图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LMV772MAX/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LMV772MAX/NOPB产品简介:

ICGOO电子元器件商城为您提供LMV772MAX/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMV772MAX/NOPB价格参考¥4.66-¥10.49。Texas InstrumentsLMV772MAX/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 满摆幅 8-SOIC。您可以下载LMV772MAX/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LMV772MAX/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 3.5MHZ RRO 8SOIC运算放大器 - 运放 Single/Dual/Quad, Low Offset, Low Noise, RRO Operational Amplifiers 8-SOIC -40 to 125

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments LMV772MAX/NOPB-

数据手册

点击此处下载产品Datasheet

产品型号

LMV772MAX/NOPB

产品种类

运算放大器 - 运放

供应商器件封装

8-SOIC

共模抑制比—最小值

74 dB

关闭

No Shutdown

其它名称

LMV772MAX/NOPBDKR

包装

Digi-Reel®

压摆率

1.4 V/µs

商标

Texas Instruments

增益带宽生成

3.5 MHz

增益带宽积

3.5MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 125°C

工作电源电压

2.7 V to 5.5 V

工厂包装数量

2500

放大器类型

通用

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

1

电压-电源,单/双 (±)

2.7 V ~ 5.5 V

电压-输入失调

250µV

电流-电源

600µA

电流-输入偏置

0.23pA

电流-输出/通道

75mA

电源电流

0.55 mA

电路数

2

系列

LMV772

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

转换速度

1.4 V/us

输入偏压电流—最大

100 pA

输入补偿电压

1 mV

输出电流

18 mA

输出类型

满摆幅

通道数量

2 Channel

推荐商品

型号:LT1007ACN8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LT6600IS8-15#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AMP02FP

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD626ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MAX430CPA

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:KA2904D

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LTC6253IMS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AD8092ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LMV772MAX/NOPB 相关产品

MCP6242T-E/MS

品牌:Microchip Technology

价格:

AD8662ARZ-REEL7

品牌:Analog Devices Inc.

价格:¥20.42-¥32.60

PGA204AU/1K

品牌:Texas Instruments

价格:

NCV2002SN2T1G

品牌:ON Semiconductor

价格:

TL3474AIPWR

品牌:Texas Instruments

价格:

TLC2272ACD

品牌:Texas Instruments

价格:

LT1882CS#PBF

品牌:Linear Technology/Analog Devices

价格:

OPA691IDBVR

品牌:Texas Instruments

价格:¥12.62-¥25.74

PDF Datasheet 数据手册内容提取

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 LMV771/LMV772/LMV772Q/LMV774 Single/Dual/Quad, Low Offset, Low Noise, RRO Operational Amplifiers CheckforSamples:LMV771,LMV772,LMV774 FEATURES • Temperaturerange−40°Cto125°C 1 • (Unlessotherwisenoted,typicalvaluesatV = • LMV772QisAEC-Q100Grade1qualifiedand 23 S 2.7V) ismanufacturedonAutomotivegradeflow • Guaranteed2.7Vand5Vspecifications APPLICATIONS • MaximumV (LMV771)850μV(limit) OS • Transduceramplifier • Voltagenoise • Instrumentationamplifier • f=100Hz12.5nV/√Hz • Precisioncurrentsensing • f=10kHz7.5nV/√Hz • Dataacquisitionsystems • Rail-to-Railoutputswing • Activefiltersandbuffers • R =600Ω 100mVfromrail L • Sampleandhold • R =2kΩ 50mVfromrail L • Portable/batterypoweredelectronics • OpenloopgainwithR =2kΩ 100dB L • Automotive • V 0toV+−0.9V CM • Supplycurrent(peramplifier)550µA • Gainbandwidthproduct3.5MHz DESCRIPTION The LMV771/LMV772/LMV772Q/LMV774 are Single, Dual, and Quad low noise precision operational amplifiers intended for use in a wide range of applications. Other important characteristics of the family include: an extended operating temperature range of −40°C to 125°C, the tiny SC70-5 package for the LMV771, and low inputbiascurrent. The extended temperature range of −40°C to 125°C allows the LMV771/LMV772/LMV772Q/LMV774 to accommodate a broad range of applications. The LMV771 expands National Semiconductor’s Silicon Dust™ amplifier portfolio offering enhancements in size, speed, and power savings. The LMV771/LMV772/LMV772Q/LMV774 are guaranteed to operate over the voltage range of 2.7V to 5.0V and all haverail-to-railoutput. The LMV771/LMV772/LMV772Q/LMV774 family is designed for precision, low noise, low voltage, and miniature systems.Theseamplifiersproviderail-to-railoutputswingintoheavyloads.Themaximuminputoffsetvoltagefor theLMV771is850μVatroomtemperatureandtheinputcommonmodevoltagerangeincludesground. The LMV771 is offered in the tiny SC70-5 package, LMV772/LMV772Q in the space saving MSOP-8 and SOIC- 8,andtheLMV774inTSSOP-14. 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. SiliconDustisatrademarkofTexasInstruments. 2 Allothertrademarksarethepropertyoftheirrespectiveowners. 3 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2004–2010,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com Connection Diagram 1 5 + +IN V 2 + GND - -IN 3 4 VOUT Figure1. SC70-5(TopView) Instrumentation Amplifier V1 + V01 R2 KR2 - R1 - R1 R11 = a + VOUT - R1 V2 + V02 R2 KR2 VO = -K (2a + 1) (V1 - V2) (1) Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 2 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 Absolute Maximum Ratings (1) ESDTolerance (2) MachineModel 200V HumanBodyModel 2000V DifferentialInputVoltage ±SupplyVoltage VoltageatInputPins (V+)+0.3V,(V–)–0.3V CurrentatInputPins ±10mA SupplyVoltage(V+–V−) 5.75V OutputShortCircuittoV+ (3) OutputShortCircuittoV− (4) MountingTemperture InfraredorConvection(20sec) 235°C WaveSolderingLeadTemp(10sec) 260°C StorageTemperatureRange −65°Cto150°C JunctionTemperature (5) 150°C (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandthetest conditions,seetheElectricalCharacteristics. (2) HumanBodyModelis1.5kΩinserieswith100pF.MachineModelis0Ωinserieswith20pF. (3) ShortingoutputtoV+willadverselyaffectreliability. (4) ShortingoutputtoV−willadverselyaffectreliability. (5) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) JA A temperatureisP =(T –T )/θ .AllnumbersapplyforpackagessoldereddirectlyintoaPCboard. D J(MAX) A JA Operating Ratings (1) SupplyVoltage 2.7Vto5.5V TemperatureRange −40°Cto125°C ThermalResistance(θ ) JA SC70-5Package 440°C/W 8-PinMSOP 235°C/W 8-PinSOIC 190°C/W 14-PinTSSOP 155°C/W (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandthetest conditions,seetheElectricalCharacteristics. Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com 2.7V DC Electrical Characteristics (1) Unlessotherwisespecified,alllimitsareguaranteedforT =25°C.V+=2.7V,V−=0V,V =V+/2,V =V+/2andR >1MΩ. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Min Typ Max Symbol Parameter Condition (2) (3) (2) Units 0.3 0.85 LMV771 1.0 V InputOffsetVoltage mV OS 0.3 1.0 LMV772/LMV772Q/LMV774 1.2 TCV InputOffsetVoltageAverageDrift −0.45 µV/°C OS I InputBiasCurrent (4) V =1V −0.1 100 pA B CM 250 I InputOffsetCurrent (4) 0.004 100 pA OS 550 900 I SupplyCurrent(PerAmplifier) µA S 910 74 80 CMRR CommonModeRejectionRatio 0.5≤V ≤1.2V dB CM 72 PSSR PowerSupplyRejectionRatio 2.7V≤V+≤5V 82 90 dB 76 V InputCommon-ModeVoltageRange ForCMRR≥50dB 0 1.8 V CM R =600Ωto1.35V, 92 100 L LargeSignalVoltageGain VO=0.2Vto2.5V, (6) 80 AV (5) dB R =2kΩto1.35V, 98 100 L V =0.2Vto2.5V, (7) 86 O R =600Ωto1.35V 0.11 0.084to 2.59 L V =±100mV, (6) 0.14 2.62 2.56 IN V OutputSwing V O R =2kΩto1.35V 0.05 0.026to 2.65 L V =±100mV, (7) 0.06 2.68 2.64 IN Sourcing,V =0V 18 24 O V =100mV 11 IN I OutputShortCircuitCurrent mA O Sinking,V =2.7V 18 22 O V =−100mV 11 IN (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T . J A (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnorm. (4) Limitsguaranteedbydesign. (5) R isconnectedtomid-supply.Theoutputvoltageissetat200mVfromtherails.V =GND+0.2VandV =V+−0.2V L O O (6) ForLMV772/LMV772Q/LMV774,temperaturelimitsapplyto−40°Cto85°C. (7) ForLMV772/LMV772Q/LMV774,temperaturelimitsapplyto−40°Cto85°C.IfR isrelaxedto10kΩ,thenfor L LMV772/LMV772Q/LMV774temperaturelimitsapplyto−40°Cto125°C. 4 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 2.7V AC Electrical Characteristics (1) Unlessotherwisespecified,alllimitsareguaranteedforT =25°C.V+=5.0V,V−=0V,V =V+/2,V =V+/2andR >1MΩ. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Min Typ Max Symbol Parameter Conditions (2) (3) (2) Units SR SlewRate (4) A =+1,R =10kΩ 1.4 V/µs V L GBW Gain-BandwidthProduct 3.5 MHz Φ PhaseMargin 79 Deg m G GainMargin −15 dB m Input-ReferredVoltageNoise e f=10kHz 7.5 nV/√Hz n (Flatband) e Input-ReferredVoltageNoise(l/f) f=100Hz 12.5 nV/√Hz n i Input-ReferredCurrentNoise f=1kHz 0.001 pA/√Hz n f=1kHz,A =+1 THD TotalHarmonicDistortion V 0.007 % R =600Ω,V =1V L IN PP (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T . J A (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnorm. (4) Thenumberspecifiedistheslowerofpositiveandnegativeslewrates. Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com 5.0V DC Electrical Characteristics (1) Unlessotherwisespecified,alllimitsareguaranteedforT =25°C.V+=5.0V,V−=0V,V =V+/2,V =V+/2andR >1MΩ. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Min Typ Max Symbol Parameter Condition (2) (3) (2) Units 0.25 0.85 LMV771 1.0 V InputOffsetVoltage mV OS 0.25 1.0 LMV772/LMV772Q/LMV774 1.2 TCV InputOffsetVoltageAverageDrift −0.35 µV/°C OS I InputBiasCurrent (4) V =1V −0.23 100 pA B CM 250 I InputOffsetCurrent (4) 0.017 100 pA OS 600 950 I SupplyCurrent(PerAmplifier) µA S 960 80 90 CMRR CommonModeRejectionRatio 0.5≤V ≤3.5V dB CM 79 PSRR PowerSupplyRejectionRatio 2.7V≤V+≤5V 82 90 dB 76 V InputCommon-ModeVoltageRange ForCMRR≥50dB 0 4.1 V CM R =600Ωto2.5V, 92 100 L LargeSignalVoltageGain VO=0.2Vto4.8V, (6) 89 AV (5) dB R =2kΩto2.5V, 98 100 L V =0.2Vto4.8V, (7) 95 O R =600Ωto2.5V 0.15 0.112to 4.85 L V =±100mV, (6) 0.23 4.9 4.77 IN V OutputSwing V O R =2kΩto2.5V 0.06 0.035to 4.94 L V =±100mV, (7) 0.07 4.97 4.93 IN Sourcing,V =0V 35 75 O V =100mV 35 I OutputShortCircuitCurrent (4) (8) IN mA O Sinking,V =2.7V 35 66 O V =−100mV 35 IN (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T . J A (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnorm. (4) Limitsguaranteedbydesign. (5) R isconnectedtomid-supply.Theoutputvoltageissetat200mVfromtherails.V =GND+0.2VandV =V+−0.2V L O O (6) ForLMV772/LMV772Q/LMV774,temperaturelimitsapplyto−40°Cto85°C. (7) ForLMV772/LMV772Q/LMV774,temperaturelimitsapplyto−40°Cto85°C.IfR isrelaxedto10kΩ,thenfor L LMV772/LMV772Q/LMV774temperaturelimitsapplyto−40°Cto125°C. (8) Continuousoperationofthedevicewithanoutputshortcircuitcurrentlargerthan35mAmaycausepermanentdamagetothedevice. 6 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 5.0V AC Electrical Characteristics (1) Unlessotherwisespecified,alllimitsareguaranteedforT =25°C.V+=5.0V,V−=0V,V =V+/2,V =V+/2andR >1MΩ. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Min Typ Max Symbol Parameter Conditions (2) (3) (2) Units SR SlewRate (4) A =+1,R =10kΩ 1.4 V/µs V L GBW Gain-BandwidthProduct 3.5 MHz Φ PhaseMargin 79 Deg m G GainMargin −15 dB m Input-ReferredVoltageNoise e f=10kHz 6.5 nV/√Hz n (Flatband) e Input-ReferredVoltageNoise(l/f) f=100Hz 12 nV/√Hz n i Input-ReferredCurrentNoise f=1kHz 0.001 pA/√Hz n f=1kHz,A =+1 THD TotalHarmonicDistortion V 0.007 % R =600Ω,V =1V L IN PP (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T . J A (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnorm. (4) Thenumberspecifiedistheslowerofpositiveandnegativeslewrates. Connection Diagrams 1 5 + +IN V 2 + GND - -IN 3 4 VOUT Figure2.SC70-5 Figure3.8-PinMSOP/SOIC