ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LT1006CN8#PBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LT1006CN8#PBF产品简介:
ICGOO电子元器件商城为您提供LT1006CN8#PBF由LINEAR TECHNOLOGY设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LT1006CN8#PBF价格参考。LINEAR TECHNOLOGYLT1006CN8#PBF封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 8-PDIP。您可以下载LT1006CN8#PBF参考资料、Datasheet数据手册功能说明书,资料中有LT1006CN8#PBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC) |
描述 | IC OPAMP GP 8DIP |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps |
品牌 | Linear Technology |
数据手册 | http://www.linear.com/docs/1414 |
产品图片 | |
产品型号 | LT1006CN8#PBF |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | - |
产品目录页面 | |
供应商器件封装 | 8-PDIP |
其它名称 | LT1006CN8PBF |
包装 | 管件 |
压摆率 | 1.2 V/µs |
增益带宽积 | - |
安装类型 | 通孔 |
封装/外壳 | 8-DIP(0.300",7.62mm) |
工作温度 | 0°C ~ 70°C |
放大器类型 | 通用 |
标准包装 | 50 |
电压-电源,单/双 (±) | 5 V ~ 30 V, ±2.5 V ~ 15 V |
电压-输入失调 | 30µV |
电流-电源 | 360µA |
电流-输入偏置 | 10nA |
电流-输出/通道 | - |
电路数 | 1 |
输出类型 | - |
LT1006 Precision, Single Supply Op Amp FEATURES DESCRIPTIOU ■ Single Supply Operation The LT®1006 is the first precision single supply operational Input Voltage Range Extends to Ground amplifier. Its design has been optimized for single supply Output Swings to Ground while Sinking Current operation with a full set of specifications at 5V. ■ Guaranteed Offset Voltage: 50µV Max Specifications at ±15V are also provided. ■ Guaranteed Low Drift: 1.3µV/°C Max The LT1006 has a low offset voltage of 20µV, drift of ■ Guaranteed Offset Current: 0.5nA Max 0.2µV/°C, offset current of 120pA, gain of 2.5 million, ■ Guaranteed High Gain common mode rejection of 114dB and power supply 5mA Load Current: 1.5 Million Min rejection of 126dB. 17mA Load Current: 0.8 Million Min ■ Guaranteed Low Supply Current: 520µA Max Although supply current is only 340µA, a novel output ■ Supply Current can be Reduced by a Factor of 4 stage can source or sink in excess of 20mA while retaining ■ Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV high voltage gain. Common mode input range includes P-P Low Current Noise— ground to accommodate low ground-referenced inputs Better than OP-07: 0.07pA/√Hz at 10Hz from strain gauges or thermocouples, and output can ■ High Input Impedance: 250MΩ Min swing to within a few millivolts of ground. If a higher ■ Minimum Supply Voltage: 2.7V Min slew rate (in excess of 1V/µs) or micropower operation (supply current down to 90µA) is required, the operating APPLICATIOU S currents can be modified by connecting an external optional resistor to Pin 8. ■ Low Power Sample-and-Hold Circuits For similar single supply precision dual and quad op amps, ■ Battery-Powered Precision Instrumentation please see the LT1013/LT1014 data sheet. For micropower Strain Gauge Signal Conditioners dual and quad op amps, please see the LT1078/LT1079 Thermocouple Amplifiers data sheet. ■ 4mA to 20mA Current Loop Transmitters ■ Active Filters , LTC and LT are registered trademarks of Linear Technology Corporation. TYPICAL APPLICATIOU LT1006 Single Supply, Micropower Sample and Hold Distribution of Input Offset Voltage 9V 20 18 VTAS == 255V°, C0V 360k 1/4 CD4066 1/4 CD4066 360k 16 350 LT1006s TESTED FROM TWO RUNS 14 J AND N PACKAGES 390Ω S3 S4 390Ω %) 12 S ( 10 8 NIT U 8 2 – 7A1 8 6 1S/12 CD4066 32 –LTA10206 7 6 OUTPUT 64 0V ITNOP U5VT 3 +LT10406 S2 0.01µF + 4 20 ACQUISITION TIME 20µs –80 –40 0 40 80 1/2 CD4066 HS-OHL DO FSFESTETTLING TIME 110mµVs INPUT OFFSET VOLTAGE (µV) SAMPLE-HOLD COMMAND HOLD SUPPLY CURRENT 250µA LT1006 • G01 HIGH = SAMPLE SAMPLE SUPPLY CURRENT 5.0mA LOW = HOLD LT1006 • TA01 1kHz SAMPLE RATE CURRENT 800µA 1006fa 1
LT1006 ABSOLUTE W AXIW UW RATIU GS (Note 1) Supply Voltage ......................................................±22V Operating Temperature Range Input Voltage...............Equal to Positive Supply Voltage LT1006AM/LT1006M (OBSOLETE)....– 55°C to 125°C Input Voltage............5V Below Negative Supply Voltage LT1006AC/LT1006C/LT1006S8...............0°C to 70°C Differential Input Voltage......................................... 30V Storage Temperature Range.................– 65°C to 150°C Output Short-Circuit Duration..........................Indefinite Lead Temperature (Soldering, 10 sec)..................300°C PACKAGE/ORDER IU FORW ATIOU ORDER TOP VIEW ORDER TOP VIEW PART NUMBER VOS 1 8 ISY SET PART NUMBER TRIM (NOTE 3) (INSOY TSEE 3T) LT1006AMH –IN 2 – 7 V+ LT1006CN8 8 LT1006MH +IN 3 + 6 OUT LT1006S8 TRVIOMS 1 7 V+ LT1006ACH V– 4 5 V(NOOST TER 4IM) – S8 PART MARKING –IN 2 + 6 OUT LT1006CH N8 PACKAGE S8 PACKAGE 8-LEAD PDIP 8-LEAD PLASTIC SO 1006 +IN 3 V4– 5 VT(NROOSIMTE 4) TTJJMMAAXX == 110500°°CC,, θθJJAA == 123000°°CC//WW ((NS88)) (CASE) LT1006AMJ8 J8 PACKAGE 8-LEAD CERDIP H PACKAGE 8-LEAD TO-5 METAL CAN TJMAX = 100°C, θJA = 130°C/W LT1006MJ8 TJMAX = 150°C, θJA = 150°C, θJC = 45°C LT1006ACJ8 LT1006CJ8 OBSOLETE PACKAGES Consider the N8 or S8 Package for Alternate Source Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0V, VOUT = 1.4V, TA = 25°C, unless otherwise noted. LT1006AM/AC LT1006M/C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS VOS Input Offset Voltage 20 50 30 80 µV LT1006S8 80 400 µV ∆VOS Long-Term Input Offset 0.4 0.5 µV/Mo ∆Time Voltage Stability LT1006S8 0.7 µV/Mo I Input Offset Current 0.12 0.5 0.15 0.9 nA OS I Input Bias Current 9 15 10 25 nA B en Input Noise Voltage 0.1Hz to 10Hz 0.55 0.55 µVP-P Input Noise Voltage Density fO = 10Hz 23 32 23 32 nV/√Hz fO = 1000Hz 22 25 22 25 nV/√Hz in Input Noise Current Density fO = 10Hz 0.07 0.08 pA/√Hz Input Resistance (Note 2) Differential Mode 180 400 100 300 MΩ Common Mode 5 4 GΩ 1006fa 2
LT1006 ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0V, VOUT = 1.4V, TA = 25°C, unless otherwise noted. LT1006AM/AC LT1006M/C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS Input Voltage Range 3.5 3.8 3.5 3.8 V 0 –0.3 0 –0.3 V CMRR Common Mode Rejection Ratio V = 0V to 3.5V 100 114 97 112 dB CM PSRR Power Supply Rejection Ratio VS = ±2V to ±18V, VO = 0V 106 126 103 124 dB AVOL Large-Signal Voltage Gain VO = 0.03V to 4V, RL = 10k 1.0 2.5 0.7 2.0 V/µV VO = 0.03V to 3.5V, RL = 2k 0.5 2.0 0.3 1.8 V/µV Maximum Output Voltage Swing Output Low, No Load 15 25 15 25 mV Output Low, 600Ω to GND 5 10 5 10 mV Output Low, I = 1mA 220 350 220 350 mV SINK Output High, No Load 4.0 4.4 4.0 4.4 V Output High, 600Ω to GND 3.4 4.0 3.4 4.0 V SR Slew Rate 0.25 0.4 0.25 0.4 V/µs IS Supply Current RSET = ∞ 340 520 350 570 µA RSET = 180k Pin 8 to Pin 7(Note 3) 90 90 µA Minimum Supply Voltage 2.7 2.7 V The ● denotes the specifications which apply over the full operating temperature range. V = 5V, 0V; V = 0.1V; V = 1.4V; S CM O –55°C ≤ TA ≤ 