ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LPV521MGE/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LPV521MGE/NOPB产品简介:
ICGOO电子元器件商城为您提供LPV521MGE/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LPV521MGE/NOPB价格参考¥4.08-¥9.19。Texas InstrumentsLPV521MGE/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, General Purpose Amplifier 1 Circuit SC-70-5。您可以下载LPV521MGE/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LPV521MGE/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 6.2KHZ SC70-5运算放大器 - 运放 NANOPOWER, 1.8V RRIO CMOS INPUT, OP AMP |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | http://www.ti.com/litv/snosb14c |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,Texas Instruments LPV521MGE/NOPB- |
数据手册 | |
产品型号 | LPV521MGE/NOPB |
产品目录页面 | |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | SC-70-5 |
共模抑制比—最小值 | 75 dB |
关闭 | No Shutdown |
其它名称 | LPV521MGE/NOPBTR |
包装 | 带卷 (TR) |
压摆率 | 0.0027 V/µs |
商标 | Texas Instruments |
增益带宽生成 | 6.2 kHz |
增益带宽积 | 6.2kHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 6-TSSOP(5 引线),SC-88A,SOT-353 |
封装/箱体 | SC-70-5 |
工作温度 | -40°C ~ 125°C |
工作电源电压 | 1.6 V to 5.5 V |
工厂包装数量 | 250 |
放大器类型 | 通用 |
最大工作温度 | + 125 C |
最小工作温度 | - 40 C |
标准包装 | 250 |
电压-电源,单/双 (±) | 1.6 V ~ 5.5 V |
电压-输入失调 | 100µV |
电流-电源 | 0.475µA |
电流-输入偏置 | 0.04pA |
电流-输出/通道 | 23mA |
电源电流 | 0.475 uA |
电路数 | 1 |
系列 | LPV521 |
转换速度 | 0.0024 V/us |
输入偏压电流—最大 | 1 pA |
输入补偿电压 | 1 mV |
输出电流 | 23 mA |
输出类型 | - |
通道数量 | 1 Channel |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 LPV521 NanoPower, 1.8-V, RRIO, CMOS Input, Operational Amplifier 1 Features 3 Description • ForV =5V,TypicalUnlessOtherwiseNoted The LPV521 is a single nanopower 552-nW amplifier 1 S designed for ultra long life battery applications. The – SupplyCurrentatV =0.3V400nA(Max) CM operating voltage range of 1.6 V to 5.5 V coupled – OperatingVoltageRange1.6Vto5.5V with typically 351 nA of supply current make it well – LowTCV 3.5 µV/°C(Max) suited for RFID readers and remote sensor OS nanopower applications. The device has input – V 1mV(Max) OS common mode voltage 0.1 V over the rails, – InputBiasCurrent40fA guaranteed TCV and voltage swing to the rail OS – PSRR109dB output performance. The LPV521 has a carefully designed CMOS input stage that outperforms – CMRR102dB competitors with typically 40 fA I currents. This BIAS – Open-LoopGain132dB low input current significantly reduces I and I BIAS OS – GainBandwidthProduct6.2kHz errors introduced in megohm resistance, high impedance photodiode, and charge sense situations. – SlewRate2.4V/ms The LPV521 is a member of the PowerWise™ family – InputVoltageNoiseatf=100Hz255nV/√Hz andhasanexceptionalpower-to-performanceratio. – TemperatureRange −40°Cto125°C The wide input common mode voltage range, guaranteed 1 mV V and 3.5 µV/°C TCV enables 2 Applications OS OS accurate and stable measurement for both high-side • WirelessRemoteSensors andlow-sidecurrentsensing. • PowerlineMonitoring EMI protection was designed into the device to • PowerMeters reduce sensitivity to unwanted RF signals from cell phonesorotherRFIDreaders. • BatteryPoweredIndustrialSensors • MicropowerOxygensensorandGasSensor TheLPV521isofferedinthe5-pinSC70package. • ActiveRFIDReaders DeviceInformation(1) • ZigbeeBasedSensorsforHVACControl PARTNUMBER PACKAGE BODYSIZE(NOM) • SensorNetworkPoweredbyEnergyScavenging LPV521 SC70(5) 2.00mmx1.25mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. NanopowerSupplyCurrent 125°C 800 nA) 700 85°C T ( 600 N E 500 R R 400 CU 300 25°C Y L 200 PP 100 -40°C U S 0 VCM = VS ± 0.3V 1 2 3 4 5 6 SUPPLY VOLTAGE (V) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Table of Contents 1 Features.................................................................. 1 7.1 Overview.................................................................19 2 Applications........................................................... 1 7.2 FunctionalBlockDiagram.......................................19 3 Description............................................................. 1 7.3 FeatureDescription.................................................19 7.4 DeviceFunctionalModes........................................19 4 RevisionHistory..................................................... 2 8 ApplicationsandImplementation...................... 20 5 PinConfigurationandFunctions......................... 3 8.1 ApplicationInformation............................................20 6 Specifications......................................................... 3 8.2 TypicalApplications................................................21 6.1 AbsoluteMaximumRatings......................................3 9 PowerSupplyRecommendations...................... 25 6.2 ESDRatings..............................................................3 10 Layout................................................................... 26 6.3 RecommendedOperatingConditions.......................4 6.4 ThermalInformation..................................................4 10.1 LayoutGuidelines.................................................26 6.5 1.8-VDCElectricalCharacteristics...........................4 10.2 LayoutExample....................................................26 6.6 1.8-VACElectricalCharacteristics...........................5 11 DeviceandDocumentationSupport................. 27 6.7 3.3-VDCElectricalCharacteristics...........................6 11.1 DeviceSupport ....................................................27 6.8 3.3-VACElectricalCharacteristics...........................7 11.2 DocumentationSupport........................................27 6.9 5-VDCElectricalCharacteristics..............................7 11.3 Trademarks...........................................................27 6.10 5-VACElectricalCharacteristics............................8 11.4 ElectrostaticDischargeCaution............................27 6.11 TypicalCharacteristics............................................9 11.5 Glossary................................................................27 7 DetailedDescription............................................ 19 12 Mechanical,Packaging,andOrderable Information........................................................... 