ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LMV358MM
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LMV358MM产品简介:
ICGOO电子元器件商城为您提供LMV358MM由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMV358MM价格参考。Texas InstrumentsLMV358MM封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, General Purpose Amplifier 2 Circuit Rail-to-Rail 8-VSSOP。您可以下载LMV358MM参考资料、Datasheet数据手册功能说明书,资料中有LMV358MM 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC) |
描述 | IC OPAMP GP 1MHZ RRO 8VSSOP |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps |
品牌 | Texas Instruments |
数据手册 | |
产品图片 | |
产品型号 | LMV358MM |
PCN组件/产地 | |
PCN设计/规格 | |
rohs | 含铅 / 不符合限制有害物质指令(RoHS)规范要求 |
RoHS指令信息 | |
产品系列 | - |
供应商器件封装 | 8-VSSOP |
其它名称 | *LMV358MM |
包装 | 剪切带 (CT) |
压摆率 | 1 V/µs |
增益带宽积 | 1MHz |
安装类型 | 表面贴装 |
封装/外壳 | 8-TSSOP,8-MSOP(0.118",3.00mm 宽) |
工作温度 | -40°C ~ 85°C |
放大器类型 | 通用 |
标准包装 | 1 |
电压-电源,单/双 (±) | 2.7 V ~ 5.5 V, ±1.35 V ~ 2.75 V |
电压-输入失调 | 1.7mV |
电流-电源 | 210µA |
电流-输入偏置 | 15nA |
电流-输出/通道 | 160mA |
电路数 | 2 |
输出类型 | 满摆幅 |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 LMV3xx-N/-Q1 Single, Dual, and Quad General Purpose, Low-Voltage, Rail-to-Rail Output Operational Amplifiers 1 Features 3 Description • (ForV+=5VandV−=0V,UnlessOtherwise TheLMV358-NandLMV324-Narelow-voltage(2.7V 1 to 5.5 V) versions of the dual and quad commodity op Specified) amps LM358 and LM324 (5 V to 30 V). The LMV321- • LMV321-N,LMV358-N,andLMV324-Nare N is the single channel version. The LMV321-N, availableinAutomotiveAEC-Q100Grade1and3 LMV358-N, and LMV324-N are the most cost- versions effective solutions for applications where low-voltage • Ensured2.7-Vand5-VPerformance operation, space efficiency, and low price are important. They offer specifications that meet or • NoCrossoverDistortion exceed the familiar LM358 and LM324. The LMV321- • IndustrialTemperatureRange−40°Cto+125°C N, LMV358-N, and LMV324-N have rail-to-rail output • Gain-BandwidthProduct1MHz swing capability and the input common-mode voltage range includes ground. They all exhibit excellent • LowSupplyCurrent speed to power ratio, achieving 1 MHz of bandwidth • LMV321-N130μA and1-V/µsslewratewithlowsupplycurrent. • LMV358-N210μA • LMV324-N410μA DeviceInformation(1) • Rail-to-RailOutputSwingAt10kΩ V+−10mV & PARTNUMBER PACKAGE BODYSIZE(NOM) V−+65mV SOT-23(5) 2.90mmx1.60mm LMV321-N • V Range−0.2VtoV+−0.8V SC70(5) 2.00mmx1.25mm CM LMV321-N-Q1 SOT-23(5) 2.90mmx1.60mm 2 Applications SOIC(14) 8.65mmx3.91mm LMV324-N • ActiveFilters TSSOP(14) 5.00mmx4.40mm • GeneralPurposeLowVoltageApplications SOIC(14) 8.65mmx3.91mm LMV324-N-Q1 TSSOP(14) 5.00mmx4.40mm • GeneralPurposePortableDevices SOIC(8) 4.90mmx3.91mm LMV358-N VSSOP(8) 3.00mmx3.00mm SOIC(8) 4.90mmx3.91mm LMV358-N-Q1 VSSOP(8) 3.00mmx3.00mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. GainandPhasevs.CapacitiveLoad OutputVoltageSwingvs.SupplyVoltage 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Table of Contents 1 Features.................................................................. 1 8.1 Overview.................................................................16 2 Applications........................................................... 1 8.2 FunctionalBlockDiagram.......................................17 3 Description............................................................. 1 8.3 FeatureDescription.................................................17 8.4 DeviceFunctionalModes........................................19 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 20 5 Description(Continued)........................................ 3 9.1 ApplicationInformation............................................20 6 PinConfigurationandFunctions......................... 3 9.2 TypicalApplications................................................20 7 Specifications......................................................... 4 10 PowerSupplyRecommendations..................... 32 7.1 AbsoluteMaximumRatings......................................4 11 Layout................................................................... 32 7.2 ESDRatings-Commercial.......................................4 11.1 LayoutGuidelines.................................................32 7.3 ESDRatings-Automotive........................................4 11.2 LayoutExample....................................................33 7.4 RecommendedOperatingConditions.......................4 12 DeviceandDocumentationSupport................. 34 7.5 ThermalInformation..................................................5 7.6 2.7-VDCElectricalCharacteristics...........................5 12.1 RelatedLinks........................................................34 7.7 2.7-VACElectricalCharacteristics...........................5 12.2 Trademarks...........................................................34 7.8 5-VDCElectricalCharacteristics..............................6 12.3 ElectrostaticDischargeCaution............................34 7.9 5-VACElectricalCharacteristics..............................7 12.4 Glossary................................................................34 7.10 TypicalCharacteristics............................................8 13 Mechanical,Packaging,andOrderable Information........................................................... 34 8 DetailedDescription............................................ 