Figure4.14-PinTSSOP (TopView) (TopView) (TopView) Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com Typical Performance Characteristics V V OS OS vs. vs. V OverTemperature V OverTemperature CM CM 3 4 VS = 2.7V -40°C 3.5 VS = 5V -40°C 2.5 25°C 25°C 3 2 85°C 85°C 2.5 125°C )V 1.5 125°C )V 2 m( VSO 0.51 m( VSO 1.15 0.5 0 0 -0.5 -0.5 -1 -1 -0.5 0 0.5 1 1.5 2 2.5 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VCM (V) VCM (V) OutputSwing OutputSwing vs. vs. V V S S 120 40 RL = 2k: )Vm( V MORF VYLPPUSTUO 11678901000000 RL = 6N0E0G:ATIVE SWINGPOSITIVE SWING )Vm( V MORFVYLPPUS TUO 323550 TA = 25°C NEGATIVEP SOWSIITNIGVE SWING 50 TA = 25°C 40 20 2.5 3 3.5 4 4.5 5 5.5 2.5 3 3.5 4 4.5 5 5.5 VS (V) VS (V) OutputSwing I S vs. vs. V V OverTemperature S S 1 0.7 0.9 NEGATIVE SWING -40°C 0.6 0.8 )A -)Vm( V MORF VTUO 00000.....34567 POSITIVE SWING m( TNERRUC YLPPU 0000....2345 125°C 85°C 25°C 00..12 RTAL == 2150°0Ck: S 0.1 0 0 2.5 3 3.5 4 4.5 5 5.5 2.5 3 3.5 4 4.5 5 5.5 VS (V) SUPPLY VOLTAGE (V) 8 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 Typical Performance Characteristics (continued) V V IN IN vs. vs. V V OUT OUT 500 500 400 VS = ±1.35V 400 VS = ±2.5V 300 TA = 25°C 300 TA = 25°C )V( EGP 120000 RL = 2k: )V( EGP 120000 RL = 2k: A A TLOV TU -1000 RL = 600: TLOV TU -1000 RL = 600: PN -200 PN -200 I -300 I -300 -400 -400 -500 -500 -1.5 -1 0.5 0 0.5 1 1.5 -3 -2 -1 0 1 2 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) SourcingCurrent SourcingCurrent vs. vs. V (1) V (1) OUT OUT 0 0 -5 VS = 2.7V -10 VS = 5V -10 -20 -30 )Am -15 125°C )Am -40 125°C ( IECRUOS ---322050 85°C ( IECRUOS ---765000 85°C 25°C -35 25°C -80 -40°C -40 -90 -40°C -45 -100 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 - - VOUT FROM V (V) VOUT FROM V (V) SinkingCurrent SinkingCurrent vs. vs. V (2) V (2) OUT OUT 40 100 -40°C VS = 2.7V -40°C 90 80 30 25°C 25°C 70 )A 85°C )Am 60 m( K 20 ( KN 50 125°C INIS 125°C IIS 40 85°C 30 10 20 10 VS = 5V 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VOUT REFERENCED TO V+ (V) VOUT FROM V+ (1) Continuousoperationofthedevicewithanoutputshortcircuitcurrentlargerthan35mAmaycausepermanentdamagetothedevice. (2) Continuousoperationofthedevicewithanoutputshortcircuitcurrentlargerthan35mAmaycausepermanentdamagetothedevice. Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com Typical Performance Characteristics (continued) InputVoltageNoise vs. Frequency InputBiasCurrentOverTemperature 35 Hz) 30 V/ E (n 25 S OI 20 N E G A 15 LT VS = 2.7V O V 10 T NPU 5 VS = 5V I 0 10 100 1k 10k FREQUENCY (Hz) InputBiasCurrentOverTemperature InputBiasCurrentOverTemperature 500 50 T = 25°C T = -40°C 400 40 )A 300 )A 30 f( TN 200 f( TN 20 ER 100 ER 10 VS = 2.7V R R UC 0 VS = 2.7V UC 0 S S A -100 A -10 IB TUP -200 VS = 5V IB TUP -20 VS = 5V N -300 N -30 I I -400 -40 -500 -50 -0.50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 -0.50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCM (V) VCM (V) THD+N THD+N vs. vs. Frequency V OUT 10 1 RL = 600: 1 AV = +10 AV = +10 VS = 5V, VO = 2.5VPP 0.1 )% )% ( N+D 0.1 VS = 2.7V, VO = 1VPP AV = +1 ( N+D HT HT VS = 2.7V 0.01 0.01 VS = 5V, VO = 1VPP AV = +1 VS = 2.7V, VO = 1VPP VS = 5V 0.001 0.001 10 100 1k 10k 100k 0.1 1 10 FREQUENCY (Hz) VOUT (VPP) 10 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 Typical Performance Characteristics (continued) SlewRate vs. SupplyVoltage OpenLoopFrequencyResponseOverTemperature 2 80 100 PHASE -40°C 1.9 AV = +1 70 90 RL = 10k: 1.8 60 80 VIN = 2VPP 25°C )s/V( ETARP WE 1111....4567 RISING EDGE )Bd( NIAG 23450000 GAIN 125°C 125°-C40°C 45670000 °() ESAHP LS 1.3 FALLING EDGE 10 30 1.2 0 20 VS = 5V 25°C 1.1 -10 RL = 2k: 10 1 -20 0 2.5 3 3.5 4 4.5 5 1k 10k 100k 1M 10M SUPPLY VOLTAGE (V) FREQUENCY (Hz) OpenLoopFrequencyResponse OpenLoopFrequencyResponse 80 100 80 100 PHASE RL = 600: PHASE RL = 100k: 70 90 70 90 60 80 60 80 50 RL = 100k: 70 50 RL = 600: 70 )Bd( NIAG 234000 GAIN RL = 600: RL = 2RkL: = 100k: 456000 °() ESAHP )Bd( NIAG 234000 GAIN RL = 600: RL = 2RkL: = 100k: 456000 °() ESAHP 10 30 10 30 0 RL = 2k: 20 0 RL = 2k: 20 -10 10 -10 10 VS = 2.7V VS = 5V -20 0 -20 0 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) OpenLoopGain&PhasewithCap.Loading OpenLoopGain&PhasewithCap.Loading 80 100 80 100 PHASE CL = 0pF PHASE CL = 0pF 70 90 70 90 60 80 60 80 )Bd( NIAG 23450000 GAIN CL = 100pF 45670000 °() ESAHP )Bd( NIAG 23450000 GAIN CL = 100pF 45670000 °() ESAHP 10 CL = 1000pF 30 10 CL = 1000pF 30 0 CL = 500pF 20 0 CL = 500pF 20 VS = 5V CL = 