27 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionC(Feburary2013)toRevisionD Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 2 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 5 Pin Configuration and Functions SC70-5TopView 1 5 OUT V+ 2 - V + - 3 4 IN+ IN- PinFunctions PIN TYPE DESCRIPTION NO. NAME 1 OUT O Output 2 V- P NegativePowerSupply 3 IN+ I NoninvertingInput 4 IN- I InvertingInput 5 V+ P PositivePowerSupply 6 Specifications 6.1 Absolute Maximum Ratings(1) MIN MAX UNIT AnypinrelativetoV- −0.3 6 V IN+,IN-,OUTPins V––0.3V V++0.3V V V+,V-,OUTPins 40 mA DifferentialInputVoltage(V -V ) –300 300 mV IN+ IN- JunctionTemperature(2) –40 150 °C MountingTemperature InfraredorConvection(30sec.) 260 °C WaveSolderingLeadTemp.(4sec.) 260 °C Storagetemperature,T −65 150 °C stg (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagemayoccur.RecommendedOperatingConditionsindicateconditions forwhichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandtest conditions,seetheElectricalCharacteristics. (2) ThemaximumpowerdissipationisafunctionofTJ(MAX),θJA.Themaximumallowablepowerdissipationatanyambienttemperature isPD=(TJ(MAX)–TA)/θJA.AllnumbersapplyforpackagessoldereddirectlyontoaPCBoard. 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 Charged-devicemodel(CDM),perJEDECspecificationJESD22- ±1000 V(ESD) Electrostaticdischarge C101(2) V MachineModel ±200 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com 6.3 Recommended Operating Conditions(1) MIN MAX UNIT TemperatureRange(2) −40 125 °C SupplyVoltage(V =V+-V−) 1.6 5.5 V S (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagemayoccur.RecommendedOperatingConditionsindicateconditions forwhichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandtest conditions,seeElectricalCharacteristics. (2) ThemaximumpowerdissipationisafunctionofTJ(MAX),θJA.Themaximumallowablepowerdissipationatanyambienttemperature isPD=(TJ(MAX)–TA)/θJA.AllnumbersapplyforpackagessoldereddirectlyontoaPCBoard. 6.4 Thermal Information DCK THERMALMETRIC(1) UNIT 5PINS R Junction-to-ambientthermalresistance (2) 456 °C/W θJA (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. (2) ThemaximumpowerdissipationisafunctionofTJ(MAX),θJA.Themaximumallowablepowerdissipationatanyambienttemperature isPD=(TJ(MAX)–TA)/θJA.AllnumbersapplyforpackagessoldereddirectlyontoaPCBoard. 6.5 1.8-V DC Electrical Characteristics Unlessotherwisespecified,alllimitsforT =25°C,V+=1.8V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V InputOffsetVoltage V =0.3V –1 0.1 1 OS CM Temperatureextremes –1.23 1.23 mV V =1.5V –1 0.1 1 CM Temperatureextremes –1.23 1.23 TCV InputOffsetVoltageDrift(2) ±0.4 OS μV/°C Temperatureextremes –3 3 I InputBiasCurrent –1 0.01 1 BIAS pA Temperatureextremes –50 50 I InputOffsetCurrent 10 fA OS CMRR CommonModeRejectionRatio 0V≤V ≤1.8V 66 92 CM Temperatureextremes 60 0V≤V ≤0.7V 75 101 CM dB Temperatureextremes 74 1.2V≤V ≤1.8V 75 120 CM Temperatureextremes 53 PSRR PowerSupplyRejectionRatio 1.6V≤V+≤5.5V dB V =0.3V 85 109 CM Temperatureextremes 76 CMRR≥67dB 0 V CMVR CommonModeVoltageRange CMRR≥60dB 0 1.8 Temperatureextremes 1.8 V =0.5Vto1.3V 125 dB AVOL LargeSignalVoltageGain ROL=100kΩtoV+/2 74 Temperatureextremes 73 (1) ElectricalCharacteristicsvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatTJ=TA.Noguaranteeofparametricperformanceisindicatedintheelectricaltables underconditionsofinternalself-heatingwhereTJTA.AbsoluteMaximumRatingsindicatejunctiontemperaturelimitsbeyondwhichthe devicemaybepermanentlydegraded,eithermechanicallyorelectrically. (2) TheoffsetvoltageaveragedriftisdeterminedbydividingthechangeinVOSatthetemperatureextremesbythetotaltemperature change. 4 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 1.8-V DC Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsforT =25°C,V+=1.8V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V OutputSwingHigh R =100kΩtoV+/2 2 50 O L V (diff)=100mV IN Temperatureextremes 50 mVfrom OutputSwingLow R =100kΩtoV+/2 2 eitherrail L 50 V (diff)=−100mV IN Temperatureextremes 50 I Sourcing,V toV– 3 O O 1 V (diff)=100mV IN Temperatureextremes 0.5 OutputCurrent(3) mA Sinking,V toV+ 3 O 1 V (diff)=−100mV IN Temperatureextremes 0.5 I SupplyCurrent V =0.3V 345 400 S CM Temperatureextremes 580 nA V =1.5V 472 600 CM Temperatureextremes 850 (3) Theshortcircuittestisamomentaryopen-looptest. 6.6 1.8-V AC Electrical Characteristics Unlessotherwisespecified,alllimitsforT =25°C,V+=1.8V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT GBW Gain-BandwidthProduct C =20pF,R =100kΩ 6.1 kHz L L SR SlewRate A =+1, FallingEdge 2.9 V V =0Vto1.8V V/ms IN RisingEdge 2.3 θ PhaseMargin C =20pF,R =100kΩ 72 deg m L L G GainMargin C =20pF,R =100kΩ 19 dB m L L e Input-ReferredVoltageNoiseDensity f=100Hz 265 nV/√Hz n Input-ReferredVoltageNoise 0.1Hzto10Hz 24 μV PP I Input-ReferredCurrentNoise f=100Hz 100 fA/√Hz n (1) ElectricalCharacteristicsvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatTJ=TA.Noguaranteeofparametricperformanceisindicatedintheelectricaltables underconditionsofinternalself-heatingwhereTJTA.AbsoluteMaximumRatingsindicatejunctiontemperaturelimitsbeyondwhichthe devicemaybepermanentlydegraded,eithermechanicallyorelectrically. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com 6.7 3.3-V DC Electrical Characteristics Unlessotherwisespecified,alllimitsforT =25°C,V+=3.3V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V InputOffsetVoltage V =0.3V –1 0.1 1 OS CM Temperatureextremes –1.23 1.23 mV V =3V –1 0.1 1 CM Temperatureextremes –1.23 1.23 TCV InputOffsetVoltageDrift(2) ±0.4 OS μV/°C Temperatureextremes –3 3 I InputBiasCurrent –1 0.01 1 BIAS pA Temperatureextremes –50 50 I InputOffsetCurrent 20 fA OS CMRR CommonModeRejectionRatio 0V≤V ≤3.3V 72 97 CM Temperatureextremes 70 0V≤V ≤2.2V 78 106 CM dB Temperatureextremes 75 2.7V≤V ≤3.3V 77 121 CM Temperatureextremes 76 PSRR PowerSupplyRejectionRatio 1.6V≤V+≤5.5V 109 85 VCM=0.3V dB Temperatureextremes 76 CMRR≥72dB −0.1 3.4 CMVR CommonModeVoltageRange CMRR≥70dB V Temperatureextremes 0 3.3 V =0.5Vto2.8V 120 AVOL LargeSignalVoltageGain ROL=100kΩtoV+/2 82 dB Temperatureextremes 76 V OutputSwingHigh R =100kΩtoV+/2 3 50 O L V (diff)=100mV IN Temperatureextremes 50 mV fromeither OutputSwingLow RL=100kΩtoV+/2 2 50 rail V (diff)=−100mV IN Temperatureextremes 50 I OutputCurrent(3) Sourcing,V toV– 11 O O 5 V (diff)=100mV IN Temperatureextremes 4 mA Sinking,V toV+ 12 O 5 V (diff)=−100mV IN Temperatureextremes 4 I SupplyCurrent V =0.3V 346 400 S CM Temperatureextremes 600 nA V =3V 471 600 CM Temperatureextremes 860 (1) ElectricalCharacteristicsvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatTJ=TA.Noguaranteeofparametricperformanceisindicatedintheelectricaltables underconditionsofinternalself-heatingwhereTJTA.AbsoluteMaximumRatingsindicatejunctiontemperaturelimitsbeyondwhichthe devicemaybepermanentlydegraded,eithermechanicallyorelectrically. (2) TheoffsetvoltageaveragedriftisdeterminedbydividingthechangeinVOSatthetemperatureextremesbythetotaltemperature change. (3) Theshortcircuittestisamomentaryopen-looptest. 6 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 6.8 3.3-V AC Electrical Characteristics Unlessotherwiseisspecified,alllimitsforT =25°C,V+=3.3V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT GBW Gain-BandwidthProduct C =20pF,R =100kΩ 6.2 kHz L L SR SlewRate A =+1, FallingEdge 2.9 V V =0Vto3.3V V/ms IN RisingEdge 2.5 θ PhaseMargin C =20pF,R =10kΩ 73 deg m L L G GainMargin C =20pF,R =10kΩ 19 dB m L L e Input-ReferredVoltageNoiseDensity f=100Hz 259 nV/√Hz n Input-ReferredVoltageNoise 0.1Hzto10Hz 22 μV PP I Input-ReferredCurrentNoise f=100Hz 100 fA/√Hz n (1) ElectricalCharacteristicsvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatTJ=TA.Noguaranteeofparametricperformanceisindicatedintheelectricaltables underconditionsofinternalself-heatingwhereTJTA.AbsoluteMaximumRatingsindicatejunctiontemperaturelimitsbeyondwhichthe devicemaybepermanentlydegraded,eithermechanicallyorelectrically. 6.9 5-V DC Electrical Characteristics Unlessotherwisespecified,alllimitsforT =25°C,V+=5V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V InputOffsetVoltage V =0.3V 0.1 ±1 OS CM Temperatureextremes –1.23 1.23 mV V =4.7V 0.1 ±1 CM Temperatureextremes –1.23 1.23 TCV InputOffsetVoltageDrift(2) ±0.4 μV/°C OS Temperatureextremes –3.5 3.5 I InputBiasCurrent 0.04 ±1 BIAS pA Temperatureextremes –50 50 I InputOffsetCurrent 60 fA OS CMRR CommonModeRejectionRatio 0V≤V ≤5.0V 75 102 CM Temperatureextremes 74 0V≤V ≤3.9V 84 108 CM dB Temperatureextremes 80 77 115 Temperatureextremes 76 PSRR PowerSupplyRejectionRatio 1.6V≤V+≤5.5V 85 109 VCM=0.3V dB Temperatureextremes 76 CMVR CommonModeVoltageRange CMRR≥75dB −0.1 5.1 CMRR≥74dB V Temperatureextremes 0 5 A LargeSignalVoltageGain V =0.5Vto4.5V 84 132 dB VOL O R =100kΩtoV+/2 L Temperatureextremes 76 (1) ElectricalCharacteristicsvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatTJ=TA.Noguaranteeofparametricperformanceisindicatedintheelectricaltables underconditionsofinternalself-heatingwhereTJTA.AbsoluteMaximumRatingsindicatejunctiontemperaturelimitsbeyondwhichthe devicemaybepermanentlydegraded,eithermechanicallyorelectrically. (2) TheoffsetvoltageaveragedriftisdeterminedbydividingthechangeinVOSatthetemperatureextremesbythetotaltemperature change. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com 5-V DC Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsforT =25°C,V+=5V,V−=0V,V =V =V+/2,andR >1MΩ.(1) A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V OutputSwingHigh R =100kΩtoV+/2 3 50 O L V (diff)=100mV IN Temperatureextremes 50 mVfrom OutputSwingLow R =100kΩtoV+/2 3 50 eitherrail L V (diff)=−100mV IN Temperatureextremes 50 I OutputCurrent Sourcing,V toV− 15 23 O O V (diff)=100mV IN Temperatureextremes 8 mA Sinking,V toV+ 15 22 O V (diff)=−100mV IN Temperatureextremes 8 I SupplyCurrent V =0.3V 351 400 S CM Temperatureextremes 620 nA V =4.7V 475 600 CM Temperatureextremes 870 6.10 5-V AC Electrical Characteristics(1) Unlessotherwisespecified,alllimitsforT =25°C,V+=5V,V−=0V,V =V =V+/2,andR >1MΩ. A CM O L PARAMETER TESTCONDITIONS MIN TYP MAX UNIT (2) (3) (2) GBW Gain-BandwidthProduct C =20pF,R =100kΩ 6.2 kHz L L SR SlewRate A =+1, FallingEdge 1.1 2.7 V V =0Vto5V IN Temperature 1.2 extremes V/ms RisingEdge 1.1 2.4 Temperature 1.2 extremes θ PhaseMargin C =20pF,R =100kΩ 73 deg m L L G GainMargin C =20pF,R =100kΩ 20 dB m L L e Input-ReferredVoltageNoiseDensity f=100Hz 255 nV/√Hz n Input-ReferredVoltageNoise 0.1Hzto10Hz 22 μV PP I Input-ReferredCurrentNoise f=100Hz 100 fA/√Hz n EMIRR EMIRejectionRatio,IN+andIN−(4) V =100mV (−20dB ), 121 RF_PEAK P P f=400MHz V =100mV (−20dB ), 121 RF_PEAK P P f=900MHz dB V =100mV (−20dB ), 124 RF_PEAK P P f=1800MHz V =100mV (−20dB ), 142 RF_PEAK P P f=2400MHz (1) ElectricalCharacteristicsvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatTJ=TA.Noguaranteeofparametricperformanceisindicatedintheelectricaltables underconditionsofinternalself-heatingwhereTJTA.AbsoluteMaximumRatingsindicatejunctiontemperaturelimitsbeyondwhichthe devicemaybepermanentlydegraded,eithermechanicallyorelectrically. (2) Alllimitsareguaranteedbytesting,statisticalanalysisordesign. (3) Typicalvaluesrepresentthemostlikelyparametricnormatthetimeofcharacterization.Actualtypicalvaluesmayvaryovertimeand willalsodependontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotguaranteedonshippedproduction material. (4) TheEMIRejectionRatioisdefinedasEMIRR=20log(VRF_PEAK/ΔVOS). 8 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 6.11 Typical Characteristics AtT =25°C,unlessotherwisespecified. J 125°C 800 800 nA) 700 125°C nA) 700 85°C T ( 600 T ( 600 N N E 500 E 500 R 85°C R R 400 R 400 CU 300 CU 300 25°C Y Y L 200 L 200 PP 100 25°C PP 100 -40°C U U S 0 -40°C VCM = 0.3V S 0 VCM = VS ± 0.3V 1 2 3 4 5 6 1 2 3 4 5 6 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Figure1. SupplyCurrentvs.SupplyVoltage Figure2. SupplyCurrentvs.SupplyVoltage 25 30 VS = 1.8V VS = 1.8V TA = 25oC 25 -40oC = TA = 125oC 20 VCM = VS/2 VCM = VS/2 )% )% 20 ( E 15 ( E G G A A T T 15 N N E E C 10 C R R E E 10 P P 5 5 0 0 -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 VOS (mV) TCVOS(PV/C) Figure3.OffsetVoltageDistribution Figure4.Tcv Distribution OS 20 30 VS= 3.3V 18 VS = 3.3V -40oCdTAd125oC 16 TA = 25oC 25 VCM= VS/2 )% 14 VCM = VS/2 )% 20 ( E 12 ( E G G A A T 10 T 15 N N EC 8 EC R R EP 6 EP 10 4 5 2 0 0 -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 VOS (mV) TCVOS(PV/C) Figure5.OffsetVoltageDistribution Figure6.Tcv Distribution OS Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J 25 30 VS = 5V VS = 5V -40oC d TA d 125oC 20 TA = 25oC 25 VCM = VS/2 )% VCM = VS/2 )% 20 ( EG 15 ( EG A A TN TN 15 E E C 10 C REP REP 10 5 5 0 0 -1.0 -0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 VOS (mV) TCVOS(PV/C) Figure7.OffsetVoltageDistribution Figure8.Tcv Distribution OS 300 VS = 1.8V 150 -40°C VS = 3.3V 200 -40°C 100 25°C 100 50 25°C éV(V)OS -1000 éV(V)OS -500 -200 85°C -100 85°C 125°C -300 -150 125°C 0.0 0.3 0.6 0.9 1.2 1.5 1.8 -0.1 0.4 0.9 1.4 1.9 2.4 2.9 3.4 VCM (V) VCM (V) Figure9.InputOffsetVoltagevs.InputCommonMode Figure10.InputOffsetVoltagevs.InputCommonMode VS = 5V -40°C VCM = 0.3V 150 -40°C 150 100 100 25°C 50 50 éV(V)OS -500 25°C éV(V)OS -500 -100 85°C -100 85°C -150 -150 125°C 125°C -0.50.00.51.01.52.02.53.03.54.04.55.05.5 1 2 3 4 5 6 VCM (V) VS (V) Figure11.InputOffsetVoltagevs.InputCommonMode Figure12.InputOffsetVoltagevs.SupplyVoltage 10 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J -40°C VCM = VS - 0.3V VS = 1.8V 150 150 25°C -40°C 100 100 25°C 50 50 V) V) é(OS 0 85°C é(OS 0 V -50 V -50 125°C 85°C -100 -100 -150 -150 125°C 1 2 3 4 5 6 0.0 0.5 1.0 1.5 2.0 VS (V) VOUT (V) Figure13.InputOffsetVoltagevs.SupplyVoltage Figure14.InputOffsetVoltagevs.OutputVoltage -40°C VS = 3.3V -40°C VS = 5V 150 150 100 100 25°C 25°C 50 50 éV) V) (OS 0 é(S 0 V O -50 V -50 -100 85°C -100 85°C -150 -150 125°C 125°C 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 1.0 2.0 3.0 4.0 5.0 VOUT (V) VOUT (V) Figure15.InputOffsetVoltagevs.OutputVoltage Figure16.InputOffsetVoltagevs.OutputVoltage -40°C VS = 1.8V -40°C VS = 3.3V 150 150 100 100 25°C 25°C 50 50 V) V) é(OS 0 é(OS 0 V -50 V -50 85°C -100 -100 85°C -150 125°C -150 125°C 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ISOURCE (mA) ISOURCE (mA) Figure17.InputOffsetVoltagevs.SourcingCurrent Figure18.InputOffsetVoltagevs.SourcingCurrent Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J 150 -40°C VS = 5V 150 -40°C VS = 1.8V 100 100 25°C 50 25°C 50 V) V) é(OS 0 é(OS 0 V -50 V -50 85°C -100 85°C -100 -150 -150 125°C 125°C 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ISOURCE (mA) ISOURCE (mA) Figure19.InputOffsetVoltagevs.SourcingCurrent Figure20.InputOffsetVoltagevs.SinkingCurrent 150 -40°C VS = 3.3V 150 -40°C VS = 5V 100 100 25°C 50 50 25°C V) V) é é (S 0 (S 0 O O V -50 V -50 85°C -100 -100 85°C -150 -150 125°C 125°C 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ISOURCE (mA) ISOURCE (mA) Figure21.InputOffsetVoltagevs.SinkingCurrent Figure22.InputOffsetVoltagevs.SinkingCurrent 5 5 VS = 1.8V VS = 1.8V -40°C 4 -40°C 4 25°C 25°C mA) 3 A) 3 (CE (mK R N ISOU 2 ISI 2 85°C 85°C 1 125°C 1 125°C 0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 OUTPUT VOLTAGE REFERENCED TO V+ (V) OUTPUT VOLTAGE REFERENCED TO V- (V) Figure23.SourcingCurrentvs.OutputVoltage Figure24.SinkingCurrentvs.OutputVoltage 12 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J 16 16 -40°C VS = 3.3V -40°C VS = 3.3V 12 12 25°C 25°C A) m A) (SOURCE 8 I(mSINK 8 85°C I 85°C 4 4 125°C 125°C 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 OUTPUT VOLTAGE REFERENCED TO V+ (V) OUTPUT VOLTAGE REFERENCED TO V- (V) Figure25.SourcingCurrentvs.OutputVoltage Figure26.SinkingCurrentvs.OutputVoltage 30 30 VS = 5V -40°C VS = 5V -40°C 25 25 25°C 25°C A) 20 20 m A) (OURCE 15 (mSINK 15 85°C S I I 10 10 85°C 125°C 5 5 125°C 0 0 0 1 2 3 4 5 0 1 2 3 4 5 OUTPUT VOLTAGE REFERENCED TO V+ (V) OUTPUT VOLTAGE REFERENCED TO V- (V) Figure27.SourcingCurrentvs.OutputVoltage Figure28.SinkingCurrentvs.OutputVoltage 40 40 VCM = VS/2 VCM = VS/2 -40°C 30 30 -40°C mA) A) (CE 20 25°C (mK 20 25°C R N OU ISI S I 10 10 85°C 85°C 125°C 125°C 0 0 1 2 3 4 5 6 1 2 3 4 5 6 VS (V) VS (V) Figure29.SourcingCurrentvs.SupplyVoltage Figure30.SinkingCurrentvs.SupplyVoltage Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J 5 RL = 100 k: 5 RL = 100 k: V) 4 125°C mV) 125°C AIL (m 3 85°C RAIL ( 4 OM R 2 ROM 85°C FRT 25°C FUT 3 U 1 O O V V -40°C 0 2 -40°C 25°C 1 2 3 4 5 6 1 2 3 4 5 6 VS (V) VS (V) Figure31.OutputSwingHighvs.SupplyVoltage Figure32.OutputSwingLowvs.SupplyVoltage 15 15 VS = 1.8V VS = 1.8V 10 10 125°C 5 5 (fA)S 0 25°C (pA)S 0 A A BI BI I I 85°C -5 -5 -40°C -10 -10 -15 -15 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 VCM (V) VCM (V) Figure33.InputBiasCurrentvs.CommonModeVoltage Figure34.InputBiasCurrentvs.CommonModeVoltage 50 15 40 VS = 3.3V VS = 3.3V 10 30 25°C 125°C 20 5 (fA)S 10 (pA)S 0 BIA 0 BIA I I 85°C -10 -5 -40°C -20 -10 -30 -40 -15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VCM (V) VCM (V) Figure35.InputBiasCurrentvs.CommonModeVoltage Figure36.InputBiasCurrentvs.CommonModeVoltage 14 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J 400 30 VS = 5V 25 VS = 5V 300 20 200 15 25°C 125°C A) 100 A) 10 I (fBIAS 0 I (pBIAS 50 -100 -5 -40°C 85°C -10 -200 -15 -300 -20 0 1 2 3 4 5 0 1 2 3 4 5 VCM (V) VCM (V) Figure37.InputBiasCurrentvs.CommonModeVoltage Figure38.InputBiasCurrentvs.CommonModeVoltage 100 VS = 5V VS = 1.8V, 3.3V, 5V VS = 5V VS = 1.8V, 3.3V, 5V 100 90 80 VS = 3.3V 80 B) 60 B) R (d VS = 1.8V +PSRR R (d 70 VS = 1.8V SR 40 MR P C 60 20 -PSRR 50 0 40 10 100 1k 10k 100k 11e01 11e020 11ek3 11e04k 110e05k FREQUENCY (Hz) FREQUENCY (Hz) Figure39.PSRRvs.Frequency Figure40.CMRRvs.Frequency VS = 1.8V VS = 3.3V 60 60 CL = 20 pF CL = 20 pF PHASE RL = 1 M: 130 PHASE RL = 1 M: 130 110 110 40 40 90 90 N (dB) 20 GAIN 85°C 25°C 7500 ASE (°) N (dB) 20 GAIN 85°C 25°C 7500 ASE (°) GAI 125°C 30 PH GAI 125°C 30 PH 10 10 0 -40°C -10 0 -40°C -10 -30 -30 -20 -20 100 1k 10k 100k 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure41.FrequencyResponsevs.Temperature Figure42.FrequencyResponsevs.Temperature Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J 60 VS = 5V 60 RL = 100 k: VS = 1.8V CL = 20 pF CL = 20 pF PHASE RL = 1 M: 130 PHASE RL = 1 M: 130 110 110 40 40 RL = 10 M: 90 90 N (dB) 20 GAIN 85°C 25°C 7500 ASE (°) N (dB) 20 GAIN 7500 ASE (°) AI 125°C 30 PH AI 30 PH G G 10 10 0 -40°C -10 0 -10 -30 -30 RL = 10 k: -20 -20 100 1k 10k 100k 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure43.FrequencyResponsevs.Temperature Figure44.FrequencyResponsevs.R L 60 RL = 100 k: VS = 3.3V 60 RL = 100 k: VS = 5V CL = 20 pF CL = 20 pF PHASE RL = 1 M: 130 PHASE RL = 1 M: 130 110 110 40 RL = 10 M: 40 RL = 10 M: 90 90 N (dB) 20 GAIN 7500 ASE (°) N (dB) 20 GAIN 7500 ASE (°) AI 30 PH AI 30 PH G G 10 10 0 -10 0 -10 -30 -30 RL = 10 k: RL = 10 k: -20 -20 100 1k 10k 100k 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure45.FrequencyResponsevs.R Figure46.FrequencyResponsevs.R L L VS = 1.8V VS = 3.3V 60 60 RL = 10 M: RL = 10 M: PHASE CL = 50 pF 130 PHASE CL = 50 pF 130 110 110 GAIN (dB) 4200 GAIN CL =C 1L0 =0 p2F00 pF CL = 20 pF 97530000 PHASE (°) GAIN (dB) 4200 GAIN CL =C 1L0 =0 p2F00 pF CL = 20 pF 97530000 PHASE (°) 10 10 0 -10 0 -10 -30 -30 -20 -20 100 1k 10k 100k 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure47.FrequencyResponsevs.C Figure48.FrequencyResponsevs.C L L 16 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J VS = 5V 60 RL = 10 M: 3.3 PHASE CL = 50 pF 130 110 3.0 FALLING EDGE GAIN (dB) 4200 GAIN CL =C 1L0 =0 p2F00 pF CL = 20 pF 97530000 PHASE (°) W RATE(V/ms) 22..74 10 E RISING EDGE 0 -10 SL 2.1 -30 1.8 AV = +1 -20 VOUT = VS 100 1k 10k 100k 1.5 2.3 3.1 3.9 4.7 5.5 FREQUENCY (Hz) SUPPLY VOLTAGE (V) Figure49.FrequencyResponsevs.C Figure50.SlewRatevs.SupplyVoltage L 1000 15 VS = 1.8V VCM = VS/2 10 z) H í V/ 5 n E ( V NOIS V/DIP 0 E 5 G A -5 T L O V -10 VS = 5V 100 -15 1 10 100 1k 10k -2.5-1.5-0.50.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 FREQUENCY (Hz) 1s/DIV Figure51.VoltageNoisevs.Frequency Figure52.0.1to10HzTimeDomainVoltageNoise 15 15 VS = 5V VCM = VS/2 10 10 5 5 V V DI DI V/ 0 V/ 0 P P 5 5 -5 -5 -10 -10 VS = 3.3V VCM = VS/2 -15 -15 -2.5-1.5-0.50.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 -2.5-1.5-0.50.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 1s/DIV 1s/DIV Figure53.0.1to10HzTimeDomainVoltageNoise Figure54.0.1to10HzTimeDomainVoltageNoise Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) AtT =25°C,unlessotherwisespecified. J INPUT INPUT V V ID ID /V /V m OUTPUT m OUTPUT 0 0 5 5 VS = 5V VS = 1.8V RL = 100 k: RL = 100 k: 200 Ps/DIV 200 Ps/DIV Figure55.SmallSignalPulseResponse Figure56.SmallSignalPulseResponse INPUT INPUT V V ID ID /V /V m OUTPUT m 0 0 OUTPUT 0 0 5 5 VS = 5V VS = 1.8V RL = 100 k: RL = 100 k: 200 Ps/DIV 200 Ps/DIV Figure57.LargeSignalPulseResponse Figure58. LargeSignalPulseResponse 4 INPUT OUTPUT 3 170 2 150 B) 1 (dK 113100 V A ID 0 PE 90 /V1 RV_ 70 -1 MIR 50 E 30 -2 10 V+= +2.5V VS = 5V -3 V- = -2.5V VPEAK = -20 dBVp -4 2 ms/DIV 1 . 00e.1-1 1 .10 1 .100e1 1 .100e02 11.000e03 11.000e040 FREQUENCY (MHz) Figure59.OverloadRecoveryWaveform Figure60.EMIRRvs.Frequency 18 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 7 Detailed Description 7.1 Overview The LPV521 is fabricated with Texas Instruments' state-of-the-art VIP50 process. This proprietary process dramatically improves the performance of Texas Instruments' low-power and low-voltage operational amplifiers. The following sections showcase the advantages of the VIP50 process and highlight circuits which enable ultra- lowpowerconsumption. 7.2 Functional Block Diagram Figure61. BlockDiagram 7.3 Feature Description The amplifier's differential inputs consist of a noninverting input (+IN) and an inverting input (–IN). The amplifier amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The outputvoltageoftheop-ampVoutisgivenbyEquation1: V =A (IN+-IN-) (1) OUT OL whereA istheopen-loopgainoftheamplifier,typicallyaround100dB(100,000x,or10uVperVolt). OL 7.4 Device Functional Modes 7.4.1 InputStage The LPV521 has a rail-to-rail input which provides more flexibility for the system designer. Rail-to-rail input is achieved by using in parallel, one PMOS differential pair and one NMOS differential pair. When the common mode input voltage (V ) is near V+, the NMOS pair is on and the PMOS pair is off. When V is near V−, the CM CM NMOS pair is off and the PMOS pair is on. When V is between V+ and V−, internal logic decides how much CM current each differential pair will get. This special logic ensures stable and low distortion amplifier operation withintheentirecommonmodevoltagerange. Because both input stages have their own offset voltage (V ) characteristic, the offset voltage of the LPV521 OS becomes a function of V . V has a crossover point at 1.0 V below V+. Refer to the ’V vs. V ’ curve in the CM OS OS CM Typical Performance Characteristics section. Caution should be taken in situations where the input signal amplitude is comparable to the V value and/or the design requires high accuracy. In these situations, it is OS necessary for the input signal to avoid the crossover point. In addition, parameters such as PSRR and CMRR whichinvolvetheinputoffsetvoltagewillalsobeaffectedbychangesinV acrossthedifferentialpairtransition CM region. 7.4.2 OutputStage The LPV521 output voltage swings 3 mV from rails at 3.3-V supply, which provides the maximum possible dynamicrangeattheoutput.Thisisparticularlyimportantwhenoperatingonlowsupplyvoltages. The LPV521 Maximum Output Voltage Swing defines the maximum swing possible under a particular output load.TheLPV521outputswings50mVfromtherailat5-Vsupplywithanoutputloadof100kΩ. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com 8 Applications and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The LPV521is specified for operation from 1.6 V to 5.5 V (±0.8 V to ±2.25 V). Many of the specifications apply from –40°C to 125°C. The LMV521 features rail to rail input and rail-to-rail output swings while consuming only nanowatts of power. Parameters that can exhibit significant variance with regard to operating voltage or temperaturearepresentedintheTypicalCharacteristicssection. 8.1.1 DrivingCapacitiveLoad The LPV521 is internally compensated for stable unity gain operation, with a 6.2-kHz, typical gain bandwidth. However, the unity gain follower is the most sensitive configuration to capacitive load. The combination of a capacitive load placed at the output of an amplifier along with the amplifier’s output impedance creates a phase lag, which reduces the phase margin of the amplifier. If the phase margin is significantly reduced, the response will be under damped which causes peaking in the transfer and, when there is too much peaking, the op amp mightstartoscillating. - RISO VOUT VIN + CL Figure62. ResistiveIsolationofCapacitiveLoad In order to drive heavy capacitive loads, an isolation resistor, R , should be used, as shown in Figure 62. By ISO using this isolation resistor, the capacitive load is isolated from the amplifier’s output. The larger the value of R , the more stable the amplifier will be. If the value of R is sufficiently large, the feedback loop will be ISO ISO stable, independent of the value of C . However, larger values of R result in reduced output swing and L ISO reducedoutputcurrentdrive. Recommended minimum values for R are given in the following table, for 5-V supply. Figure 63 shows the ISO typical response obtained with the C = 50 pF and R = 154 kΩ. The other values of R in the table were L ISO ISO chosen to achieve similar dampening at their respective capacitive loads. Notice that for the LPV521 with larger C a smaller R can be used for stability. However, for a given C a larger R will provide a more damped L ISO L ISO response.Forcapacitiveloadsof20pFandbelownoisolationresistorisneeded. C R L ISO 0–20pF notneeded 50pF 154kΩ 100pF 118kΩ 500pF 52.3kΩ 1nF 33.2kΩ 5nF 17.4kΩ 10nF 13.3kΩ 20 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 VIN VOUT V ID /V m 0 2 VS = 5V 200 Ps/DIV Figure63. StepResponse 8.1.2 EMISuppression The near-ubiquity of cellular, Bluetooth, and Wi-Fi signals and the rapid rise of sensing systems incorporating wireless radios make electromagnetic interference (EMI) an evermore important design consideration for precision signal paths. Though RF signals lie outside the op amp band, RF carrier switching can modulate the DC offset of the op amp. Also some common RF modulation schemes can induce down-converted components. The added DC offset and the induced signals are amplified with the signal of interest and thus corrupt the measurement. The LPV521 uses on chip filters to reject these unwanted RF signals at the inputs and power supplypins;therebypreservingtheintegrityoftheprecisionsignalpath. Twisted pair cabling and the active front-end’s common-mode rejection provide immunity against low-frequency noise (i.e. 60-Hz or 50-Hz mains) but are ineffective against RF interference. Even a few centimeters of PCB trace and wiring for sensors located close to the amplifier can pick up significant 1 GHz RF. The integrated EMI filters of the LPV521 reduce or eliminate external shielding and filtering requirements, thereby increasing system robustness. A larger EMIRR means more rejection of the RF interference. For more information on EMIRR, pleaserefertoAN-1698. 8.2 Typical Applications 8.2.1 60-HzTwinT-NotchFilter VBATT = 3V o(cid:3)2V @ end of life CR2032 Coin Cell 225 mAh = 5 circuits @ 9.5 yrs. 10 M: 10 M: VBATT Remote Sensor - To ADC 10 M: 10 M: VOUT VIN + Signal 270 pF 270 pF Signal × 2 + (No 60 Hz) 60 Hz 60 Hz Twin T Notch Filter 10 M: 10 M: AV = 2 V/V 270 pF 270 pF Figure64. 60-HzNotchFilter Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) 8.2.1.1 DesignRequirements Small signals from transducers in remote and distributed sensing applications commonly suffer strong 60-Hz interference from AC power lines. The circuit of Figure 64 notches out the 60 Hz and provides a gain A = 2 for V the sensor signal represented by a 1-kHz sine wave. Similar stages may be cascaded to remove 2nd and 3rd harmonics of 60 Hz. Thanks to the nA power consumption of the LPV521, even 5 such circuits can run for 9.5 years from a small CR2032 lithium cell. These batteries have a nominal voltage of 3 V and an end of life voltage of2V.Withanoperatingvoltagefrom1.6Vto5.5VtheLPV521canfunctionoverthisvoltagerange. 8.2.1.2 DetailedDesignProcedure The notch frequency is set by F = 1 / 2πRC. To achieve a 60-Hz notch use R = 10 MΩ and C = 270 pF. If 0 eliminating50-Hznoise,whichiscommoninEuropeansystems,useR=11.8MΩ andC=270pF. The Twin T Notch Filter works by having two separate paths from V to the amplifier’s input. A low frequency IN path through the resistors R - R and another separate high frequency path through the capacitors C - C. However, at frequencies around the notch frequency, the two paths have opposing phase angles and the two signalswilltendtocancelattheamplifier’sinput. To ensure that the target center frequency is achieved and to maximize the notch depth (Q factor) the filter needs to be as balanced as possible. To obtain circuit balance, while overcoming limitations of available standard resistor and capacitor values, use passives in parallel to achieve the 2C and R/2 circuit requirements forthefiltercomponentsthatconnecttoground. To make sure passive component values stay as expected clean board with alcohol, rinse with deionized water, and air dry. Make sure board remains in a relatively low humidity environment to minimize moisture which may increase the conductivity of board components. Also large resistors come with considerable parasitic stray capacitancewhicheffectscanbereducedbycuttingoutthegroundplanebelowcomponentsofconcern. Large resistors are used in the feedback network to minimize battery drain. When designing with large resistors, resistor thermal noise, op amp current noise, as well as op amp voltage noise, must be considered in the noise analysis of the circuit. The noise analysis for the circuit in Figure 64 can be done over a bandwidth of 5 kHz, which takes the conservative approach of overestimating the bandwidth (LPV521 typical GBW/A is lower). The V total noise at the output is approximately 800 µVpp, which is excellent considering the total consumption of the circuit is only 540 nA. The dominant noise terms are op amp voltage noise (550 µVpp), current noise through the feedback network (430 µVpp), and current noise through the notch filter network (280 µVpp). Thus the total circuit'snoiseisbelow½ LSBofa10bitsystemwitha2-Vreference,whichis1mV. 8.2.1.3 ApplicationCurve Figure65. 60-HzNotchFilterWaveform 22 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 Typical Applications (continued) 8.2.2 PortableGasDetectionSensor 100 M: + 1 M: V - VOUT + - V RL OXYGEN SENSOR Figure66. PrecisionOxygenSensor 8.2.2.1 DesignRequirements Gas sensors are used in many different industrial and medical applications. They generate a current which is proportional to the percentage of a particular gas sensed in an air sample. This current goes through a load resistor and the resulting voltage drop is measured. The LPV521 makes an excellent choice for this application as it only draws 345 nA of current and operates on supply voltages down to 1.6V. Depending on the sensed gas and sensitivity of the sensor, the output current can be in the order of tens of microamperes to a few milliamperes. Gas sensor datasheets often specify a recommended load resistor value or they suggest a range ofloadresistorstochoosefrom. Oxygen sensors are used when air quality or oxygen delivered to a patient needs to be monitored. Fresh air contains 20.9% oxygen. Air samples containing less than 18% oxygen are considered dangerous. This application detects oxygen in air. Oxygen sensors are also used in industrial applications where the environment must lack oxygen. An example is when food is vacuum packed. There are two main categories of oxygen sensors, those which sense oxygen when it is abundantly present (i.e. in air or near an oxygen tank) and those whichdetecttracesofoxygeninppm. 8.2.2.2 DetailedDesignProcedure Figure 66 shows a typical circuit used to amplify the output of an oxygen detector. The oxygen sensor outputs a knowncurrentthroughtheloadresistor.Thisvaluechangeswiththeamountofoxygenpresentintheairsample. Oxygen sensors usually recommend a particular load resistor value or specify a range of acceptable values for the load resistor. The use of the nanopower LPV521 means minimal power usage by the op amp and it enhances the battery life. With the components shown in Figure 66 the circuit can consume less than 0.5 µA of current ensuring that even batteries used in compact portable electronics, with low mAh charge ratings, could last beyond the life of the oxygen sensor. The precision specifications of the LPV521, such as its very low offset voltage, low TCV , low input bias current, high CMRR, and high PSRR are other factors which make the OS LPV521agreatchoiceforthisapplication. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) 8.2.2.3 ApplicationCurve 5.0 4.5 4.0 3.5 V) 3.0 T (2.5 U O V2.0 1.5 1.0 0.5 0.0 0 10 20 30 40 50 VSENSOR (mV) C001 Figure67. CalculatedOxygenSensorCircuitOutput(Single5VSupply) 8.2.3 High-SideBatteryCurrentSensing ICHARGE RSENSE + V 10: + LOAD R2 R1 - 24.9 k: 24.9 k: V+ + - Q1 2N2907 RSENSE X R3 VOUT = X ICHARGE R1 VOUT R3 10 M: Figure68. High-SideCurrentSensing 8.2.3.1 DesignRequirements The rail-to-rail common mode input range and the very low quiescent current make the LPV521 ideal to use in high-side and low-side battery current sensing applications. The high-side current sensing circuit in Figure 68 is commonly used in a battery charger to monitor the charging current in order to prevent over charging. A sense resistorR isconnectedinserieswiththebattery. SENSE 8.2.3.2 DetailedDesignProcedure The theoretical output voltage of the circuit is V = [ ® × R ) / R ] × I . In reality, however, due to OUT SENSE 3 1 CHARGE the finite Current Gain, β, of the transistor the current that travels through R will not be I , but instead, will 3 CHARGE be α × I or β/( β+1) × I . A Darlington pair can be used to increase the β and performance of the CHARGE CHARGE measuringcircuit. Using the components shown in Figure 68 will result in V ≈ 4000 Ω × I . This is ideal to amplify a 1 mA OUT CHARGE I to near full scale of an ADC with V at 4.1 V. A resistor, R2 is used at the noninverting input of the CHARGE REF amplifier,withthesamevalueasR1tominimizeoffsetvoltage. 24 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 Typical Applications (continued) SelectingvaluesperFigure68willlimitthecurrenttravelingthroughtheR – Q1– R legofthecircuittounder1 1 3 µA which is on the same order as the LPV521 supply current. Increasing resistors R , R , and R will decrease 1 2 3 themeasuringcircuitsupplycurrentandextendbatterylife. Decreasing R will minimize error due to resistor tolerance, however, this will also decrease V = SENSE SENSE I × R , and in turn the amplifier offset voltage will have a more significant contribution to the total error CHARGE SENSE ofthecircuit.WiththecomponentsshowninFigure68themeasurementcircuitsupplycurrentcanbekeptbelow 1.5 µAandmeasure100µAto1mA. 8.2.3.3 ApplicationCurve 5.0 4.5 4.0 3.5 V) 3.0 T ( 2.5 U O V 2.0 1.5 1.0 0.5 0.0 0 0.25 0.5 0.75 1 1.25 1.5 ICHARGE (mA) C001 Figure69. CalculatedHigh-SideCurrentSenseCircuitOutput 9 Power Supply Recommendations The LPV521 is specified for operation from 1.6 V to 5.5 V (±0.8 V to ±2.75 V) over a –40°C to 125°C temperature range. Parameters that can exhibit significant variance with regard to operating voltage or temperaturearepresentedintheTypicalCharacteristics. CAUTION Supplyvoltageslargerthan6Vcanpermanentlydamagethedevice. Low bandwidth nanopower devices do not have good high frequency (>1KHz) AC PSRR rejection against high- frequency switching supplies and other kHz and above noise sources, so extra supply filtering is recommended if kHzrangenoiseisexpectedonthepowersupplylines. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:LPV521
LPV521 SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 www.ti.com 10 Layout 10.1 Layout Guidelines Forbestoperationalperformanceofthedevice,usegoodprintedcircuitboard(PCB)layoutpractices,including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to theanalogcircuitry. • Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed information refer to CircuitBoardLayoutTechniques,SLOA089. • In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible.Ifitisnotpossibletokeepthemseparate,itismuchbettertocrossthesensitivetraceperpendicular asopposedtoinparallelwiththenoisytrace. • Place the external components as close to the device as possible. As shown in Layout Example, keeping RF andRGclosetotheinvertinginputminimizesparasiticcapacitance. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitivepartofthecircuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakagecurrentsfromnearbytracesthatareatdifferentpotentials. 10.2 Layout Example Figure70. NoninvertingLayoutExample 26 SubmitDocumentationFeedback Copyright©2009–2014,TexasInstrumentsIncorporated ProductFolderLinks:LPV521
LPV521 www.ti.com SNOSB14D–AUGUST2009–REVISEDDECEMBER2014 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport LPV521PSPICEModel,SNOM024 TINA-TISPICE-BasedAnalogSimulationProgram,http://www.ti.com/tool/tina-ti TIFilterproSoftware,http://www.ti.com/tool/filterpro DIPAdapterEvaluationModule,http://www.ti.com/tool/dip-adapter-evm TIUniversalOperationalAmplifierEvaluationModule,http://www.ti.com/tool/opampevm Evaluationboardfor5-pin,north-facingamplifiersintheSC70package,SNOA487. ManualforLMH730268Evaluationboard551012922-001 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentation,seethefollowing: • FeedbackPlotsDefineOpAmpACPerformance,SBOA015(AB-028) • CircuitBoardLayoutTechniques,SLOA089 • OpAmpsforEveryone,SLOD006 • AN-1698ASpecificationforEMIHardenedOperationalAmplifiers,SNOA497 • EMIRejectionRatioofOperationalAmplifiers,SBOA128 • CapacitiveLoadDriveSolutionusinganIsolationResistor,TIPD128 • HandbookofOperationalAmplifierApplications,SBOA092 11.3 Trademarks PowerWiseisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. 11.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2009–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:LPV521
PACKAGE OPTION ADDENDUM www.ti.com 3-Oct-2014 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LPV521MG/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS CU SN Level-1-260C-UNLIM -40 to 125 AHA & no Sb/Br) LPV521MGE/NOPB ACTIVE SC70 DCK 5 250 Green (RoHS CU SN Level-1-260C-UNLIM -40 to 125 AHA & no Sb/Br) LPV521MGX/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS CU SN Level-1-260C-UNLIM -40 to 125 AHA & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 3-Oct-2014 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 31-Jul-2016 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LPV521MG/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LPV521MGE/NOPB SC70 DCK 5 250 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LPV521MGX/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 31-Jul-2016 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LPV521MG/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LPV521MGE/NOPB SC70 DCK 5 250 210.0 185.0 35.0 LPV521MGX/NOPB SC70 DCK 5 3000 210.0 185.0 35.0 PackMaterials-Page2
None
None
IMPORTANTNOTICE TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,enhancements,improvementsandother changestoitssemiconductorproductsandservicesperJESD46,latestissue,andtodiscontinueanyproductorserviceperJESD48,latest issue.Buyersshouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentand complete.Allsemiconductorproducts(alsoreferredtohereinas“components”)aresoldsubjecttoTI’stermsandconditionsofsale suppliedatthetimeoforderacknowledgment. TIwarrantsperformanceofitscomponentstothespecificationsapplicableatthetimeofsale,inaccordancewiththewarrantyinTI’sterms andconditionsofsaleofsemiconductorproducts.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessary tosupportthiswarranty.Exceptwheremandatedbyapplicablelaw,testingofallparametersofeachcomponentisnotnecessarily performed. TIassumesnoliabilityforapplicationsassistanceorthedesignofBuyers’products.Buyersareresponsiblefortheirproductsand applicationsusingTIcomponents.TominimizetherisksassociatedwithBuyers’productsandapplications,Buyersshouldprovide adequatedesignandoperatingsafeguards. TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanypatentright,copyright,maskworkright,or otherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIcomponentsorservicesareused.Information publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservicesorawarrantyor endorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthe thirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. ReproductionofsignificantportionsofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalteration andisaccompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchaltered documentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions. ResaleofTIcomponentsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatcomponentorservice voidsallexpressandanyimpliedwarrantiesfortheassociatedTIcomponentorserviceandisanunfairanddeceptivebusinesspractice. TIisnotresponsibleorliableforanysuchstatements. Buyeracknowledgesandagreesthatitissolelyresponsibleforcompliancewithalllegal,regulatoryandsafety-relatedrequirements concerningitsproducts,andanyuseofTIcomponentsinitsapplications,notwithstandinganyapplications-relatedinformationorsupport thatmaybeprovidedbyTI.Buyerrepresentsandagreesthatithasallthenecessaryexpertisetocreateandimplementsafeguardswhich anticipatedangerousconsequencesoffailures,monitorfailuresandtheirconsequences,lessenthelikelihoodoffailuresthatmightcause harmandtakeappropriateremedialactions.BuyerwillfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuse ofanyTIcomponentsinsafety-criticalapplications. Insomecases,TIcomponentsmaybepromotedspecificallytofacilitatesafety-relatedapplications.Withsuchcomponents,TI’sgoalisto helpenablecustomerstodesignandcreatetheirownend-productsolutionsthatmeetapplicablefunctionalsafetystandardsand requirements.Nonetheless,suchcomponentsaresubjecttotheseterms. NoTIcomponentsareauthorizedforuseinFDAClassIII(orsimilarlife-criticalmedicalequipment)unlessauthorizedofficersoftheparties haveexecutedaspecialagreementspecificallygoverningsuchuse. OnlythoseTIcomponentswhichTIhasspecificallydesignatedasmilitarygradeor“enhancedplastic”aredesignedandintendedforusein military/aerospaceapplicationsorenvironments.BuyeracknowledgesandagreesthatanymilitaryoraerospaceuseofTIcomponents whichhavenotbeensodesignatedissolelyattheBuyer'srisk,andthatBuyerissolelyresponsibleforcompliancewithalllegaland regulatoryrequirementsinconnectionwithsuchuse. TIhasspecificallydesignatedcertaincomponentsasmeetingISO/TS16949requirements,mainlyforautomotiveuse.Inanycaseofuseof non-designatedproducts,TIwillnotberesponsibleforanyfailuretomeetISO/TS16949. Products Applications Audio www.ti.com/audio AutomotiveandTransportation www.ti.com/automotive Amplifiers amplifier.ti.com CommunicationsandTelecom www.ti.com/communications DataConverters dataconverter.ti.com ComputersandPeripherals www.ti.com/computers DLP®Products www.dlp.com ConsumerElectronics www.ti.com/consumer-apps DSP dsp.ti.com EnergyandLighting www.ti.com/energy ClocksandTimers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security PowerMgmt power.ti.com Space,AvionicsandDefense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com VideoandImaging www.ti.com/video RFID www.ti-rfid.com OMAPApplicationsProcessors www.ti.com/omap TIE2ECommunity e2e.ti.com WirelessConnectivity www.ti.com/wirelessconnectivity MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2016,TexasInstrumentsIncorporated