16 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionI(February2013)toRevisionJ Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctional Modes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection .............................. 1 ChangesfromRevisionH(February2013)toRevisionI Page • ChangedlayoutofNationalDataSheettoTIformat........................................................................................................... 32 2 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 5 Description (Continued) The LMV321-N is available in the space saving 5-Pin SC70, which is approximately half the size of the 5-Pin SOT23. The small package saves space on PC boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increasesignalintegrity. The chips are built with Texas Instruments's advanced submicron silicon-gate BiCMOS process. The LMV321- N/LMV358-N/LMV324-N have bipolar input and output stages for improved noise performance and higher output currentdrive. 6 Pin Configuration and Functions DBVandDCKPackage DandDGKPackage DandPWPackage 5-PinSC70,SOT-23 8-PinSOIC,VSSOP 14-PinSOIC,TSSOP TopView TopView TopView PinFunctions PIN LMV321-N, LMV358-N, LMV324-N, LMV321-N-Q1, LMV358-N-Q1, LMV324-N-Q1, TYPE DESCRIPTION NAME LMV321-N-Q3 LMV358-N-Q3 LMV324-N-Q3 DVB,DCK D,DGK D,PW +IN 1 - - I Noninvertinginput INA+ - 3 3 I Noninvertinginput,channelA INB+ - 5 5 I Noninvertinginput,channelB INC+ - - 10 I Noninvertinginput,channelC IND+ - - 12 I Noninvertinginput,channelD -IN 3 - - I Invertinginput INA- - 2 2 I Invertinginput,channelA INB- - 6 6 I Invertinginput,channelB INC- - - 9 I Invertinginput,channelC IND- - - 13 I Invertinginput,channelD OUTPUT 4 - - O Output OUTA - 1 1 O Output,channelA OUTB - 7 7 O Output,channelB OUTC - - 8 O Output,channelC OUTD - - 14 O Output,channelD V+ 5 8 4 P Positive(highest)powersupply V- 2 4 11 P Negative(lowest)powersupply Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings See (1)(2). MIN MAX UNIT DifferentialInputVoltage ±SupplyVoltage V InputVoltage −0.3 +SupplyVoltage V SupplyVoltage(V+–V−) 5.5 V OutputShortCircuittoV+ (3) OutputShortCircuittoV− (4) SolderingInformation: InfraredorConvection(30sec) 260 °C JunctionTemperature(5) 150 °C StoragetemperatureT −65 150 °C stg (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.RecommendedOperatingConditionsindicate conditionsforwhichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthe testconditions,seetheElectricalCharacteristics. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (3) ShortingoutputtoV+willadverselyaffectreliability. (4) ShortingoutputtoV-willadverselyaffectreliability. (5) ThemaximumpowerdissipationisafunctionofT ,R .Themaximumallowablepowerdissipationatanyambienttemperatureis J(MAX) θJA P =(T –T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCBoard. D J(MAX) A θJA 7.2 ESD Ratings - Commercial VALUE UNIT LMV358-N,andLMV324-Ninallpackages Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Machinemodel ±100 LMV321-Ninallpackages Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±900 V Electrostaticdischarge V (ESD) Machinemodel ±100 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 ESD Ratings - Automotive VALUE UNIT LMV358-N-Q1,LMV324-N-Q1,LMV358-N-Q3andLMV324-N-Q3inallpackages Human-bodymodel(HBM),perAECQ100-002(1) ±2000 V Electrostaticdischarge V (ESD) Machinemodel ±100 LM321-N-Q1andLM321-N-Q3inallpackages Human-bodymodel(HBM),perAECQ100-002(1) ±900 V Electrostaticdischarge V (ESD) Machinemodel ±100 (1) AECQ100-002indicatesthatHBMstressingshallbeinaccordancewiththeANSI/ESDA/JEDECJS-001specification. 7.4 Recommended Operating Conditions MIN MAX UNIT SupplyVoltage 2.7 5.5 V TemperatureRange (1):LMV321-N,LMV358-N,LMV324-N –40 125 °C TemperatureRange (1):LMV321-N-Q1,LMV358-N-Q1,LMV324-N-Q1 –40 125 °C TemperatureRange (1):LMV321-N-Q3,LMV358-N-Q3,LMV324-N-Q3 –40 85 °C (1) ThemaximumpowerdissipationisafunctionofT ,R .Themaximumallowablepowerdissipationatanyambienttemperatureis J(MAX) θJA P =(T –T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCBoard. D J(MAX) A θJA 4 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 7.5 Thermal Information LMV321-N, LMV321-N LMV324-N, LMV358-N, LMV321-N-Q1, LMV324-N-Q1, LMV358-N-Q1, THERMALMETRIC(1) LMV321-N-Q3 LMV324-N-Q3 LMV358-N-Q3 UNIT DBV DCK D PW D DGK 5PINS 14PINS 8PINS R Junction-to-ambientthermal θJA 265 478 145 155 190 235 °C/W resistance (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. 7.6 2.7-V DC Electrical Characteristics Unlessotherwisespecified,alllimitsspecifiedforT =25°C,V+=2.7V,V−=0V,V =1.0V,V =V+/2andR >1MΩ. J CM O L TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT V InputOffsetVoltage 1.7 7 mV OS TCV InputOffsetVoltageAverageDrift 5 µV/°C OS I InputBiasCurrent 11 250 nA B I InputOffsetCurrent 5 50 nA OS CMRR CommonModeRejectionRatio 0V≤V ≤1.7V 50 63 dB CM PSRR PowerSupplyRejectionRatio 2.7V≤V+≤5V 50 60 dB V =1V O V InputCommon-ModeVoltage ForCMRR≥50dB 0 −0.2 V CM Range 1.9 1.7 V V OutputSwing R =10kΩto1.35V V+−100 V+−10 mV O L 60 180 mV I SupplyCurrent Single 80 170 µA S Dual 140 340 µA Bothamplifiers Quad 260 680 µA Allfouramplifiers (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandwillalsodependontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. 7.7 2.7-V AC Electrical Characteristics Unlessotherwisespecified,alllimitsspecifiedforT =25°C,V+=2.7V,V−=0V,V =1.0V,V =V+/2andR >1MΩ. J CM O L TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT GBWP Gain-BandwidthProduct C =200pF 1 MHz L Φ PhaseMargin 60 Deg m G GainMargin 10 dB m e Input-ReferredVoltageNoise f=1kHz 46 n i Input-ReferredCurrentNoise f=1kHz 0.17 n (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandwillalsodependontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com 7.8 5-V DC Electrical Characteristics Unlessotherwisespecified,alllimitsspecifiedforT =25°C,V+=5V,V−=0V,V =2.0V,V =V+/2andR >1MΩ. J CM O L TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT V InputOffsetVoltage 1.7 7 OS mV OverTemperature 9 TCV InputOffsetVoltageAverageDrift 5 µV/°C OS I InputBiasCurrent 15 250 B nA OverTemperature 500 I InputOffsetCurrent 5 50 OS nA OverTemperature 150 CMRR CommonModeRejectionRatio 0V≤V ≤4V 50 65 dB CM PSRR PowerSupplyRejectionRatio 2.7V≤V+≤5V 50 60 dB V =1V,V =1V O CM V InputCommon-ModeVoltage ForCMRR≥50dB 0 −0.2 V CM Range 4.2 4 V A LargeSignalVoltageGain (3) R =2kΩ 15 100 V L V/mV R =2kΩ,OverTemperature 10 L V OutputSwing R =2kΩto2.5V V+−300 V+−40 O L R =2kΩto2.5V,OverTemperature V+−400 L R =2kΩto2.5V 120 300 L R =2kΩto2.5V,OverTemperature 400 L mV R =10kΩto2.5V V+−100 V+−10 L R =10kΩto2.5V,OverTemperature V+−200 L R =2kΩto2.5V 65 180 L R =2kΩto2.5V,125°C 280 L I OutputShortCircuitCurrent Sourcing,V =0V 5 60 O O mA Sinking,V =5V 10 160 O I SupplyCurrent Single 130 250 S Single,OverTemperature 350 Dual(bothamps) 210 440 Dual(bothamps),OverTemperature 615 µA Quad(allfouramps) 410 830 Quad(allfouramps),Over 1160 Temperature (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandwillalsodependontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. (3) R isconnectedtoV-.Theoutputvoltageis0.5V≤V ≤4.5V. L O 6 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 7.9 5-V AC Electrical Characteristics Unlessotherwisespecified,alllimitsspecifiedforT =25°C,V+=5V,V−=0V,V =2.0V,V =V+/2andR >1MΩ. J CM O L TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT SR SlewRate (3) 1 V/µs GBWP Gain-BandwidthProduct C =200pF 1 MHz L Φ PhaseMargin 60 Deg m G GainMargin 10 dB m e Input-ReferredVoltageNoise f=1kHz 39 n i Input-ReferredCurrentNoise f=1kHz 0.21 n (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandwillalsodependontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. (3) Connectedasvoltagefollowerwith3-Vstepinput.Numberspecifiedistheslowerofthepositiveandnegativeslewrates. Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com 7.10 Typical Characteristics Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure1.SupplyCurrentvs.SupplyVoltage(LMV321-N) Figure2.InputCurrentvs.Temperature Figure3.SourcingCurrentvs.OutputVoltage Figure4.SourcingCurrentvs.OutputVoltage Figure5.SinkingCurrentvs.OutputVoltage Figure6.SinkingCurrentvs.OutputVoltage 8 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure7.OutputVoltageSwingvs.SupplyVoltage Figure8.InputVoltageNoisevs.Frequency Figure9.InputCurrentNoisevs.Frequency Figure10.InputCurrentNoisevs.Frequency Figure11.CrosstalkRejectionvs.Frequency Figure12.PSRRvs.Frequency Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure14.CMRRvs.InputCommonModeVoltage Figure13.CMRRvs.Frequency Figure15.CMRRvs.InputCommonModeVoltage Figure16.ΔV vs.CMR OS Figure17.ΔV vs.CMR Figure18.InputVoltagevs.OutputVoltage OS 10 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure19.InputVoltagevs.OutputVoltage Figure20.OpenLoopFrequencyResponse Figure21.OpenLoopFrequencyResponse Figure22.OpenLoopFrequencyResponsevs.Temperature Figure23.GainandPhasevs.CapacitiveLoad Figure24.GainandPhasevs.CapacitiveLoad Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure25.SlewRatevs.SupplyVoltage Figure26.Non-InvertingLargeSignalPulseResponse Figure27.Non-InvertingLargeSignalPulseResponse Figure28.Non-InvertingLargeSignalPulseResponse Figure29.Non-InvertingSmallSignalPulseResponse Figure30.Non-InvertingSmallSignalPulseResponse 12 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure31.Non-InvertingSmallSignalPulseResponse Figure32.InvertingLargeSignalPulseResponse Figure33.InvertingLargeSignalPulseResponse Figure34.InvertingLargeSignalPulseResponse Figure35.InvertingSmallSignalPulseResponse Figure36.InvertingSmallSignalPulseResponse Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure37.InvertingSmallSignalPulseResponse Figure38.Stabilityvs.CapacitiveLoad Figure39.Stabilityvs.CapacitiveLoad Figure40.Stabilityvs.CapacitiveLoad Figure42.THDvs.Frequency Figure41.Stabilityvs.CapacitiveLoad 14 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Characteristics (continued) Unlessotherwisespecified,V =5V,singlesupply,T =25°C. S A Figure43.OpenLoopOutputImpedancevs.Frequency Figure44.ShortCircuitCurrentvs.Temperature(Sinking) Figure45.ShortCircuitCurrentvs.Temperature(Sourcing) Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com 8 Detailed Description 8.1 Overview The LMV358-N/LMV324-N are low voltage (2.7 V to 5.5 V) versions of the dual and quad commodity op amps LM358/LM324 (5 V to 30 V). The LMV321-N is the single channel version. The LMV321-N/LMV358-N/LMV324-N are the most cost effective solutions for applications where low voltage operation, space efficiency, and low price are important. They offer specifications that meet or exceed the familiar LM358/LM324. The LMV321-N/LMV358- N/LMV324-N have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed to power ratio, achieving 1 MHz of bandwidth and 1-V/µs slew rate with low supplycurrent. 8.1.1 BenefitsoftheLMV321-N/LMV358-N/LMV324-N 8.1.1.1 Size The small footprints of the LMV321-N/LMV358-N/LMV324-N packages save space on printed circuit boards, and enablethedesignofsmallerelectronicproducts,suchascellularphones,pagers,orotherportablesystems.The lowprofileoftheLMV321-N/LMV358-N/LMV324-NmakethempossibletouseinPCMCIAtypeIIIcards. 8.1.1.2 SignalIntegrity Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the LMV321-N/LMV358-N/LMV324-N can be placed closer to the signal source, reducing noise pickup andincreasingsignalintegrity. 8.1.1.3 SimplifiedBoardLayout These products help you to avoid using long PC traces in your PC board layout. This means that no additional components, such as capacitors and resistors, are needed to filter out the unwanted signals due to the interferencebetweenthelongPCtraces. 8.1.1.4 LowSupplyCurrent Thesedeviceswillhelpyoutomaximizebatterylife.Theyareidealforbatterypoweredsystems. 8.1.1.5 LowSupplyVoltage Texas Instruments provides ensured performance at 2.7 V and 5 V. These specifications ensure operation throughoutthebatterylifetime. 8.1.1.6 Rail-to-RailOutput Rail-to-rail output swing provides maximum possible dynamic range at the output. This is particularly important whenoperatingonlowsupplyvoltages. 8.1.1.7 InputIncludesGround AllowsdirectsensingnearGNDinsinglesupplyoperation. Protection should be provided to prevent the input voltages from going negative more than −0.3V (at 25°C). An inputclampdiodewitharesistortotheICinputterminalcanbeused. 8.1.1.8 EaseofUseandCrossoverDistortion The LMV321-N/LMV358-N/LMV324-N offer specifications similar to the familiar LM324-N. In addition, the new LMV321-N/LMV358-N/LMV324-N effectively eliminate the output crossover distortion. The scope photos in Figure 46 and Figure 47 compare the output swing of the LMV324-N and the LM324-N in a voltage follower configuration, with V = ± 2.5V and R (= 2 kΩ) connected to GND. It is apparent that the crossover distortion S L hasbeeneliminatedinthenewLMV324-N. 16 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Overview (continued) Figure46.OutputSwingofLMV324 Figure47.OutputSwingofLM324 8.2 Functional Block Diagram + V IN– _ OUT + IN + – V Copyright © 2016, Texas Instruments Incorporated Figure48. EachAmplifier 8.3 Feature Description 8.3.1 CapacitiveLoadTolerance The LMV321-N/LMV358-N/LMV324-N can directly drive 200 pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers. The combination of the amplifier's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, the circuitinFigure49canbeused. Figure49. IndirectlyDrivingaCapacitiveLoadUsingResistiveIsolation InFigure49,theisolationresistorR andtheloadcapacitorC formapoletoincreasestabilitybyaddingmore ISO L phase margin to the overall system. The desired performance depends on the value of R . The bigger the R ISO ISO resistor value, the more stable V will be. Figure 50 is an output waveform of Figure 49 using 620Ω for R OUT ISO and510pFforC . L. Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Feature Description (continued) Figure50. PulseResponseoftheLMV324CircuitinFigure49 The circuit in Figure 51 is an improvement to the one in Figure 49 because it provides DC accuracy as well as AC stability. If there were a load resistor in Figure 49, the output would be voltage divided by R and the load ISO resistor. Instead, in Figure 51, R provides the DC accuracy by using feed-forward techniques to connect V to F IN R . Caution is needed in choosing the value of R due to the input bias current of theLMV321-N/LMV358- L F N/LMV324-N. C and R serve to counteract the loss of phase margin by feeding the high frequency F ISO component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Increased capacitive drive is possible by increasing the value of C . This in turn will slow F downthepulseresponse. Figure51. IndirectlyDrivingACapacitiveLoadwithDCAccuracy 8.3.2 InputBiasCurrentCancellation The LMV321-N/LMV358-N/LMV324-N family has a bipolar input stage. The typical input bias current of LMV321- N/LMV358-N/LMV324-Nis15nAwith5Vsupply.Thusa100kΩ inputresistorwillcause1.5mVoferrorvoltage. By balancing the resistor values at both inverting and non-inverting inputs, the error caused by the amplifier's input bias current will be reduced. The circuit in Figure 52 shows how to cancel the error caused by input bias current. 18 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Feature Description (continued) Figure52. CancellingtheErrorCausedbyInputBiasCurrent 8.4 Device Functional Modes The LMV321-N/LMV321-N-Q1/LMV358-N/LMV358-N-Q1/LMV324-N/LMV324-N-Q1 are powered on when the supply is connected. They can be operated as a single supply or a dual supply operational amplifier depending ontheapplication. Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The LMV32x-N family of amplifiers is specified for operation from 2.7 V to 5 V (±1.35 V to ±2.5 V). Many of the specificationsapplyfrom –40°Cto125°C.Theyprovideground-sensinginputsaswellasrail-to-railoutputswing. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in theTypicalCharacteristics. 9.2 Typical Applications 9.2.1 SimpleLow-PassActiveFilter Asimpleactivelow-passfilterisshowninFigure53. Figure53. SimpleLow-PassActiveFilter 9.2.1.1 DesignRequirements The simple single pole active lowpass filter shown in Figure 53 will pass low frequencies and attenuate frequenciesabovecornerfrequency(fc)ataroll-offrateof20dB/Decade. 9.2.1.2 DetailedDesignProcedure The values of R1, R2, R3 and C1 are selected using the formulas in Figure 54. The low-frequency gain (ω → 0) is defined by −R /R . This allows low-frequency gains other than unity to be obtained. The filter has a −20 3 1 dB/decade roll-off after its corner frequency fc. R should be chosen equal to the parallel combination of R and 2 1 R tominimizeerrorsduetobiascurrent.ThefrequencyresponseofthefilterisshowninFigure55. 3 Figure54. SimpleLow-PassActiveFilterEquations 20 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Applications (continued) 9.2.1.3 ApplicationCurves Figure55. FrequencyResponseofSimpleLow-PassActiveFilter Note that the single-op-amp active filters are used in the applications that require low quality factor, Q( ≤ 10), low frequency (≤ 5 kHz), and low gain (≤ 10), or a small value for the product of gain times Q (≤ 100). The op amp should have an open loop voltage gain at the highest frequency of interest at least 50 times larger than the gain of the filter at this frequency. In addition, the selected op amp should have a slew rate that meets the following requirement: SlewRate≥0.5×(ω V )×10−6V/µsec (1) H OPP whereω isthehighestfrequencyofinterest,andV istheoutputpeak-to-peakvoltage. H OPP 9.2.2 DifferenceAmplifier The difference amplifier allows the subtraction of two voltages or, as a special case, the cancellation of a signal common to two inputs. It is useful as a computational amplifier, in making a differential to single-ended conversionorinrejectingacommonmodesignal. Figure56. DifferenceAmplifier 9.2.3 InstrumentationCircuits The input impedance of the previous difference amplifier is set by the resistors R , R , R , and R . To eliminate 1 2 3 4 the problems of low input impedance, one way is to use a voltage follower ahead of each input as shown in the followingtwoinstrumentationamplifiers. Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) 9.2.3.1 Three-Op-AmpInstrumentationAmplifier ThequadLMV324canbeusedtobuildathree-op-ampinstrumentationamplifierasshowninFigure57. Figure57. Three-Op-AmpInstrumentationAmplifier The first stage of this instrumentation amplifier is a differential-input, differential-output amplifier, with two voltage followers. These two voltage followers assure that the input impedance is over 100 MΩ. The gain of this instrumentation amplifier is set by the ratio of R /R . R should equal R , and R equal R . Matching of R to R 2 1 3 1 4 2 3 1 and R to R affects the CMRR. For good CMRR over temperature, low drift resistors should be used. Making R 4 2 4 slightly smaller than R and adding a trim pot equal to twice the difference between R and R will allow the 2 2 4 CMRRtobeadjustedforoptimumperformance. 9.2.3.2 Two-Op-AmpInstrumentationAmplifier A two-op-amp instrumentation amplifier can also be used to make a high-input-impedance DC differential amplifier (Figure 58). As in the three-op-amp circuit, this instrumentation amplifier requires precise resistor matchingforgoodCMRR.R shouldequalR and,R shouldequalR . 4 1 3 2 Figure58. Two-Op-AmpInstrumentationAmplifier 22 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Applications (continued) 9.2.3.3 Single-SupplyInvertingAmplifier There may be cases where the input signal going into the amplifier is negative. Because the amplifier is operating in single supply voltage, a voltage divider using R and R is implemented to bias the amplifier so the 3 4 input signal is within the input common-mode voltage range of the amplifier. The capacitor C is placed between 1 the inverting input and resistor R to block the DC signal going into the AC signal source, V . The values of R 1 IN 1 andC affectthecutofffrequency,fc=1/2πR C . 1 1 1 As a result, the output signal is centered around mid-supply (if the voltage divider provides V+/2 at the non- invertinginput).Theoutputcanswingtobothrails,maximizingthesignal-to-noiseratioinalowvoltagesystem. Figure59. Single-SupplyInvertingAmplifier 9.2.4 Sallen-Key2nd-OrderActiveLow-PassFilter The Sallen-Key 2nd-order active low-pass filter is illustrated in Figure 60. The DC gain of the filter is expressed as (2) Itstransferfunctionis (3) Figure60. Sallen-Key2nd-OrderActiveLow-PassFilter Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) 9.2.4.1 DetailedDesignProcedure ThefollowingparagraphsexplainhowtoselectvaluesforR ,R ,R ,R ,C ,andC forgivenfilterrequirements, 1 2 3 4 1 2 suchasA ,Q,andf . LP c Thestandardformfora2nd-orderlowpassfilteris (4) where Q:PoleQualityFactor ω :CornerFrequency C AcomparisonbetweenEquation3andEquation4yields (5) (6) To reduce the required calculations in filter design, it is convenient to introduce normalization into the components and design parameters. To normalize, let ω = ω = 1 rad/s, and C = C = C = 1F, and substitute C n 1 2 n thesevaluesintoEquation5andEquation6.FromEquation5,weobtain (7) FromEquation6,weobtain (8) For minimum DC offset, V+ = V−, the resistor values at both inverting and non-inverting inputs should be equal, whichmeans (9) FromEquation2andEquation9,weobtain (10) (11) ThevaluesofC andC arenormallyclosetoorequalto 1 2 (12) Asadesignexample: Require:A =2,Q=1,fc=1kHz LP StartbyselectingC andC .Chooseastandardvaluethatiscloseto 1 2 (13) (14) 24 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Applications (continued) FromEquation7,Equation8,Equation10,andEquation11, R =1Ω (15) 1 R =1Ω (16) 2 R =4Ω (17) 3 R =4Ω (18) 4 The above resistor values are normalized values with ω = 1 rad/s and C = C = C = 1F. To scale the n 1 2 n normalized cutoff frequency and resistances to the real values, two scaling factors are introduced, frequency scalingfactor(k)andimpedancescalingfactor(k ). f m (19) Scaledvalues: R =R =15.9kΩ (20) 2 1 R =R =63.6kΩ (21) 3 4 C =C =0.01µF (22) 1 2 An adjustment to the scaling may be made in order to have realistic values for resistors and capacitors. The actualvalueusedforeachcomponentisshowninthecircuit. 9.2.5 2nd-OrderHighPassFilter A 2nd-order high pass filter can be built by simply interchanging those frequency selective components (R , R , 1 2 C , C ) in the Sallen-Key 2nd-order active low pass filter. As shown in Figure 61, resistors become capacitors, 1 2 and capacitors become resistors. The resulted high pass filter has the same corner frequency and the same maximumgainastheprevious2nd-orderlowpassfilterifthesamecomponentsarechosen. Figure61. Sallen-Key2nd-OrderActiveHigh-PassFilter 9.2.6 StateVariableFilter A state variable filter requires three op amps. One convenient way to build state variable filters is with a quad op amp,suchastheLMV324(Figure62). Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) This circuit can simultaneously represent a low-pass filter, high-pass filter, and bandpass filter at three different outputs. The equations for these functions are listed below. It is also called "Bi-Quad" active filter as it can produceatransferfunctionwhichisquadraticinbothnumeratoranddenominator. Figure62. StateVariableActiveFilter (23) whereforallthreefilters, (24) (25) 9.2.6.1 DetailedDesignProcedure Assume the system design requires a bandpass filter with f = 1 kHz and Q = 50. What needs to be calculated O arecapacitorandresistorvalues. FirstchooseconvenientvaluesforC ,R andR : 1 1 2 C =1200pF (26) 1 26 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Applications (continued) 2R =R =30kΩ (27) 2 1 ThenfromEquation24, (28) FromEquation25, (29) From the above calculated values, the midband gain is H = R /R = 100 (40 dB). The nearest 5% standard 0 3 2 valueshavebeenaddedtoFigure62. 9.2.7 PulseGeneratorsandOscillators A pulse generator is shown in Figure 63. Two diodes have been used to separate the charge and discharge pathstocapacitorC. Figure63. PulseGenerator When the output voltage V is first at its high, V , the capacitor C is charged toward V through R . The O OH OH 2 voltage across C rises exponentially with a time constant τ = R C, and this voltage is applied to the inverting 2 input of the op amp. Meanwhile, the voltage at the non-inverting input is set at the positive threshold voltage (V ) of the generator. The capacitor voltage continually increases until it reaches V , at which point the TH+ TH+ outputofthegeneratorwillswitchtoitslow,V which0Visinthiscase.Thevoltageatthenon-invertinginputis OL switched to the negative threshold voltage (V ) of the generator. The capacitor then starts to discharge toward TH− V exponentially through R , with a time constant τ = R C. When the capacitor voltage reaches V , the output OL 1 1 TH− ofthepulsegeneratorswitchestoV .Thecapacitorstartstocharge,andthecyclerepeatsitself. OH Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) Figure64. WaveformsoftheCircuitinFigure16 As shown in the waveforms in Figure 64, the pulse width (T ) is set by R , C and V , and the time between 1 2 OH pulses (T ) is set by R , C and V . This pulse generator can be made to have different frequencies and pulse 2 1 OL widthbyselectingdifferentcapacitorvalueandresistorvalues. Figure 65 shows another pulse generator, with separate charge and discharge paths. The capacitor is charged throughR andisdischargedthroughR . 1 2 28 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Applications (continued) Figure65. PulseGenerator Figure66isasquarewavegeneratorwiththesamepathforcharginganddischargingthecapacitor. Figure66. SquarewaveGenerator 9.2.8 CurrentSourceandSink The LMV321-N/LMV358-N/LMV324-N can be used in feedback loops which regulate the current in external PNP transistorstoprovidecurrentsourcesorinexternalNPNtransistorstoprovidecurrentsinks. 9.2.8.1 FixedCurrentSource A multiple fixed current source is shown in Figure 67. A voltage (V = 2V) is established across resistor R by REF 3 the voltage divider (R and R ). Negative feedback is used to cause the voltage drop across R to be equal to 3 4 1 V . This controls the emitter current of transistor Q and if we neglect the base current of Q and Q , REF 1 1 2 essentiallythissamecurrentisavailableoutofthecollectorofQ . 1 Large input resistors can be used to reduce current loss and a Darlington connection can be used to reduce errorsduetotheβ ofQ . 1 Theresistor,R ,canbeusedtoscalethecollectorcurrentofQ eitheraboveorbelowthe1mAreferencevalue. 2 2 Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) Figure67. FixedCurrentSource 9.2.8.2 HighComplianceCurrentSink A current sink circuit is shown in Figure 68. The circuit requires only one resistor (R ) and supplies an output E currentwhichisdirectlyproportionaltothisresistorvalue. Figure68. HighComplianceCurrentSink 30 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 Typical Applications (continued) 9.2.9 PowerAmplifier A power amplifier is illustrated in Figure 69. This circuit can provide a higher output current because a transistor followerisaddedtotheoutputoftheopamp. Figure69. PowerAmplifier 9.2.10 LEDDriver TheLMV321-N/LMV358-N/LMV324-NcanbeusedtodriveanLEDasshowninFigure70. Figure70. LEDDriver 9.2.11 ComparatorWithHysteresis The LMV321-N/LMV358-N/LMV324-N can be used as a low power comparator. Figure 71 shows a comparator withhysteresis.Thehysteresisisdeterminedbytheratioofthetworesistors. V =V /(1+R /R )+V /(1+R /R ) (30) TH+ REF 1 2 OH 2 1 V =V /(1+R /R )+V /(1+R /R ) (31) TH− REF 1 2 OL 2 1 V =(V V )/(1+R /R ) (32) H OH− OL 2 1 where V :PositiveThresholdVoltage TH+ V :NegativeThresholdVoltage TH− V :OutputVoltageatHigh OH V :OutputVoltageatLow OL V :HysteresisVoltage H Since LMV321-N/LMV358-N/LMV324-N have rail-to-rail output, the (V V ) is equal to V , which is the supply OH− OL S voltage. V =V /(1+R /R ) (33) H S 2 1 Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com Typical Applications (continued) The differential voltage at the input of the op amp should not exceed the specified absolute maximum ratings. For real comparators that are much faster, we recommend you use Texas Instruments's LMV331/LMV93/LMV339, which are single, dual and quad general purpose comparators for low voltage operation. Figure71. ComparatorwithHysteresis 10 Power Supply Recommendations The LMV3xx-N is specified for operation from 2.7 V to 5.5 V; many specifications apply from –40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in theTypicalCharacteristics. Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout Guidelinessection. 11 Layout 11.1 Layout Guidelines Forbestoperationalperformanceofthedevice,usegoodPCBlayoutpractices,including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sourceslocaltotheanalogcircuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supplyapplications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to CircuitBoardLayoutTechniques,SLOA089. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposedtoinparallelwiththenoisytrace. • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting inputminimizesparasiticcapacitance,asshowninLayoutExample. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitivepartofthecircuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakagecurrentsfromnearbytracesthatareatdifferentpotentials. 32 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 www.ti.com SNOS012J–AUGUST2000–REVISEDDECEMBER2014 11.2 Layout Example Figure72. OperationalAmplifierBoardLayoutforNoninvertingConfiguration Copyright©2000–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 33 ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
LMV321-N,LMV321-N-Q1,LMV358-N LMV358-N-Q1,LMV324-N,LMV324-N-Q1 SNOS012J–AUGUST2000–REVISEDDECEMBER2014 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table1.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LMV321-N Clickhere Clickhere Clickhere Clickhere Clickhere LMV321-N-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere LMV358-N Clickhere Clickhere Clickhere Clickhere Clickhere LMV358-N-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere LMV324-N Clickhere Clickhere Clickhere Clickhere Clickhere LMV324-N-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere 12.2 Trademarks Alltrademarksarethepropertyoftheirrespectiveowners. 12.3 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.4 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 34 SubmitDocumentationFeedback Copyright©2000–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMV321-N LMV321-N-Q1 LMV358-NLMV358-N-Q1 LMV324-N LMV324-N-Q1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMV321M5 NRND SOT-23 DBV 5 1000 TBD Call TI Call TI -40 to 125 A13 LMV321M5/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A13 & no Sb/Br) LMV321M5X/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A13 & no Sb/Br) LMV321M7/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A12 & no Sb/Br) LMV321M7X NRND SC70 DCK 5 3000 TBD Call TI Call TI -40 to 125 A12 LMV321M7X/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A12 & no Sb/Br) LMV321Q1M5/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 AYA & no Sb/Br) LMV321Q1M5X/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 AYA & no Sb/Br) LMV321Q3M5/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AZA & no Sb/Br) LMV321Q3M5X/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AZA & no Sb/Br) LMV324M NRND SOIC D 14 55 TBD Call TI Call TI -40 to 125 LMV324M LMV324M/NOPB ACTIVE SOIC D 14 55 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 LMV324M & no Sb/Br) LMV324MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LMV324 & no Sb/Br) MT LMV324MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LMV324 & no Sb/Br) MT LMV324MX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 LMV324M & no Sb/Br) LMV324Q1MA/NOPB ACTIVE SOIC D 14 55 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 LMV324Q1 & no Sb/Br) MA LMV324Q1MAX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 LMV324Q1 & no Sb/Br) MA LMV324Q1MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV324 & no Sb/Br) Q1MT Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMV324Q1MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV324 & no Sb/Br) Q1MT LMV324Q3MA/NOPB ACTIVE SOIC D 14 55 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 85 LMV324Q3 & no Sb/Br) MA LMV324Q3MAX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 85 LMV324Q3 & no Sb/Br) MA LMV324Q3MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMV324 & no Sb/Br) Q3MT LMV324Q3MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMV324 & no Sb/Br) Q3MT LMV358M NRND SOIC D 8 95 TBD Call TI Call TI -40 to 125 LMV 358M LMV358M/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV & no Sb/Br) 358M LMV358MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 V358 & no Sb/Br) LMV358MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 V358 & no Sb/Br) LMV358MX NRND SOIC D 8 2500 TBD Call TI Call TI -40 to 125 LMV 358M LMV358MX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV & no Sb/Br) 358M LMV358Q1MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV35 & no Sb/Br) 8Q1MA LMV358Q1MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV35 & no Sb/Br) 8Q1MA LMV358Q1MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 AFAA & no Sb/Br) LMV358Q1MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 AFAA & no Sb/Br) LMV358Q3MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMV35 & no Sb/Br) 8Q3MA LMV358Q3MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMV35 & no Sb/Br) 8Q3MA LMV358Q3MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AHAA & no Sb/Br) Addendum-Page 2
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMV358Q3MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AHAA & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LMV321-N, LMV321-N-Q1, LMV324-N, LMV324-N-Q1, LMV358-N, LMV358-N-Q1 : •Catalog: LMV321-N, LMV324-N, LMV358-N Addendum-Page 3
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 •Automotive: LMV321-N-Q1, LMV324-N-Q1, LMV358-N-Q1 NOTE: Qualified Version Definitions: •Catalog - TI's standard catalog product •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 4
PACKAGE MATERIALS INFORMATION www.ti.com 15-Feb-2020 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMV321M5 SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV321M5/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV321M5X/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV321M7/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV321M7X SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV321M7X/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV321Q1M5/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV321Q1M5X/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV321Q3M5/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV321Q3M5X/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV324MX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMV324Q1MAX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMV324Q1MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 LMV324Q3MAX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMV324Q3MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 LMV358MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358MX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 15-Feb-2020 Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMV358MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMV358Q1MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMV358Q1MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358Q1MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358Q3MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMV358Q3MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358Q3MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMV321M5 SOT-23 DBV 5 1000 210.0 185.0 35.0 LMV321M5/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LMV321M5X/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LMV321M7/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LMV321M7X SC70 DCK 5 3000 210.0 185.0 35.0 LMV321M7X/NOPB SC70 DCK 5 3000 210.0 185.0 35.0 LMV321Q1M5/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LMV321Q1M5X/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LMV321Q3M5/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LMV321Q3M5X/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 PackMaterials-Page2
PACKAGE MATERIALS INFORMATION www.ti.com 15-Feb-2020 Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMV324MX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMV324Q1MAX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMV324Q1MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 LMV324Q3MAX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMV324Q3MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 LMV358MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMV358MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMV358MX SOIC D 8 2500 367.0 367.0 35.0 LMV358MX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMV358Q1MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMV358Q1MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMV358Q1MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMV358Q3MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMV358Q3MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMV358Q3MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 PackMaterials-Page3
None
None
PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com
EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
None
None
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated