a 1213/14 TA03b ( ) COMMON MODE RIN = 3G GAIN = 10 1 + R F = 100 *TRIM FOR INPUT BIAS CURRENT DIFFERENTIAL RIN = 2M RG **TRIM FOR CMRR BANDWIDTH = 2MHz tr = 170ns Ground Current Sense Amplifier Difference Amplifier with Wide Input Common Mode Range V+ V+ 3.3V 5V0.1m F VREF 750W 1.2V LOAD LT1004-1.2 0.1m F + 10k 1k 1/2 LT1213 VO = 1V/A +IN 10k + IIN – 1/2 0.05W OFFSET £ 5.5mA 10k 1k LT1213 VOUT 1910W BtrA =N 1DmWsIDTH = 500kHz –IN – 100W 10k 100pF 1213/14 TA04 GAIN = 1; VOUT = VREF FOR VIN(DIF) = 0 – 10V COMMON MODE RANGE BANDWIDTH = 3MHz 1213/14 TA05 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LT1211/LT1212 14MHz, 7V/m s Single Supply Dual and Quad Precision Op Amps Half the Supply Current of the LT1213 LT1215/LT1216 23MHz, 50V/m s Single Supply Dual and Quad Precision Op Amps Four Times the Slew Rate of the LT1213 LT1630/LT1631 30MHz, 10V/m s Dual and Quad Rail-to-Rail Rail-to-Rail LT1213 Input and Output Precision Op Amps 20 Linear Technology Corporation 12134fa LT/CP 1001 1.5K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 l FAX: (408) 434-0507 l www.linear.com ª LINEAR TECHNOLOGY CORPORATION 1993
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: LT1213CS8#TRPBF LT1214CS LT1214CS#TRPBF LT1213CN8 LT1213ACN8 LT1214CN LT1214CS#PBF LT1213CS8#PBF LT1214CS#TR LT1213CN8#PBF LT1213CS8#TR LT1214CN#PBF LT1213ACN8#PBF LT1213MJ8 LT1213CS8