125°C, unless otherwise noted. LT1006AM LT1006M SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS VOS Input Offset Voltage ● 40 180 60 250 µV ∆VOS Input Offset Voltage Drift ● 0.2 1.3 0.3 1.8 µV/°C ∆Temp I Input Offset Current ● 0.4 2.0 0.5 4.0 nA OS I Input Bias Current ● 13 25 16 40 nA B AVOL Large-Signal Voltage Gain VO = 0.05V to 3.5V, RL = 2k ● 0.25 0.8 0.15 0.7 V/µV CMRR Common Mode Rejection Ratio V = 0.1V to 3.2V ● 90 103 87 102 dB CM PSRR Power Supply Rejection Ratio VS = ±2V to ±18V, VO = 0V ● 100 117 97 116 dB Maximum Output Voltage Swing Output Low, 600Ω to GND ● 6 15 6 18 mV Output High, 600Ω to GND ● 3.2 3.8 3.1 3.8 V IS Supply Current ● 380 630 400 680 µA 1006fa 3
LT1006 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the full operating temperature range. VS = 5V, 0V; VCM = 0V; VO = 1.4V; 0°C ≤ TA ≤ 70°C, unless otherwise noted. LT1006AC LT1006C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS VOS Input Offset Voltage J8/H Package ● 30 110 45 160 µV N8 Package ● 50 190 µV S8 Package ● 110 560 µV ∆VOS Input Offset Voltage Drift J8/H Package ● 0.2 1.3 0.3 1.8 µV/°C ∆Temp N8 Package ● 0.5 2.5 µV/°C S8 Package ● 0.7 3.5 µV/°C I Input Offset Current ● 0.25 1.2 0.3 2.5 nA OS I Input Bias Current ● 11 20 12 30 nA B AVOL Large-Signal Voltage Gain VO = 0.04V to 3.5V, RL = 2k ● 0.35 1.3 0.25 1.2 V/µV CMRR Common Mode Rejection Ratio V = 0V to 3.4V ● 96 109 92 108 dB CM PSRR Power Supply Rejection Ratio VS = ±2V to ±18V, VO = 0V ● 101 120 97 118 dB Maximum Output Voltage Swing Output Low, 600Ω to GND ● 6 13 6 13 mV Output High, 600Ω to GND ● 3.3 3.9 3.2 3.9 V IS Supply Current ● 350 570 360 620 µA VS = ±15V, TA = 25°C, unless otherwise noted. LT1006AM/AC LT1006M/C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS VOS Input Offset Voltage 30 100 50 180 µV LT1006S8 100 525 µV I Input Offset Current 0.1 0.5 0.15 0.9 nA OS I Input Bias Current 7.5 12.0 8 20 nA B Input Voltage Range 13.5 13.8 13.5 13.8 V –15.0 –15.3 –15.0 –15.3 V CMRR Common Mode Rejection Ratio V = +13.5V, –15V 100 117 97 116 dB CM PSRR Power Supply Rejection Ratio VS = ±2V to ±18V, VO = 0V 106 126 103 124 dB AVOL Large Signal Voltage Gain VO = ±10V, RL = 2k 1.5 5.0 1.2 4.0 V/µV VO = ±10V, RL = 600Ω 0.8 1.5 0.5 1.0 V/µV VOUT Maximum Output Voltage Swing RL = 2k ±13 ±14 ±12.5 ±14 V SR Slew Rate RSET = ∞ 0.25 0.4 0.25 0.4 V/µs RSET = 390Ω Pin 8 to Pin 4 1.0 1.2 1.0 1.2 V/µs IS Supply Current 360 540 360 600 µA 1006fa 4
LT1006 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the full operating temperature range. VS = ±15V, –55°C ≤ TA ≤ 125°C, unless otherwise noted. LT1006AM LT1006M SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS VOS Input Offset Voltage ● 80 320 110 460 µV ∆VOS Input Offset Voltage Drift ● 0.5 2.2 0.6 2.8 µV/°C ∆Temp I Input Offset Current ● 0.2 2.0 0.3 3.0 nA OS I Input Bias Current ● 9 18 11 27 nA B AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k ● 0.5 1.5 0.25 1.0 V/µV CMRR Common Mode Rejection Ratio V = +13V, –14.9V ● 97 114 94 113 dB CM PSRR Power Supply Rejection Ratio VS = ±2V to ±18V, VO = 0V ● 100 117 97 116 dB Maximum Output Voltage Swing RL = 2k ● ±12 ±13.8 ±11.5 ±13.8 V IS Supply Current ● 400 650 400 750 µA The ● denotes the specifications which apply over the full operating temperature range. VS = ±15V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. LT1006AC LT1006C SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS VOS Input Offset Voltage J8/H Package ● 50 200 75 300 µV N8 Package ● 80 330 µV S8 Package ● 150 730 µV ∆VOS Input Offset Voltage Drift J8/H Package ● 0.5 2.2 0.6 2.8 µV/°C ∆Temp N8 Package ● 0.7 3.5 µV/°C S8 Package ● 1.0 4.5 µV/°C I Input Offset Current ● 0.15 1 0.25 2 nA OS I Input Bias Current ● 8 15 10 23 nA B AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k ● 1 3 0.7 2.5 V/µV CMRR Common Mode Rejection Ratio V = 13V, –15V ● 98 116 94 114 dB CM PSRR Power Supply Rejection Ratio VS = ±2V to ±18V, VO = 0V ● 101 120 97 118 dB Maximum Output Voltage Swing RL = 2k ● ±12.5 ±13.9 ±11.5 ±13.8 V IS Supply Current ● 370 600 380 660 µA Note 1: Absolute Maximum Ratings are those values beyond which the life Note 4: Optional offset nulling is accomplished with a potentiometer of a device may be impaired. connected between the trim terminals and the wiper to V–. A 10k pot Note 2: This parameter is guaranteed by design and is not tested. (providing a null range of ±6mV) is recommended for minimum drift of nulled offset voltage with temperature. For increased trim resolution and Note 3: Regular operation does not require an external resistor. In order accuracy, two fixed resistors can be used in conjunction with a smaller to program the supply current for low power or high speed operation, potentiometer. For example, two 4.7k resistors tied to Pins 1 and 5, with a connect an external resistor from Pin 8 to Pin 7 or from Pin 8 to Pin 4, respectively. Supply current specifications (for R = 180k) do not include 500Ω pot in the middle, will have a null range of ±150µV. SET current in R . SET 1006fa 5
LT1006 TYPICAL PERFORW AU CE CHARACTERISTICS Offset Voltage Drift with Temperature Offset Voltage vs Balanced Source V vs Common Mode Voltage OS of Representative Units Resistor vs Temperature 150 10 500 120 VVSC M= =5 V0,. 10VV VS = 5V, 0V, –55°C TO 125°C 400 VS = 5V, 0V 90 V)µ RS – 300 SET VOLTAGE (V)µ–3630000 OFFSET VOLTAGE ( 01..10 –55°CVR TSS O= 1±2155+°VC, µSET VOLTAGE (V) 2100000 1T = 125°TC = 125°C2T = 25°C OFF––6900 NPUT OFF–100 2 T = 125°C I –120 VS = ±15V, 25°C –200 1 POSITIVE VOS VS = 5V, 0V, 25°C 2 NEGATIVE VOS –150 0.01 –300 –50 –25 0 25 50 75 100 125 1k 3k 10k 30k 100k300k 1M 3M 10M –0.4 0 0.4 0.8 1.0 1.4 TEMPERATURE (°C) BALANCED SOURCE RESISTANCE, RS (Ω) COMMON MODE INPUT VOLTAGE (V) LT1006 • G02 LT1006 • G03 LT1006 • G04 Voltage Gain vs Load Resistance, Voltage Gain vs Load Resistance Warm-Up Drift VS = 5V, 0V with VS = ±15V 2.0 10M 10M VS = 5V, 0V V) TA = 25°C AGE (µ 1.5 V) TA = –55°C V) TA = 25°C TA = –55°C ET VOLT 1.0 GAIN (V/ 1M TA = 25°C GAIN (V/ 1M TA = 125°C NGE IN OFFS 0.5 VOLTAGE TA = 125°C VOLTAGE A H C LT1006 METAL CAN (H) PACKAGE LT1006 CERDIP (J) PACKAGE 0 100k 100k 0 1 2 3 4 100 1k 10k 100 1k 10k TIME AFTER POWER ON (MIN) LOAD RESISTANCE TO GROUND (Ω) LOAD RESISTANCE TO GROUND (Ω) LT1006 • G05 LT1006 • G06 LT1006 • G07 Input Offset Current Input Bias Current Input Bias Current vs Temperature vs Temperature vs Common Mode Voltage 18 VCM = 0V 0.5 VCM = 0V 0V (V) 5 15 COM INPUT BIAS CURRENT (nA) 1156932 VSV S= =5 V±,1 05VV INPUT OFFSET CURRENT (nA) 0000....2143 VS = 5V, 0VVS = ±15V MON MODE INPUT VOLTAGE, V = 5V, S 20341 VS = ±15V, VS = 5V, 0V, T = 125°C 0–51–1050SMON MODE INPUT VOLTAGE, V = 15V 0–50 –25 0 25 50 75 100 125 0–50 –25 0 25 50 75 100 125 COM –10 T =– 265°C –V1S2 = 5V, 0V–, 1T8 = 25°C –24–15 (V) TEMPERATURE (˚C) TEMPERATURE (°C) INPUT BIAS CURRENT (nA) LT1006 • G08 LT1006 • G09 LT1006 • G10 1006fa 6
LT1006 TYPICAL PERFORW AU CE CHARACTERISTICS 10Hz Voltage Noise Distribution Noise Spectrum 0.1Hz to 10Hz Noise 100 1000 VS = ±2.5V TA = 25°C VS = ±2V TO ±15V NUMBER OF UNITS 64280000 T2FRA0 0O= M U2N 5TI°HTCSR ETEE SRTUENDS LTAGE NOISE DENSITY (nV/Hz)√RRENT NOISE DENSITY (fA/Hz)√13030000 VS = ±V2OVL TTOA G±E1 8NCVUORISREENT NOISE NOISE VOLTAGE (100nV/DIV) TA = 25°C OU VC 1/f CORNER 2Hz 0 10 16 20 24 28 32 1 10 100 1k 0 2 4 6 8 10 VOLTAGE NOISE DENSITY (nV/√Hz) FREQUENCY (Hz) TIME (SEC) LT1006 • G11 LT1006 • G12 LT1006 • G13 Supply Current vs Temperature Reducing Power Dissipation Increasing Slew Rate (R to V–) SET 500 1000 1 10 10 VS = 5V, 0V VS = ±15V OR VS = 5V, 0V 450 SR A) A) SU NT (µ400 NT (µ ISY* SLEW V/s)µ ISY PPLY SUPPLY CURRE350 VS = ±15V VS = 5V, 0V SUPPLY CURRE 100 0.1 µ RATE (V/s) SLEW RATE (1 SR 1 CURRENT (mA) 300 PIN 8 IS APPROXIMATELY PIN 8 IS APPROXIMATELY 60mV ABOVE THE NEGATIVE SUPPLY 60mV ABOVE THE NEGATIVE SUPPLY 250 10 0.01 0.1 0.1 –50 –25 0 25 50 75 100 125 50 10 5 1 0.5 100 1k 10k TEMPERATURE (°C) CURRENT INJECTED INTO PIN 8 (µA) RSET, PIN 8 TO PIN 4 (Ω) LT1006 • G14 *ISY DOES NOT INCLUDE CURRENT THROUGH RSET LT1006 • G16 LT1006 • G15 Output Saturation vs Sink Current Maximum Output Swing Common Mode Rejection Ratio vs Temperature vs Load Resistor vs Frequency 10 5 120 VV–+ == 05VV TO 30V VS = 5V, 0V B) TA = 25°C OLTAGE (V) 1.0 IISSIINNKK == 150mmAA T VOLTAGE (V) 34 TAT =A 1=2 –55°5CT°CA = 25°C CTION RATIO (d18000 VS = 5V, 0V VS = ±15V TION V ISINK = 1mA OUTPU 2 E REJE 60 SATURA 0.1 IISSIINNKK == 11000µµAA MAXIMUM 1 MMON MOD 2400 ISINK = 0 CO 0.01 0 0 –50 –25 0 25 50 75 100 125 0.01 0.1 1 10 10 100 1k 10k 100k 1M LOAD RESISTOR (kΩ) FREQUENCY (Hz) TEMPERATURE (°C) LT1006 • G17 LT1006 • G18 LT1006 • G19 1006fa 7
LT1006 TYPICAL PERFORW AU CE CHARACTERISTICS Power Supply Rejection Ratio Voltage Gain vs Frequency Gain, Phase vs Frequency vs Frequency 140 80 120 120 TCAL == 2150°pCF 20 TVAC M= =2 50°VC 100 dB) 100 PHASE CL = 10pF 120S) ATIO (100 VOLTAGE GAIN (dB) 84260000 VS = 5V, 0V VS = ±15V VOLTAGE GAIN (dB) 100 GAIN5V, 0V±15V 5V, 0V±15V 112168040000PHASE SHIFT (DEGREE R SUPPLY REJECTION R 468000 NESGUAPTPIVLYE PSOUSPIPTLIVYE 0 –10 POWE 20 VTAS == 2±51°5CV + 1Vp-p SINE WAVE –20 0 0.01 0.1 1 10 100 1k 10k100k 1M 10M 0.1 0.3 1 3 10 0.1 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (MHz) FREQUENCY (Hz) LT1006 • G20 LT1006 • G21 LT1006 • G22 Large Transient Response, Large-Signal Transient Response, Large-Signal Transient Response, VS = 5V, 0V VS = 5V, 0V VS = ±15V 4V 4V 2V 2V 5V/DIV 0V 0V 10µs/DIV 1006 G23 10µs/DIV 1006 G24 50µs/DIV 1006 G25 AV = 1 AV = 1 AV = 1 RL = 4.7k TO 5V RL = 4.7k TO GROUND INPUT = 0V TO 3.8V INPUT = 0V TO 3.8V Small-Signal Transient Response, Small-Signal Transient Response, VS = 5V, 0V VCC = ±2.5V to ±15V 100mV 20mV/DIV 0V 20µs/DIV 1006 G26 2µs/DIV 1006 G27 AV = 1 AV = 1 CL = 10pF CL = 10pF RL = 600Ω TO GND INPUT = 0V TO 100mV PULSE 1006fa 8
LT1006 APPLICATIOU S IU FORW ATIOU The LT1006 is fully specified for single supply operation, Q4) and phase reversal occurs at the output. This can (i.e., when the negative supply is 0V). Input common cause lock-up in servo systems. Due to a unique phase mode range includes ground; the output swings within a reversal protection circuitry (Q21, Q22, Q27, Q28), the few millivolts of ground. Single supply operation, how- LT1006’s output does not reverse, as illustrated below, ever, can create special difficulties, both at the input and even when the inputs are at –1.5V. at the output. The LT1006 has specific circuitry which At the output, the aforementioned single supply designs addresses these problems. either cannot swing to within 600mV of ground (OP-20) At the input, the driving signal can fall below 0V— or cannot sink more than a few microamperes while inadvertently or on a transient basis. If the input is more swinging to ground (LM124, LM158). The LT1006’s than a few hundred millivolts below ground, two distinct all-NPN output stage maintains its low output resistance problems can occur on previous single supply designs, and high gain characteristics until the output is saturated. such as the LM124, LM158, OP-20, OP-21, OP-220, In dual supply operations, the output stage is crossover OP-221, OP-420: distortion free. a) When the input is more than a diode drop below ground, Since the output cannot go exactly to ground, but can only unlimited current will flow from the substrate (V– termi- approach ground to within a few millivolts, care should be nal) to the input. This can destroy the unit. On the LT1006, exercised to ensure that the output is not saturated. For the 400Ω resistors, in series with the input (see Schematic example, a 1mV input signal will cause the amplifier to set Diagram), protect the devices even when the input is 5V up in its linear region in the gain 100 configuration shown below ground. below, but is not enough to make the amplifier function b) When the input is more than 400mV below ground properly in the voltage follower mode. (at 25°C), the input stage saturates (transistors Q3 and Voltage Follower with Input Exceeding the Negative Common Mode Range (V = 5V, 0V) S 4V 4V 4V 2V 2V 2V 0V 0V 0V 6VP-P INPUT, –1.5V TO 4.5V 1006 TA11a LM324, LM358, OP-20, OP-21 1006 TA11b LT1006 1006 TA11c EXHIBIT OUTPUT PHASE NO PHASE REVERSAL REVERSAL Gain 100 Amplifier Voltage Follower 5V 5V R – 99R – OUTPUT LT1006 100mV LT1006 SATURATED ≈ 5mV 1mV + 1mV + 600Ω 600Ω LT1006 • TA02 LT1006 • TA03 1006fa 9
LT1006 APPLICATIOU S IU FORW ATIOU In automated production testing the output is forced to Low Supply Operation 1.4V by the test loop; offset voltage is measured with a The minimum guaranteed supply voltage for proper common mode voltage of zero and the negative supply at operation of the LT1006 is 2.7V. Typical supply current at zero (Pin 4). Without the test loop, these exact conditions this voltage is 320µA; therefore, power dissipation is only cannot be achieved. The test circuit shown ensures that 860µW. the output will never saturate even with worst-case offset voltages (–250µV over the –55°C to 125°C range). The Noise Testing effective common mode input is 0.3V with respect to the For application information on noise testing and negative supply. As indicated by the common mode rejec- calculations, please see the LT1007 or LT1028 data sheet. tion specifications the difference is only a few microvolts between the two methods of offset voltage measurement. Supply Current Programming Connecting an optional external resistor to Pin 8 changes Test Circuit for Offset Voltage and the biasing of the LT1006 in order to increase its speed or Offset Drift with Temperature to decrease its power consumption. If a higher slew rate is 50k* required, connect the external resistor for Pin 8 to Pin 4 [see performance curves for Increasing Slew Rate 4.7V (R to V–)]. For lower power consumption, inject a SET – current into Pin 8 (which is approximately 60mV above 100Ω LT1006 V0 V–) as shown on the Reducing Power Dissipation plot. + This can be accomplished by connecting R to the SET positive supply, or to save additional power, by obtaining 50k* –0.3V the injected current from a low voltage battery. *RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL. Comparator Applications **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES The single supply operation of the LT1006 and its ability to INCREASED TO ± 20V swing close to ground while sinking current lends itself VO = 1000VOS LT1006 • TA04 to use as a precision comparator with TTL compatible output. Comparator Rise Response Time Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives to 10mV, 5mV, 2mV Overdrives 4 4 OUTPUT (V) 2 OUTPUT (V) 2 0 0 0 0 INPUT (mV) INPUT (mV) –100 –100 0 VS = 5V, 0V 50µs/DIV 1006 TA12a VS = 5V, 0V 50µs/DIV 1006 TA12b 1006fa 10
LT1006 TYPICAL APPLICATIOU S Platinum RTD Signal Conditioner Voltage Controlled Current Source with Curvature Correction with Ground Referred Input and Output +V V = 5.6V TO 10V 5V INPUT 3 + 7 39k 0V TO 2V 6 1µF 2 LT1006 – LM334 4 1.21k* 5k 400°C 0.68µF IK = 100µA 1N457 12k* 43.2k** TRIM +V 5V 10k* 1k 50k 4 5°C 1k** 1k** 7 180k TRIM – 8 8 7 0.02V TO 4V OUT = LT1006 2°C TO 400°C RP + 4 ±0.25°C 11 1k** 1k @ 1µF 1µF 100Ω 0°C 12 1µF 1.21M* RP = ROSEMOUNT 118MF 14 13 *** == 1T%RW M METAARL- 6F I0L.M1% 1/2 LTC1043 IOUT = 10V0INΩ 17 16 LT1006 • TA05 0.001µF OPERATES FROM A SINGLE 5V SUPPLY LT1006 • TA06 Micropower 1MHz V/F Converter 9V LM334 2k* VOLTAGE 9V CONTROLLED CURRENT Q1 Q2 SOURCE TRIGGER 100Hz + 200k*3.1k* 220TkR*I*M TYP 7 470k 12k NC 10µF Q3 REFERENCE + A1 8 47k Q8 Q7 INPUT 2k –LT1006 2N3906 1 12 11 1 12 11 Q4 0V TO 5V 4 74C90 74C90 120k** 20k 1144 14 TYP 1MHz 0.01µF 3pF 1N4148 STRAY ÷100 LT1004-2.5 TRIM 0.33µF CAPACI- 2µF TANCE LT1004-1.2 OUTPUT 0MHz TO 1MHz Q5 1000pF (POLYSTYRENE) REFERENCE SWITCH = 2N3904 Q6 0.12% LINEARITY * = 1% METAL FILM CHARGE PUMP 280µA QUIESCENT CURRENT 680µA AT 1MHz ** = 1% METAL FILM, SELECTED LT1006 • TA07 = 74C14 1006fa 11
LT1006 TYPICAL APPLICATIOU S Micropower Thermocouple Signal Conditioner with Cold Junction Compensation 4.5V (3AA CELLS) R4 100k 233k* R1 R3 56k CATALYST 1684* RT RESEMAORDCEHL C 2O7R3P6 L1T.21V034 + 7 8 0V TO 3V OUT = 2.8V R2 1.8k* LT1006 0°C TO 60°C 186* – ±0.75°C 4 5.76M* TYPE J THERMOCOUPLE 5.98k* TOTAL POWER CONSUMPTION ≤ 500µW * = TRW MAR-6 0.1% RT = YELLOW SPRINGS INST. CO MODEL 44007 5k AT 25°C LT1006 • TA08 Linear Thermometer 5V 5V 10k 4 5% 1k 16.2k 0°C 1/2 LTC1043 7 8 3 + 7 6 0V TO 1.000V = LT1006 LT1004 107k 2 0°C TO 100.0°C ±0.25°C 1.235V – 4 11 51.1k 3.2k 1µF 1µF 500Ω 100°C 12 T1 6250Ω 100k 13 14 16 17 0.001µF T1 = YELLOW SPRINGS #44201 ALL RESISTORS = TRW MAR-6 0.1% UNLESS NOTED LT1006 • TA09 1006fa 12
LT1006 TYPICAL APPLICATIOU S ±5V Precision Instrumentation Amplifier 5V 4 5V + 7 8 3 + 8 1 2 LT1006 VOUT – 4 11 –5V C1 C2 DIFFEREINNTPIUALT 1µF 1µF 1µF (EXTERNAL) 12 R1 R2 13 14 16 1/2 LTC1043 CMRR > 120dB AT DC CMRR > 120dB AT 60Hz 0.01µF DUAL SUPPLY OR SINGLE 5V GAIN = 1 + R2/R1 17 VOS ≈ 150µV –5V ∆VOS ≈ 2µV/°C ∆T COMMON MODE INPUT VOLTAGE INCLUDES THE SUPPLIES LT1006 • TA10 SCHEW ATIC DIAGRAW V+ 7 9k 9k 1.6k 1.6k 1.6k 100Ω 1k 600Ω Q38 Q5 Q13 Q16 Q14 Q6 Q36 Q15 Q32 Q30 Q35 Q3 Q4 J1 V– Q25 Q33 21pF Q37 Q27 Q28 3.9k Q26 2.5pF 2.4k 18Ω Q39 Q40 +IN Q41 Q22 Q21 6 3 Q2 Q1 28k 400Ω OUTPUT –IN 2 400Ω Q12 Q18 4pF Q31 Q43 Q29 Q10 Q7 2k Q42 Q8 Q19 Q34 Q11 100pF 8 2.7k 2.7k 15pF Q17 Q23Q24 Q44 Q9 1 5 Q20 V– 75pF TRIM 2k TRIM 2k 2k 1.3k 2k 30Ω 84k 5.4k 2.5k 4 LT1006 • SD01 1006fa 13
LT1006 PACKAGE DESCRIPTIOU H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320) .335 – .370 (8.509 – 9.398) DIA .305 – .335 (7.747 – 8.509) .040 (1.016) .050 MAX (1.270) .165 – .185 MAX (4.191 – 4.699) REFERENCE SEATING PLANE PLANE GPLAAUNGEE .500 – .750 .010 – .045* (12.700 – 19.050) (0.254 – 1.143) .016 – .021** (0.406 – 0.533) .027 – .045 (0.686 – 1.143) 45°TYP PIN 1 .028 – .034 (0.711 – 0.864) .200 (5.080) TYP .110 – .160 (2.794 – 4.064) INSULATING STANDOFF *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND THE SEATING PLANE .016 – .024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 0801 J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) CORNER LEADS OPTION .405 (4 PLCS) (10.287) .005 MAX (0.127) MIN 8 7 6 5 .023 – .045 (0.584 – 1.143) HALF LEAD OPTION .025 .220 – .310 .045 – .068 (0.635) (5.588 – 7.874) (1.143 – 1.650) RAD TYP FULL LEAD OPTION 1 2 3 4 .200 .300 BSC (5.080) (7.62 BSC) MAX .015 – .060 (0.381 – 1.524) .008 – .018 0° – 15° (0.203 – 0.457) .045 – .065 .125 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE (1.143 – 1.651) OR TIN PLATE LEADS 3.175 .014 – .026 .100 MIN (0.360 – 0.660) (2.54) BSC J8 0801 OBSOLETE PACKAGES 1006fa 14
LT1006 PACKAGE DESCRIPTIOU N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160) MAX 8 7 6 5 .255 ± .015* (6.477 ± 0.381) 1 2 3 4 .300 – .325 .045 – .065 .130 ± .005 (7.620 – 8.255) (1.143 – 1.651) (3.302 ± 0.127) .065 (1.651) .008 – .015 TYP (0.203 – 0.381) .120 (3.048) .020 +.035 MIN (0.508) .325–.015 .100 .018 ± .003 MIN ( +0.889) 8.255 (2.54) (0.457 ± 0.076) –0.381 BSC N8 1002 NOTE: INCHES 1. DIMENSIONS ARE MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) 1006fa Information furnished by Linear Technology Corporation is believed to be accurate and reliable. 15 However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
LT1006 PACKAGE DESCRIPTIOU S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 .045 ±.005 (4.801 – 5.004) .050 BSC NOTE 3 8 7 6 5 N N .245 MIN .160 ±.005 .150 – .157 .228 – .244 (3.810 – 3.988) (5.791 – 6.197) NOTE 3 1 2 3 N/2 N/2 .030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT 1 2 3 4 .010 – .020 × 45°(cid:31) .053 – .069 (0.254 – 0.508) (1.346 – 1.752) .004 – .010 .008 – .010 (0.203 – 0.254) 0°– 8° TYP (0.101 – 0.254) .016 – .050 .014 – .019 .050 (0.406 – 1.270) (0.355 – 0.483) (1.270) NOTE: INCHES TYP BSC 1. DIMENSIONS IN (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) SO8 0502 1006fa 16 Linear Technology Corporation LT/TP 1102 1K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 1988
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: LT1006S8#TRPBF LT1006S8 LT1006S8#PBF LT1006CN8 LT1006S8#TR LT1006CN8#PBF