0pF VS = 5V CL = 0pF -10 RL = 600: CL = 100pF 10 -10 RL = 100k: CL = 100pF 10 -20 0 -20 0 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Non-InvertingSmallSignalPulseResponse Non-InvertingLargeSignalPulseResponse LANGIS TU VTRASL === -2±4k20:.5°CV LANGIS TU VTRASL === -2±4k20:.5°CV P P NI V/div) NI div) m V/ LANGIS TUPTUO (50 LANGIS TUPTUO (1 TIME (10 Ps/div) TIME (10 Ps/div) Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com Typical Performance Characteristics (continued) Non-InvertingSmallSignalPulseResponse Non-InvertingLargeSignalPulseResponse LANGIS TUPNI V/div) VTRASL === 22±5k2:°.C5V LANGIS TUPNI div) VTRASL === 22±5k2:°.C5V m V/ LANGIS TUPTUO (50 LANGIS TUPTUO (1 TIME (10 Ps/div) TIME (10 Ps/div) Non-InvertingSmallSignalPulseResponse Non-InvertingLargeSignalPulseResponse L LA VS = ±2.5V AN VS = ±2.5V NGIS T TRAL == 122k:5°C GIS TU TRAL == 122k:5°C U P P N NI mV/div) I)vid/V LANGIS TUPTUO (50 LANGIS TUPTUO 1( TIME (10 Ps/div) TIME (10 Ps/div) InvertingSmallSignalPulseResponse InvertingLargeSignalPulseResponse LA VS = ±2.5V LA VS = ±2.5V NGIS T TRAL == -24k0:°C NGIS T TRAL == -24k0:°C U U P P NI V/div) NI div) m V/ LAN (50 LAN (1 G G IS IS T T U U P P T T U U O O TIME (10 Ps/div) TIME (10 Ps/div) InvertingSmallSignalPulseResponse InvertingLargeSignalPulseResponse LA VS = ±2.5V LA VS = ±2.5V NGIS T TRAL == 225k:°C NGIS T TRAL == 225k:°C U U P P NI V/div) NI div) m V/ LAN (50 LAN (1 G G IS IS T T U U P P T T U U O O TIME (10 Ps/div) TIME (10 Ps/div) 12 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 Typical Performance Characteristics (continued) InvertingSmallSignalPulseResponse InvertingLargeSignalPulseResponse LA VS = ±2.5V LA VS = ±2.5V NGIS T TRAL == 122k:5°C NGIS T TRAL == 122k:5°C U U P P NI V/div) NI div) m V/ LAN (50 LAN (1 G G IS IS T T U U P P T T U U O O TIME (10 Ps/div) TIME (10 Ps/div) Stability Stability vs. vs. V V CM CM 500 250 450 400 200 )Fp( DAO 330500 25% OVERSHOOT )Fp( DAO 150 25% OVERSHOOT L EVITICAPAC 112205050000 VARSVL === 2±+k21:.5V L EVITICAPAC 15000 VARSVL === 1±+M21.:5V 50 VO = 100mV VO = 100mV 0 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 VCM (V) VCM (V) PSRR CMRR vs. vs. Frequency Frequency 140 100 RL = 100k: 90 RL = 5 k: 120 VS = 2.7V, -PSRR 80 100 70 )Bd( RRSP 6800 VS = 5V, -VPSS =R R2.7VV, +S P=S 5RVR, +PSRR )Bd( RRMC 456000 VS = 2.7V VS = 5V 30 40 20 20 10 0 0 100 1k 10k 100k 1M 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com Typical Performance Characteristics (continued) CrosstalkRejection vs. Frequency(LMV772/LMV772Q/LMV774) 140 )B 120 VS = 5V d ( NO 100 IT C E 80 VS = 2.7V JE R K 60 L A T SS 40 O R C 20 0 100 1k 10k 100k 600k FREQUENCY (Hz) Application Note LMV771/LMV772/LMV772Q/LMV774 The LMV771/LMV772LMV772Q/LMV774 are a family of precision amplifiers with very low noise and ultra low offset voltage. LMV771/LMV772/LMV772Q/LMV774's extended temperature range of −40°C to 125°C enables theusertodesignthisfamilyofproductsintoavarietyofapplicationsincludingautomotive. The LMV771 has a maximum offset voltage of 1mV over the extended temperature range. This makes the LMV771idealforapplicationswhereprecisionisimportant. The LMV772/LMV772Q/LMV774 have a maximum offset voltage of 1mV at room temperature and 1.2mV over the extended temperature range of −40°C to 125°C. Care must be taken when the LMV772/LMV772Q/LMV774 are designed into applications with heavy loads under extreme temperature conditions. As indicated in the DC tables, the LMV772/LMV772Q/LMV774's gain and output swing may be reduced at temperatures between 85°C and125°Cwithloadsheavierthan2kΩ. INSTRUMENTATIONAMPLIFIER Measurement of very small signals with an amplifier requires close attention to the input impedance of the amplifier, gain of the overall signal on the inputs, and the gain on each input since we are only interested in the difference of the two inputs and the common signal is considered noise. A classic solution is an instrumentation amplifier. Instrumentation amplifiers have a finite, accurate, and stable gain. Also they have extremely high input impedances and very low output impedances. Finally they have an extremely high CMRR so that the amplifier canonlyrespondtothedifferentialsignal.AtypicalinstrumentationamplifierisshowninFigure5. V1 + V01 R2 KR2 - R1 - R1 R11 = a + VOUT - R1 V2 + V02 R2 KR2 Figure5. InstrumentationAmplifier 14 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 There are two stages in this amplifier. The last stage, output stage, is a differential amplifier. In an ideal case the two amplifiers of the first stage, input stage, would be set up as buffers to isolate the inputs. However they cannot be connected as followers because of real amplifier's mismatch. That is why there is a balancing resistor between the two. The product of the two stages of gain will give the gain of the instrumentation amplifier. Ideally, the CMRR should be infinite. However the output stage has a small non-zero common mode gain which results fromresistormismatch. In the input stage of the circuit, current is the same across all resistors. This is due to the high input impedance andlowinputbiascurrentoftheLMV771.Withthenodeequationswehave: GIVEN: I = I R1 R11 (2) ByOhm’sLaw: VO1 - VO2 = (2R1 + R11) IR11 = (2a + 1)R11xIR11 = (2a + 1) VR11 (3) However: V R11 = V1 - V2 (4) Sowehave: (5) Nowlookingattheoutputoftheinstrumentationamplifier: KR2 VO = R2 (VO2 - VO1) = -K (VO1 - VO2) (6) SubstitutingfromEquation5: VO = -K (2a + 1) (V1 - V2) (7) Thisshowsthegainoftheinstrumentationamplifiertobe: −K(2a+1) (8) Typicalvaluesforthiscircuitcanbeobtainedbysetting:a=12andK=4.Thisresultsinanoverallgainof−100. Figure 6 shows typical CMRR characteristics of this Instrumentation amplifier over frequency. Three LMV771 amplifiers are used along with 1% resistors to minimize resistor mismatch. Resistors used to build the circuit are: R = 21.6kΩ, R = 1.8kΩ, R = 2.5kΩ with K = 40 and a = 12. This results in an overall gain of −1000, −K(2a+1) 1 11 2 =−1000. 0 VS = ±2.5V -20 VCM = 0V VIN = 3VPP -40 )Bd -60 ( R R M -80 C -100 -120 -140 10 100 1k 10k FREQUENCY (Hz) Figure6. CMRRvs.Frequency Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com ACTIVEFILTER Active filters are circuits with amplifiers, resistors, and capacitors. The use of amplifiers instead of inductors, which are used in passive filters, enhances the circuit performance while reducing the size and complexity of the filter. The simplest active filters are designed using an inverting op amp configuration where at least one reactive element has been added to the configuration. This means that the op amp will provide "frequency-dependent" amplification,sincereactiveelementsarefrequencydependentdevices. LOWPASSFILTER Thefollowingshowsaverysimplelowpassfilter. C R1 R2 Vi - VOUT + Figure7. LowpassFilter Thetransferfunctioncanbeexpressedasfollows: ByKCL: -Vi VO VO - - = O R1 1 R2 jwc (9) Simplifyingthisfurtherresultsin: -R2 1 VO = Vi R1 jwcR2 +1 (10) or VO -R2 1 = Vi R1 jwcR2 +1 (11) Now, substituting ω=2πf, so that the calculations are in f(Hz) and not ω(rad/s), and setting the DC gain H = O −R /R andH=V /V 2 1 O i 1 H = HO j2SfcR2 +1 (12) Set:f =1/(2πR C) o 1 1 H = HO 1 + j (f/fo) (13) Low pass filters are known as lossy integrators because they only behave as an integrator at higher frequencies. Just by looking at the transfer function one can predict the general form of the bode plot. When the f/f ratio is O small, the capacitor is in effect an open circuit and the amplifier behaves at a set DC gain. Starting at f , −3dB O corner, the capacitor will have the dominant impedance and hence the circuit will behave as an integrator and thesignalwillbeattenuatedandeventuallycut.Thebodeplotforthisfilterisshowninthefollowingpicture: 16 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 |H| dB |HO| -20dB/dec 0 f = fo f (Hz) Figure8. LowpassFilterTransferFunction HIGHPASSFILTER Inasimilarapproach,onecanderivethetransferfunctionofahighpassfilter.Atypicalfirstorderhighpassfilter isshownbelow: C R1 R2 Vi - VOUT + Figure9. HighpassFIlter WritingtheKCLforthiscircuit: (V denotesthevoltagebetweenCandR ) 1 1 - V1 - Vi V1 - V = 1 R1 jwC (14) V- + V1 V- + VO = R1 R2 (15) Solvingthesetwoequationstofindthetransferfunctionandusing: 1 fO = 2SR1C (16) (highfrequencygain) HO = -RR12 and H = VVOi Whichresults: j (f/fo) H = HO 1 + j (f/fo) (17) Looking at the transfer function, it is clear that when f/f is small, the capacitor is open and hence no signal is O getting in to the amplifier. As the frequency increases the amplifier starts operating. At f = f the capacitor O behaves like a short circuit and the amplifier will have a constant, high frequency, gain of H . Figure 10 shows O thetransferfunctionofthishighpassfilter: Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com |H| dB |HO| -20dB/dec 0 f = fo f (Hz) Figure10. HighpassFilterTransferFunction BANDPASSFILTER C2 C1 R1 R2 Vi - VOUT + Figure11. BandpassFilter Combining a low pass filter and a high pass filter will generate a band pass filter. In this network the input impedance forms the high pass filter while the feedback impedance forms the low pass filter. Choosing the corner frequencies so that f < f , then all the frequencies in between, f ≤ f ≤ f , will pass through the filter while 1 2 1 2 frequenciesbelowf andabovef willbecutoff. 1 2 Thetransferfunctioncanbeeasilycalculatedusingthesamemethodologyasbefore. j (f/f1) H = HO [1 + j (f/f1)] [1 + j (f/f2)] (18) Where f1 = 1 2SR1C1 f2 = 1 2SR2C2 -R2 HO = R1 (19) Thetransferfunctionispresentedinthefollowingfigure. 18 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 |H dB | |HO| 20dB/dec -20dB/dec 0 f1 f2 f (Hz) Figure12. BandpassfilterTransferFunction STATEVARIABLEACTIVEFILTER State variable active filters are circuits that can simultaneously represent high pass, band pass, and low pass filters. The state variable active filter uses three separate amplifiers to achieve this task. A typical state variable active filter is shown in Figure 13. The first amplifier in the circuit is connected as a gain stage. The second and third amplifiers are connected as integrators, which means they behave as low pass filters. The feedback path from the output of the third amplifier to the first amplifier enables this low frequency signal to be fed back with a finite and fairly low closed loop gain. This is while the high frequency signal on the input is still gained up by the open loop gain of the 1st amplifier. This makes the first amplifier a high pass filter. The high pass signal is then fed into a low pass filter. The outcome is a band pass signal, meaning the second amplifier is a band pass filter. This signal is then fed into the third amplifiers input and so, the third amplifier behaves as a simple low pass filter. R4 R1 C2 C3 - R2 VIN R5 + A1 VHP - A2 R3 - + VBP A3 + VLP R6 Figure13. StateVariableActiveFilter The transfer function of each filter needs to be calculated. The derivations will be more trivial if each stage of the filterisshownonitsown. Thethreecomponentsare: R4 R1 VO - R5 A1 VIN + VO1 R6 VO2 Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com C2 R2 VO1 - A2 VO2 + C3 R3 VO2 - A3 VO + ForA therelationshipbetweeninputandoutputis: 1 -R4 R6 R1 + R4 R5 R1 + R4 VO1 = R1V0+ R5 + R6 R1 VIN + R5 + R6 R1 VO2 (20) This relationship depends on the output of all the filters. The input-output relationship for A can be expressed 2 as: -1 VO2 = s C2R2 VO1 (21) AndfinallythisrelationshipforA isasfollows: 3 -1 VO = s C3R3 VO2 (22) Re-arranging these equations, one can find the relationship between V and V (transfer function of the lowpass O IN filter), V and V (transfer function of the highpass filter), and V and V (transfer function of the bandpass O1 IN O2 IN filter)Theserelationshipsareasfollows: LowpassFilter R1 + R4 R6 1 VO R1 R5 + R6 C2C3R2R3 = VIN 2 1 R5 R1 + R4 1 s + s + C2R2 R5 + R6 R1 C2C3R2R3 (23) HighpassFilter R1 + R4 R6 2 VO1 s R1 R5 + R6 = VIN 2 1 R5 R1 + R4 1 s + s + C2R2 R5 + R6 R1 C2C3R2R3 (24) BandpassFilter s 1 R1 + R4 R6 VO2 C2R2 R1 R5 + R6 = VIN 2 1 R5 R1 + R4 1 s + s + C2R2 R5 + R6 R1 C2C3R2R3 (25) The center frequency and Quality Factor for all of these filters is the same. The values can be calculated in the followingmanner: 20 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 www.ti.com SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 Zc= 1 C2C3R2R3 and C2R2 R5 + R6 R1 Q = C3R3 R6 R1 + R4 (26) Adesignexampleisshownhere: Designingabandpassfilterwithcenterfrequencyof10kHzandQualityFactorof5.5 To do this, first consider the Quality Factor. It is best to pick convenient values for the capacitors. C = C = 2 3 1000pF. Also, choose R = R = 30kΩ. Now values of R and R need to be calculated. With the chosen values 1 4 5 6 forthecapacitorsandresistors,Qreducesto: 11 1 R5 + R6 Q = = 2 2 R6 (27) or R =10R R =1.5kΩR =15kΩ (28) 5 6 6 5 Also,forf=10kHz,thecenterfrequencyisω =2πf=62.8kHz. c Usingtheexpressionsabove,theappropriateresistorvalueswillbeR =R =16kΩ. 2 3 Thefollowinggraphsshowthetransferfunctionofeachofthefilters.TheDCgainofthiscircuitis: R1 + R4 R6 DC GAIN = = -14.8 dB R1 R5 + R6 The frequency responses of each stage of the state variable active filter when implemented with the LMV774 are showninthefollowingfigures: 0 -10 -20 -30 )B -40 d ( N -50 IA G -60 -70 -80 -90 -100 100 1k 10k 100k 400k FREQUENCY (Hz) Figure14. LowpassFilterFrequencyResponse Copyright©2004–2010,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LMV771 LMV772 LMV774

LMV771, LMV772, LMV774 SNOSA04F–MAY2004–REVISEDSEPTEMBER2010 www.ti.com 0 -10 -20 -30 )B -40 d ( N -50 IA G -60 -70 -80 -90 -100 100 1k 10k 100k 400k FREQUENCY (Hz) Figure15. BandpassFilterFrequencyResponse 0 -10 -20 -30 )B -40 d ( N -50 IA G -60 -70 -80 -90 -100 100 1k 10k 100k 400k FREQUENCY (Hz) Figure16. HighpassFilterFrequencyResponse 22 SubmitDocumentationFeedback Copyright©2004–2010,TexasInstrumentsIncorporated ProductFolderLinks:LMV771 LMV772 LMV774

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMV771MG/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A75 & no Sb/Br) LMV771MGX/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A75 & no Sb/Br) LMV772MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV7 & no Sb/Br) 72MA LMV772MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV7 & no Sb/Br) 72MA LMV772MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A91A & no Sb/Br) LMV772MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A91A & no Sb/Br) LMV772QMM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 AJ7A & no Sb/Br) LMV772QMMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 AJ7A & no Sb/Br) LMV774MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LMV77 & no Sb/Br) 4MT LMV774MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LMV77 & no Sb/Br) 4MT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LMV772, LMV772-Q1 : •Catalog: LMV772 •Automotive: LMV772-Q1 NOTE: Qualified Version Definitions: •Catalog - TI's standard catalog product •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 15-Feb-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMV771MG/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV771MGX/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV772MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMV772MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV772MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV772QMM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV772QMMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV774MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 15-Feb-2020 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMV771MG/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LMV771MGX/NOPB SC70 DCK 5 3000 210.0 185.0 35.0 LMV772MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMV772MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMV772MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMV772QMM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMV772QMMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMV774MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 PackMaterials-Page2

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

None

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated