ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LMV341MGX/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LMV341MGX/NOPB产品简介:
ICGOO电子元器件商城为您提供LMV341MGX/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMV341MGX/NOPB价格参考¥2.63-¥6.53。Texas InstrumentsLMV341MGX/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 满摆幅 SC-70-6。您可以下载LMV341MGX/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LMV341MGX/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 1MHZ RRO SC70-6运算放大器 - 运放 Single w/ Shutdown/Dual/Quad Gen Purpose 2.7V Rail-to-Rail Output, 125C, Op Amps 6-SC70 -40 to 125 |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,Texas Instruments LMV341MGX/NOPB- |
数据手册 | |
产品型号 | LMV341MGX/NOPB |
PCN组件/产地 | |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | SC-70-6 |
共模抑制比—最小值 | 56 dB |
关闭 | Shutdown |
其它名称 | LMV341MGX/NOPBCT |
包装 | 剪切带 (CT) |
压摆率 | 1 V/µs |
商标 | Texas Instruments |
增益带宽生成 | 1 MHz |
增益带宽积 | 1MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 6-TSSOP,SC-88,SOT-363 |
封装/箱体 | SC-70-6 |
工作温度 | -40°C ~ 125°C |
工作电源电压 | 2.7 V to 5.5 V |
工厂包装数量 | 3000 |
放大器类型 | 通用 |
最大工作温度 | + 125 C |
最小工作温度 | - 40 C |
标准包装 | 1 |
电压-电源,单/双 (±) | 2.7 V ~ 5.5 V |
电压-输入失调 | 25µV |
电流-电源 | 107µA |
电流-输入偏置 | 0.02pA |
电流-输出/通道 | 113mA |
电源电流 | 0.1 mA |
电路数 | 1 |
系列 | LMV341-N |
转换速度 | 1 V/us |
输入偏压电流—最大 | 200 pA |
输入补偿电压 | 4 mV |
输出电流 | 113 mA |
输出类型 | 满摆幅 |
通道数量 | 1 Channel |
Product Order Technical Tools & Support & Folder Now Documents Software Community LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 LMV34x-N Single Rail-to-Rail Output CMOS Operation Amplifier With Shutdown 1 Features 3 Description • Typical2.7VSupplyValues(UnlessOtherwise The LMV34x-N devices are single, dual, and quad 1 low-voltage, low-power operational amplifiers. They Noted) are designed specifically for low-voltage portable • Ensured2.7Vand5VSpecifications applications. Other important product characteristics • InputReferredVoltageNoiseat10kHz: are low input bias current, rail-to-rail output, and wide 29nV/√Hz temperaturerange. • SupplyCurrent(PerAmplifier):100µA The patented class AB turnaround stage significantly • GainBandwidthProduct:1MHz reduces the noise at higher frequencies, power consumption, and offset voltage. The PMOS input • SlewRate:1V/µs stage provides the user with ultra-low input bias • ShutdownCurrent(LMV341-N):45pA currentof20fA(typical)andhighinputimpedance. • TurnonTimeFromShutdown(LMV341-N):5µs The industrial-plus temperature range of −40°C to • InputBiasCurrent:20fA 125°C allows the LMV34x-N to accommodate a broad range of extended environment applications. 2 Applications LMV341-N expands Texas Instrument's Silicon Dust amplifier portfolio offering enhancements in size, • CordlessorCellularPhones speed, and power savings. The LMV34x-N devices • Laptops are specified to operate over the voltage range of • PDAs 2.7Vto5.5Vandallhaverail-to-railoutput. • PCMCIAorAudio The LMV341-N offers a shutdown pin that can be • PortableorBattery-PoweredElectronicEquipment used to disable the device. Once in shutdown mode, • SupplyCurrentMonitoring the supply current is reduced to 45 pA (typical). The LMV34x-N devices have 29-nV voltage noise at 10 • BatteryMonitoring KHz, 1 MHz GBW, 1-V/µs slew rate, 0.25 mVos, and • Buffers 0.1-µAshutdowncurrent(LMV341-N). • Filters The LMV341-N is offered in the tiny 6-pin SC70 • Drivers package, the LMV342-N in space-saving 8-pin VSSOP and SOIC packages, and the LMV344-N in SampleandHoldCircuit 14-pin TSSOP and SOIC packages. These small package amplifiers offer an ideal solution for + + V applications requiring minimum PCB footprint. V Applications with area constrained PCB requirements - include portable electronics such as cellular handsets - VOUT andPDAs. + VIN + DeviceInformation(1) C = 200pF PARTNUMBER PACKAGE BODYSIZE(NOM) SAMPLE CLOCK LMV341-N SC70(6) 2.00mm×1.25mm Copyright © 2016,Texas Instruments Incorporated VSSOP(8) 3.00mm×3.00mm LMV342-N SOIC(8) 4.90mm×3.91mm TSSOP(14) 5.00mm×4.40mm LMV344-N SOIC(14) 8.64mm×3.91mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................16 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 18 3 Description............................................................. 1 8.1 ApplicationInformation............................................18 4 RevisionHistory..................................................... 2 8.2 TypicalApplication..................................................18 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 19 6 Specifications......................................................... 5 10 Layout................................................................... 20 6.1 AbsoluteMaximumRatings......................................5 10.1 LayoutGuidelines.................................................20 6.2 ESDRatings..............................................................5 10.2 LayoutExample....................................................20 6.3 RecommendedOperatingConditions.......................5 11 DeviceandDocumentationSupport................. 21 6.4 ThermalInformation..................................................5 11.1 DeviceSupport......................................................21 6.5 ElectricalCharacteristics–2.7V(DC).....................6 11.2 DocumentationSupport........................................21 6.6 ElectricalCharacteristics–2.7V(AC)......................7 11.3 RelatedLinks........................................................21 6.7 ElectricalCharacteristics–5V(DC)........................7 11.4 ReceivingNotificationofDocumentationUpdates21 6.8 ElectricalCharacteristics–5V(AC).........................8 11.5 CommunityResources..........................................21 6.9 TypicalCharacteristics..............................................9 11.6 Trademarks...........................................................21 7 DetailedDescription............................................ 16 11.7 ElectrostaticDischargeCaution............................21 7.1 Overview.................................................................16 11.8 Glossary................................................................22 7.2 FunctionalBlockDiagram.......................................16 12 Mechanical,Packaging,andOrderable Information........................................................... 22 7.3 FeatureDescription.................................................16 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionG(March2013)toRevisionH Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 • ChangedThermalInformationtable....................................................................................................................................... 5 ChangesfromRevisionF(March2012)toRevisionG Page • ChangedlayoutofNationalDataSheettoTIformat............................................................................................................. 1 2 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 5 Pin Configuration and Functions DCKPackage 6-PinSC70 TopView +IN 1 6 V+ GND 2 + 5 SHDN - -IN 3 4 OUT PinFunctions – LMV341-N PIN TYPE(1) DESCRIPTION NAME NO. +IN 1 I Noninvertinginput –IN 3 I Invertinginput GND 2 P Negativesupplyinput OUT 4 O Output V+ 6 P Positivesupplyinput SHDN 5 I Activelowenableinput (1) I=Input,O=Output,andP=Power DGKorDPackage 8-PinVSSOPorSOIC TopView PinFunctions – LMV342-N PIN TYPE(1) DESCRIPTION NAME NO. INA+ 3 I Noninvertinginput,channelA INA– 2 I Invertinginput,channelA INB+ 5 I Noninvertinginput,channelB INB– 6 I Invertinginput,channelB OUTA 1 O Output,channelA OUTB 7 O Output,channelB V+ 8 P Positive(highest)powersupply V– 4 P Negative(lowest)powersupply (1) I=Input,O=Output,andP=Power Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com PWorDPackage 14-PinTSSOPorSOIC TopView PinFunctions – LMV344-N PIN TYPE(1) DESCRIPTION NAME NO. INA+ 3 I Noninvertinginput,channelA INA– 2 I Invertinginput,channelA INB+ 5 I Noninvertinginput,channelB INB– 6 I Invertinginput,channelB INC+ 10 I Noninvertinginput,channelC INC– 9 I Invertinginput,channelC IND+ 12 I Noninvertinginput,channelD IND– 13 I Invertinginput,channelD OUTA 1 O Output,channelA OUTB 7 O Output,channelB OUTC 8 O Output,channelC OUTD 14 O Output,channelD V+ 4 P Positive(highest)powersupply V– 11 P Negative(lowest)powersupply (1) I=Input,O=Output,andP=Power 4 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT Differentialinputvoltage ±Supplyvoltage Supplyvoltage(V+–V–) 6 V OutputshortcircuittoV+ See(3) OutputshortcircuittoV– See(4) Infraredorconvectionreflow(20s) 235 Leadtemperature °C Wavesoldering(10s) 260 Junctiontemperature,T (5) 150 °C J Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (3) ShortingoutputtoV+willadverselyaffectreliability. (4) ShortingoutputtoV-willadverselyaffectreliability. (5) ThemaximumpowerdissipationisafunctionofT ,R .Themaximumallowablepowerdissipationatanyambienttemperatureis J(MAX) θJA P =(T –T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCB. D J(MAX) A θJA 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM)(1) ±2000 V Electrostaticdischarge V (ESD) Machinemodel(MM)(2) ±200 (1) HumanBodyModel,applicablestd.MIL-STD-883,Method3015.7. (2) MachineModel,applicablestd.JESD22-A115-A(ESDMMstd.ofJEDEC)Field-InducedCharge-DeviceModel,applicablestd.JESD22- C101-C(ESDFICDMstd.ofJEDEC). 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT Supplyvoltage 2.7 5.5 V Temperature –40 125 °C 6.4 Thermal Information LMV341-N LMV342-N LMV344-N THERMALMETRIC(1) DCK D DGK D PW UNIT (SC70) (SOIC) (VSSOP) (SOIC) (TSSOP) 6PINS 8PINS 8PINS 14PINS 14PINS R Junction-to-ambientthermalresistance 414 190 235 145 155 °C/W θJA R Junction-to-case(top)thermalresistance 116.1 65.2 68.4 45.9 50.5 °C/W θJC(top) R Junction-to-boardthermalresistance 53.3 61.4 98.8 44.1 66.2 °C/W θJB Junction-to-topcharacterization ψ 8.8 16.1 9.8 10.2 6.3 °C/W JT parameter Junction-to-boardcharacterization ψ 52.7 60.8 97.3 43.7 65.6 °C/W JB parameter Junction-to-case(bottom)thermal R — — — — — °C/W θJC(bot) resistance (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com 6.5 Electrical Characteristics – 2.7 V (DC) T =25°C,V+=2.7V,V–=0V,V =V+/2,V =V+/2,andR >1MΩ(unlessotherwisenoted)(1) J CM O L PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT T =25°C 0.25 4 J LMV341-N −40°C≤T ≤125°C 4.5 J V Inputoffsetvoltage mV OS LMV342-Nand TJ=25°C 0.55 5 LMV344-N −40°C≤T ≤125°C 5.5 J Inputoffsetvoltage TCV 1.7 µV/°C OS averagedrift T =25°C 0.02 120 J I Inputbiascurrent pA B -40°C≤T ≤150°C 250 J I Inputoffsetcurrent 6.6 fA OS T =25°C 100 170 J Peramplifier −40°C≤T ≤125°C 230 J IS Supplycurrent Shutdownmode, T =25°C 4.5×10–5 1 µA J V =0V, SD LMV341-N −40°C≤TJ≤125°C 1.5 CMRR Common-moderejectionratio 0V≤VCM≤1.7V, TJ=25°C 56 80 dB 0V≤VCM≤1.6V −40°C≤TJ≤125°C 50 T =25°C 65 82 PSRR Powersupplyrejectionratio 2.7V≤V+≤5V J dB −40°C≤T ≤125°C 60 J V+ 1.9 1.7 V Inputcommon-modevoltage ForCMRR≥50dB V CM V– 0 −0.2 T =25°C 78 113 J R =10kΩto1.35V L –40°C≤T ≤125°C 70 J A Largesignalvoltagegain dB V T =25°C 72 103 J R =2kΩto1.35V L –40°C≤T ≤125°C 64 J T =25°C 24 60 J –40°C≤T ≤125°C 95 J R =2kΩto1.35V L T =25°C 60 26 J –40°C≤T ≤125°C 95 J V Outputswing mV O T =25°C 5 30 J –40°C≤T ≤125°C 40 J R =10kΩto1.35V L T =25°C 30 5.3 J –40°C≤T ≤125°C 40 J Sourcing,LMV341-NandLMV342-N 20 32 I Outputshort-circuitcurrent Sourcing,LMV344-N 18 24 mA O Sinking 15 24 t Turnontimefromshutdown LMV341-N 5 µs on ONmode,LMV341-N 2.4 1.7 2.7 V Shutdownpinvoltage V SD Shutdownmode,LMV341-N 0 1 0.8 (1) Electricalcharacteristicvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatT =T .Nospecificationofparametricperformanceisindicatedintheelectricaltables J A underconditionsofinternalselfheatingwhereT >T . J A (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandalsodependsontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. 6 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 6.6 Electrical Characteristics – 2.7 V (AC) T =25°C,V+=2.7V,V−=0V,V =V+/2,V =V+/2,andR >1MΩ(unlessotherwisenoted)(1) J CM O L PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT SR Slewrate R =10kΩ(4) 1 V/µs L GBW Gainbandwidthproduct R =100kΩ,C =200pF 1 MHz L L Φ Phasemargin R =100kΩ 72 ° m L G Gainmargin R =100kΩ 20 dB m L e Input-referredvoltagenoise f=1kHz 40 nV/√Hz n i Input-referredcurrentnoise f=1kHz 0.001 pA/√Hz n f=1kHz,A =+1, THD Totalharmonicdistortion V 0.017% R =600Ω,V =1V L IN PP (1) Electricalcharacteristicvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatT =T .Nospecificationofparametricperformanceisindicatedintheelectricaltables J A underconditionsofinternalselfheatingwhereT >T . J A (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandalsodependsontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. (4) Connectedasvoltagefollowerwith2-V stepinput.Numberspecifiedistheslowerofthepositiveandnegativeslewrates. PP 6.7 Electrical Characteristics – 5 V (DC) T =25°C,V+=5V,V−=0V,V =V+/2,V =V+/2,andR >1MΩ(unlessotherwisenoted)(1) J CM O L PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT T =25°C 0.025 4 J LMV341-N –40°C≤T ≤125°C 4.5 J V Inputoffsetvoltage mV OS T =25°C 0.7 5 J LMV342-NandLMV344-N –40°C≤T ≤125°C 5.5 J Inputoffsetvoltage TCV 1.9 µV/°C OS averagedrift T =25°C 0.02 200 J I Inputbiascurrent pA B –40°C≤T ≤125°C 375 J I Inputoffsetcurrent 6.6 fA OS T =25°C 107 200 J Peramplifier –40°C≤T ≤125°C 260 J I Supplycurrent µA S Shutdownmode, T =25°C 0.033 1 J V =0V, SD LMV341-N –40°C≤TJ≤125°C 1.5 CMRR Common-moderejection 0V≤VCM≤4V, TJ=25°C 56 86 dB ratio 0V≤VCM≤3.9V –40°C≤TJ≤125°C 50 T =25°C 65 82 PSRR Powersupplyrejectionratio 2.7V≤V+≤5V J dB –40°C≤T ≤125°C 60 J V+ 4.2 4 V Inputcommon-modevoltage ForCMRR≥50dB V CM V– 0 −0.2 T =25°C 78 116 J R =10kΩto2.5V L –40°C≤T ≤125°C 70 A Largesignalvoltagegain(4) J dB V T =25°C 72 107 J R =2kΩto2.5V L –40°C≤T ≤125°C 64 J (1) Electricalcharacteristicvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatT =T .Nospecificationofparametricperformanceisindicatedintheelectricaltables J A underconditionsofinternalselfheatingwhereT >T . J A (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandalsodependsontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. (4) R isconnectedtomid-supply.TheoutputvoltageisGND+0.2V≤V ≤V+–0.2V L O Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com Electrical Characteristics – 5 V (DC) (continued) T =25°C,V+=5V,V−=0V,V =V+/2,V =V+/2,andR >1MΩ(unlessotherwisenoted)(1) J CM O L PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT T =25°C 32 60 J –40°C≤T ≤125°C 95 J R =2kΩto2.5V L T =25°C 60 34 J –40°C≤T ≤125°C 95 J V Outputswing mV O T =25°C 7 30 J –40°C≤T ≤125°C 40 J R =10kΩto2.5V L T =25°C 30 7 J –40°C≤T ≤125°C 40 J Sourcing 85 113 I Outputshort-circuitcurrent mA O Sinking 50 75 t Turnontimefromshutdown LMV341-N 5 µs on ONmode,LMV341-N 4.5 3.1 5 V Shutdownpinvoltage V SD Shutdownmode,LMV341-N 0 1 0.8 6.8 Electrical Characteristics – 5 V (AC) T =25°C,V+=5V,V−=0V,V =V+/2,V =V+/2andR >1MΩ(unlessotherwisenoted)(1) J CM O L PARAMETER CONDITIONS MIN(2) TYP(3) MAX(2) UNIT SR Slewrate R =10kΩ(4) 1 V/µs L GBW Gain-bandwidthproduct R =10kΩ,C =200pF 1 MHz L L Φ Phasemargin R =100kΩ 70 deg m L G Gainmargin R =100kΩ 20 dB m L e Input-referredvoltagenoise f=1kHz 39 nV/√Hz n i Input-referredcurrentnoise f=1kHz 0.001 pA/√Hz n f=1kHz,A =+1, THD Totalharmonicdistortion V 0.012% R =600Ω,V =1V L IN PP (1) Electricalcharacteristicvaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultin verylimitedself-heatingofthedevicesuchthatT =T .Nospecificationofparametricperformanceisindicatedintheelectricaltables J A underconditionsofinternalselfheatingwhereT >T . J A (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) Typicalvaluesrepresentthemostlikelyparametricnormasdeterminedatthetimeofcharacterization.Actualtypicalvaluesmayvary overtimeandalsodependsontheapplicationandconfiguration.Thetypicalvaluesarenottestedandarenotensuredonshipped productionmaterial. (4) Connectedasvoltagefollowerwith2-V stepinput.Numberspecifiedistheslowerofthepositiveandnegativeslewrates. PP 8 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 6.9 Typical Characteristics 150 1000 VS = 5 V 140 100 130 )A( TNP 120 125(cid:176)C 85(cid:176)C )Ap( T 10 E 110 N R E RU 100 RR 1 C U YLP 90 C TU .1 P 80 P U 25(cid:176)C N S 70 I -40(cid:176)C .01 60 50 .001 2.5 3 3.5 4 4.5 5 -40 -20 0 20 40 60 80 100 120140 SUPPLY VOLTAGE (V) TEMPERATURE (C°) Figure1.SupplyCurrentvsSupplyVoltage(LMV341-N) Figure2.InputCurrentvsTemperature 34 7.0 RL = 2k: RL = 10k: 32 6.5 MOR)Vm 30 MOR)Vm 6.0 POSITIVE SWING F EGATLOV TUPTUO( EGATLOV YLPPUS 222468 NEGATIVE SWINGPOSITIVE SWING F EGATLOV TUPTUO( EGATLOV YLPPUS 5445....5050 NEGATIVE SWING 22 3.5 20 3.0 2.5 3 3.5 4 4.5 5 2.5 3 3.5 4 4.5 5 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Figure3.OutputVoltageSwingvsSupplyVoltage Figure4.OutputVoltageSwingvsSupplyVoltage 100 100 VS = 2.7 V -40°C VS = 5V 25°C 10 10 -40°C )Am( E 1 125°C )Am( EC 1 85°C 125°C C 85°C R R U UO 0.1 OS S I I 25°C 0.1 0.01 0.01 0.001 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 + + OUTPUT VOLTAGE REFERENCED TO V (V) OUTPUT VOLTAGE REFERENCED TO V (V) Figure5.ISOURCEvsVOUT Figure6.ISOURCEvsVOUT Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com Typical Characteristics (continued) 100 100 VS = 2.7V -40°C VS = 5V -40°C 10 10 25°C 25°C )Am( K 1 )Am( KN 1 125°C NIS 0.1 125°C IIS I 85°C 0.1 0.01 85°C 0.001 0.01 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 - - OUTPUT VOLTAGE REFERENCED TO V (V) OUTPUT VOLTAGE REFERENCED TO V (V) Figure7.I vsV Figure8.I vsV SINK OUT SINK OUT 3 3 VS = 2.7V -40(cid:176)C VS = 5V -40(cid:176)C 2.5 2.5 25(cid:176)C 25(cid:176)C 2 2 )Vm 85(cid:176)C )Vm 85(cid:176)C ( S 1.5 ( S 1.5 VO 125(cid:176)C VO 1 1 0.5 0.5 125(cid:176)C 0 0 -0.2 0.3 0.8 1.3 1.8 2.3 -0.2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 VCM (V) VCM (V) Figure9.VOSvsVCM Figure10.VOSvsVCM 300 300 VS = ±1.35V 200 200 )VP )V RL = 10 k: ( EG 100 ( EP 100 A G T A LO 0 TL 0 V TUP -100 RL = 10 k: OV TU -100 RL = 2 k: N P I N I -200 -200 RL = 2 k: VS = ±2.5V -300 -300 -1.5 -1 -0.5 0 0.5 1 1.5 -3 -2 -1 0 1 2 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure11.V vsV Figure12.V vsV IN OUT IN OUT 10 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 Typical Characteristics (continued) 80 100 VS=5V VIN= VS/2 90 VS = 5 V, -PSRR RL = 5 k: 70 RL= 5kΩ 80 60 VS = 2.7 V, +PSRR 70 )Bd 50 VS= 2.7V )Bd 60 ( R 40 ( R 50 RMC 30 RSP 40 VS = 5 V, +PSRR 30 20 20 10 10 VS = 2.7 V, -PSRR 0 0 100 1k 10k 100k 1M 100 1k 10k 100k 1M 10M FREQUENCY(Hz) FREQUENCY (Hz) Figure13.CMRRvsFrequency Figure14.PSRRvsFrequency 260 1.5 240 VCM = VS/2 1.4 AV = +1 Hz) 220 RL = 10k: V/ 200 1.3 VIN = 2VPP n E ( 180 )sP 1.2 NOIS 114600 /V( E 1.1 RISING EDGE E TA 1 G 120 R LTA 100 WE 0.9 FALLING EDGE VO 80 VS = 2.7V LS 0.8 T 60 U 0.7 P 40 N I 20 VS = 5V 0.6 0 0.5 10 100 1k 10k 2.5 3 3.5 4 4.5 5 FREQUENCY (Hz) SUPPLY VOLTAGE (V) Figure15.InputVoltageNoisevsFrequency Figure16.SlewRatevsV SUPPLY 1.2 1.2 RISING EDGE RISING EDGE 1 1 )sP 0.8 )sP 0.8 FALLING EDGE /V FALLING EDGE /V ( E ( E TA 0.6 TA 0.6 R R W W EL 0.4 AV = +1 EL 0.4 AV = +1 S S RL = 10k: RL = 10k: 0.2 VIN = 2VPP 0.2 VIN = 2VPP VS = 2.7V VS = 5V 0 0 -40 -20 0 20 40 60 80 100 120140 -40 -20 0 20 40 60 80 100 120140 TEMPERATURE (°) TEMPERATURE (°) Figure17.SlewRatevsTemperature Figure18.SlewRatevsTemperature Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com Typical Characteristics (continued) 10 10 f = 10KHz AV = +10 RL= 600Ω 1 VS= 2.7V,AV= +10 VS = 2.7V, VO = 1VPP 1 )%( N+ 0.1 VS = 5V, VO = 2.5VPP )%( N VS= 5V,AV= +10 DH AV = +1 +D T H T 0.1 0.01 VS= 2.7V,AV= +1 VS= 5V,AV=+1 VS = 5V, VO = 1VPP VS = 2.7V, VO = 1VPP 0.001 0.01 0.00 0.0 1 10 100 1k 10k 100k 0.1 1 10 1 1 FREQUENCY (Hz) VO(VPP) Figure19.THD+NvsFrequency Figure20.THD+NvsV OUT 100 100 100 100 125(cid:176)C RL = 2k: 80 PHASE 80 80 PHASE 80 RL = 600: 60 60 60 60 -40(cid:176)C 25(cid:176)C RL = 100k: 40 40 40 40 )Bd( NIA 20 GAIN -40(cid:176)C 20 ESAHP°)( )Bd( NIA 20 GAIN RL = 100k: 20 ESAHP°)( G G 0 0 0 0 125(cid:176)C RL = 600: -20 -20 -20 -20 -40 VS = 5V 25(cid:176)C -40 -40 RL = 2k: -40 RL = 2k: VS = 2.7V -60 -60 -60 -60 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure21.Open-LoopFrequencyOverTemperature Figure22.Open-LoopFrequencyResponse 10 100 100 100 PHASE RL = 2k: CL = 0 0 80 80 80 PHASE 80 RL = 600: CL = 1000pF 60 60 60 60 RL = 100k: CL = 500pF )Bd( NIAG 42000 GAIN RL = 100k: 02400 ESAHP°)( )Bd( NIAG 42000 GAIN CL = 100pF 02400 ESAHP°)( RL = 600: CL = 1000pF -20 -20 -20 -20 RL = 2k: CL = 500pF -40 -40 -40 VS = 5V CL = 100pF -40 VS = 5V RL = 600: CL = 0 -60 -60 -60 -60 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure23.Open-LoopFrequencyResponse Figure24.GainandPhasevsC L 12 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 Typical Characteristics (continued) 100 100 4 PHASE CL = 0 VS = ±2.5V 80 80 3.5 AV = +1 )Bd( NIAG 4620000 GCAILN = 1C0CL0L 0= C=p 5 FL10 0=00 p10F0p0FpF CL = 0 2064000 ESAHP°() )Fn( DAOL EVITICA 12..3525 RVOL == 21k0:0mVPP P -20 CL = 500pF -20 AC 1 -40 VS = 5V CL = 100pF -40 0.5 RL = 100k: -60 -60 0 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 1k 10k 100k 1M 10M FREQUENCY (Hz) VO (V) Figure25.GainandPhasevsC Figure26.StabilityvsCapacitiveLoad L 200 L 180 VS = ±2.5 AN AV = +1 GIS )F 160 RL = 1M: TU p( D 140 VO = 100mVPP PN AO 120 I )v L id E 100 /V V m ITICA 80 LA 05( P 60 N A G C 40 IS TA = 25°C T 20 U RL = 2k: P 0 TU VS = ±2.5V O -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 VO (V) TIME (4 Ps/div) Figure27.StabilityvsCapacitiveLoad Figure28.NoninvertingSmallSignalPulseResponse L L A A N TA = 25°C N G G IS RL = 2k: IS TU VS = ±2.5V TU P P N N I I )v )v id id /V /V m LA 1( LA 05( N N G G IS IS TA = 125°C T T U U RL = 2k: P P TU TU VS = ±2.5V O O TIME (4 Ps/div) TIME (4 Ps/div) Figure29.NoninvertingLargeSignalPulseResponse Figure30.NoninvertingSmallSignalPulseResponse Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com Typical Characteristics (continued) L L A A N TA = 125°C N G G IS RL = 2k: IS TU VS = ±2.5V TU P P N N I I )v )v id id /V /V m LA 1( LA 05( N N G G IS IS TA = -40°C T T U U RL = 2k: P P TU TU VS = ±2.5V O O TIME (4 Ps/div) TIME (4 Ps/div) Figure31.NoninvertingLargeSignalPulseResponse Figure32.NoninvertingSmallSignalPulseResponse L L A A N TA = -40°C N TA= 25°C G G IS RL = 2k: IS RL= 2kΩ TU VS = ±2.5V TU VS= ±2.5V P P N N I I )v )vid /Vid /V m LA 1( LA 05( N N G G IS IS T T U U P P T T U U O O TIME (4 Ps/div) TIME (4 Ps/div) Figure33.NoninvertingLargeSignalPulseResponse Figure34.InvertingSmallSignalPulseResponse L L A A N N TA= 125°C G G IS IS RL= 2kΩ TU TU VS= ±2.5V P P N N I I )v )v id id /V /V m 1 0 L ( L 5 A A ( N N G G IS TA = 25°C IS TU RL = 2k: TU P P TU VS = ±2.5V TU O O TIME (4 Ps/div) TIME (4 Ps/div) Figure35.InvertingLargeSignalPulseResponse Figure36.InvertingSmallSignalPulseResponse 14 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 Typical Characteristics (continued) L L A A NG NG TA= -40°C IS IS RL= 2kΩ T T UP UP VS= ±2.5V N N I )v I )vid id /V /V m LA 1( LA 05( N N G TA = G IS 125°C IS T T U RL = 2k: U P P TU VS = ±2.5V TU O O TIME (4 Ps/div) TIME (4 Ps/div) Figure37.InvertingLargeSignalPulseResponse Figure38.InvertingSmallSignalPulseResponse L 200 A N VS = ±2.5V G 180 IS T )Bd 160 UPN ( NO 140 I IT C 120 )v E id/V JER 100 L 1( KL 80 A A NG TS 60 IS T TA = -40°C SOR 40 U RL = 2k: C P 20 TUO VS = ±2.5V 0 100 1k 10k 100k 1M TIME (4 Ps/div) FREQUENCY (Hz) Figure39.InvertingLargeSignalPulseResponse Figure40.CrosstalkRejectionvsFrequency Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com 7 Detailed Description 7.1 Overview TI’s LMV34x-N family of amplifiers have 1-MHz bandwidth, 1-V/µs slew rate, a rail-to-rail output stage, and consume only 100 µA of current per amplifier while active. When in shutdown mode it only consumes 45-pA supply consumption with only 20 fA of input bias current. Lastly, these operational amplifiers provide an input- referredvoltagenoise29nV√Hz(at10kHz). 7.2 Functional Block Diagram VDD OUT InP CLASS AB CONTROL InM VEE Copyright © 2016, Texas Instruments Incorporated 7.3 Feature Description 7.3.1 ClassABTurnaroundStageAmplifier This patented folded cascode stage has a combined class AB amplifier stage, which replaces the conventional folded cascode stage. Therefore, the class AB folded cascode stage runs at a much lower quiescent current compared to conventional-folded cascode stages. This results in significantly smaller offset and noise contributions. The reduced offset and noise contributions in turn reduce the offset voltage level and the voltage noise level at the input of LMV34x-N. Also the lower quiescent current results in a high open-loop gain for the amplifier. The lower quiescent current does not affect the slew rate of the amplifier nor its ability to handle the totalcurrentswingcomingfromtheinputstage. The input voltage noise of the device at low frequencies, below 1 kHz, is slightly higher than devices with a BJT input stage; however, the PMOS input stage results in a much lower input bias current and the input voltage noisedropsatfrequenciesabove1kHz. 7.4 Device Functional Modes 7.4.1 ShutdownFeature The LMV341-N is capable of being turned off to conserve power and increase battery life in portable devices. Onceinshutdownmodethesupplycurrentisdrasticallyreduced,1-µAmaximum,andtheoutputistri-stated. The device is disabled when the shutdown pin voltage is pulled low. The shutdown pin must never be left unconnected. Leaving the pin floating results in an undefined operation mode and the device may oscillate betweenshutdownandactivemodes. The LMV341-N typically turns on 2.8 µs after the shutdown voltage is pulled high. The device turns off in less than400nsaftershutdownvoltageispulledlow.Figure41andFigure42showtheturnonandturnofftimeofthe LMV341-N, respectively. To reduce the effect of the capacitance added to the circuit by the scope probe, in the turnoff time circuit a resistive load of 600 Ω is added. Figure 43 and Figure 44 show the test circuits used to obtainthetwoplots. 16 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 Device Functional Modes (continued) RL = 600: ND ND VS = 5V H H VS VS )vid/V 1( (1 V/div) VTUO VTUO VS = 5V TIME (400 ns/div) TIME (1 Ps/div) Figure41.TurnonTimePlot Figure42.TurnoffTimePlot V+ V+ - - + VOUT + VOUT SHDN SHDN + RL = 600: + VIN = VS/2 - VIN = VS/2 - Figure43.TurnonTimeCircuit Figure44.TurnoffTimeCircuit 7.4.2 LowInputBiasCurrent LMV34x-N amplifiers have a PMOS input stage. As a result, they have a much lower input bias current than devices with BJT input stages. This feature makes these devices ideal for sensor circuits. A typical curve of the inputbiascurrentoftheLMV341-NisshowninFigure45. 200 VS = 5V TA = 25°C 100 )A f( S A IB 0 T U P N I -100 -200 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 VCM (V) Figure45. InputBiasCurrentvsV CM Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The LMV34x-N amplifier family features low voltage, low power, rail-to-rail output as well as a shutdown capability,makingitwellsuitedforlowvoltageportableapplications. 8.2 Typical Application 8.2.1 SampleandHoldCircuit + + V V - - VOUT + VIN + C = 200pF SAMPLE CLOCK Copyright © 2016,Texas Instruments Incorporated Figure46. SampleandHoldCircuit 8.2.1.1 DesignRequirements The lower input bias current of the LMV341-N results in a very high input impedance. The output impedance when the device is in shutdown mode is quite high. These high impedances, along with the ability of the shutdown pin to be derived from a separate power source, make LMV341-N a good choice for sample and hold circuits. The sample clock must be connected to the shutdown pin of the amplifier to rapidly turn the device on or off. 8.2.1.2 DetailedDesignProcedure Figure 46 shows the schematic of a simple sample and hold circuit. When the sample clock is high the first amplifier is in normal operation mode and the second amplifier acts as a buffer. The capacitor, which appears as a load on the first amplifier, is charging at this time. The voltage across the capacitor is that of the noninverting input of the first amplifier because it is connected as a voltage-follower. When the sample clock is low the first amplifierisshutoff,bringingtheoutputimpedancetoahighvalue.Thehighimpedanceofthisoutput,alongwith the very high impedance on the input of the second amplifier, prevents the capacitor from discharging. There is verylittlevoltagedroopwhilethefirstamplifierisinshutdownmode.Thesecondamplifier,whichisstillinnormal operation mode and is connected as a voltage follower, also provides the voltage sampled on the capacitor at its output. 18 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 Typical Application (continued) 8.2.1.3 ApplicationCurve e d u plit m A al n Sample(5v/div) g Si Vin (1v/div) Vout(1v/div) 0 300 600 900 1200 1500 Time (us) C002 Figure47.SampleandHoldCircuitResults 9 Power Supply Recommendations For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines, TI recommends that 10-nF capacitors be placed as close as possible to the op amp power supply pins. For single- supply, place a capacitor between V+ and V− supply leads. For dual supplies, place one capacitor between V+ andground,andonecapacitorbetweenV-andground. Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com 10 Layout 10.1 Layout Guidelines To properly bypass the power supply, several locations on a printed-circuit board need to be considered. A 6.8-µF or greater tantalum capacitor must be placed at the point where the power supply for the amplifier is introduced onto the board. Another 0.1-µF ceramic capacitor must be placed as close as possible to the power supply pin of the amplifier. If the amplifier is operated in a single power supply, only the V+ pin needs to be bypassedwitha0.1-µFcapacitor.Iftheamplifierisoperatedinadualpowersupply,bothV+andV− pinsneedto bebypassed. It is good practice to use a ground plane on a printed-circuit board to provide all components with a low inductive groundconnection. Surface-mount components in 0805 size or smaller are recommended in the LMV341-N application circuits. Designers can take advantage of the VSSOP miniature sizes to condense board layout to save space and reducestraycapacitance. 10.2 Layout Example Cbyp GND V+ INPUT SHDN n Ri OUTPUT Rf Cf Figure48. PCBLayoutExample 20 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N www.ti.com SNOS990H–APRIL2002–REVISEDJUNE2016 11 Device and Documentation Support 11.1 Device Support 11.1.1 DevelopmentSupport Fordevelopmentsupportseethefollowing: • LMV341-NPSPICEModel (alsoapplicabletotheLMV342andLMV344) • TINA-TISPICE-BasedAnalogSimulationProgram • DIPAdapterEvaluationModule • TIUniversalOperationalAmplifierEvaluationModule • TIFilterproSoftware 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentationseethefollowing: AN-31OpAmpCircuitCollection(SNLA140) 11.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table1.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LMV341-N Clickhere Clickhere Clickhere Clickhere Clickhere LMV342-N Clickhere Clickhere Clickhere Clickhere Clickhere LMV344-N Clickhere Clickhere Clickhere Clickhere Clickhere 11.4 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 11.5 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.6 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.7 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Copyright©2002–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LMV341-N LMV342-N LMV344-N
LMV341-N,LMV342-N,LMV344-N SNOS990H–APRIL2002–REVISEDJUNE2016 www.ti.com 11.8 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 22 SubmitDocumentationFeedback Copyright©2002–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV341-N LMV342-N LMV344-N
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMV341MG/NOPB ACTIVE SC70 DCK 6 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A78 & no Sb/Br) LMV341MGX/NOPB ACTIVE SC70 DCK 6 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A78 & no Sb/Br) LMV342MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV34 & no Sb/Br) 2MA LMV342MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV34 & no Sb/Br) 2MA LMV342MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A82A & no Sb/Br) LMV342MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 A82A & no Sb/Br) LMV344MA/NOPB ACTIVE SOIC D 14 55 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV344MA & no Sb/Br) LMV344MAX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 LMV344MA & no Sb/Br) LMV344MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LMV34 & no Sb/Br) 4MT LMV344MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LMV34 & no Sb/Br) 4MT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LMV341-N, LMV344-N : •Automotive: LMV341-Q1, LMV344-Q1 NOTE: Qualified Version Definitions: •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 6-Jun-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMV341MG/NOPB SC70 DCK 6 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV341MGX/NOPB SC70 DCK 6 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LMV342MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMV342MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV342MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV344MAX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMV344MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 LMV344MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 6-Jun-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMV341MG/NOPB SC70 DCK 6 1000 210.0 185.0 35.0 LMV341MGX/NOPB SC70 DCK 6 3000 210.0 185.0 35.0 LMV342MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMV342MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMV342MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMV344MAX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMV344MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 LMV344MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 PackMaterials-Page2
None
None
None
None
None
None
None
None
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated