ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LMV116MF/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LMV116MF/NOPB产品简介:
ICGOO电子元器件商城为您提供LMV116MF/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMV116MF/NOPB价格参考¥4.22-¥10.47。Texas InstrumentsLMV116MF/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 1 电路 推挽式,满摆幅 SOT-23-5。您可以下载LMV116MF/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LMV116MF/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | 45MHz |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP VFB 45MHZ RRO SOT23-5运算放大器 - 运放 Sgl Mid-Speed RRO Op amp |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,Texas Instruments LMV116MF/NOPB- |
数据手册 | |
产品型号 | LMV116MF/NOPB |
产品目录页面 | |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | SOT-23-5 |
共模抑制比—最小值 | 77 dB |
关闭 | No Shutdown |
其它名称 | LMV116MF/NOPBDKR |
包装 | Digi-Reel® |
压摆率 | 35 V/µs |
双重电源电压 | +/- 3 V, +/- 5 V |
商标 | Texas Instruments |
增益带宽积 | - |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | SC-74A,SOT-753 |
封装/箱体 | SOT-23-5 |
工作温度 | -40°C ~ 85°C |
工作电源电压 | 3 V, 5 V, 9 V |
工厂包装数量 | 1000 |
放大器类型 | 电压反馈 |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 1 |
电压-电源,单/双 (±) | 2.5 V ~ 12 V, ±1.25 V ~ 6 V |
电压-输入失调 | 1mV |
电流-电源 | 600µA |
电流-输入偏置 | 400nA |
电流-输出/通道 | 20mA |
电源电流 | 0.6 mA |
电路数 | 1 |
系列 | LMV116 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
转换速度 | 40 V/us |
输入偏压电流—最大 | 0.4 uA |
输入补偿电压 | 5 mV |
输出电流 | 20 mA |
输出类型 | 推挽式,满摆幅 |
通道数量 | 1 Channel |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 LMV11x Low-Voltage, 45-MHz, Rail-To-Rail Output Operational Amplifiers With Shutdown Option 1 Features 3 Description • −3-dBBW45MHz The LMV116 (single) rail-to-rail output voltage 1 feedback amplifiers offer high-speed (45 MHz), and • SupplyVoltageRange2.7Vto12V low-voltage operation (2.7 V) in addition to micro- • SlewRate40V/μs powershutdowncapability(LMV118). • SupplyCurrent600μA Output voltage range extends to within 20 mV of • PowerDownSupplyCurrent15μA either supply rail, allowing wide dynamic range • OutputShortCircuitCurrent32mA especially in low voltage applications. Even with low supply current of 600 μA, output current capability is • LinearOutputCurrent±20mA kept at a respectable ±20 mA for driving heavier • InputCommonModeVoltage −0.3Vto1.7V loads.ImportantdeviceparameterssuchasBW,slew • OutputVoltageSwing20mVfromRails rate, and output current are kept relatively independent of the operating supply voltage by a • InputVoltageNoise40nV/√Hz combination of process enhancements and design • InputCurrentNoise0.75pA/√Hz architecture. 2 Applications For portable applications, the LMV118 provides shutdown capability while keeping the turnoff current • High-SpeedClockBuffer/Driver to 15 μA. Both turnon and turnoff characteristics are • ActiveFilters well behaved with minimal output fluctuations during transitions, thus the device can be used in power- • High-SpeedPortableDevices saving mode, as well as multiplexing applications. • MultiplexingApplications(LMV118) Miniature packages (5-pin and 6-pin SOT-23) are • CurrentSenseAmplifier further means to ease the adoption of these low- • High-SpeedTransducerAmplifier power, high-speed devices in applications where boardareaisatapremium. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) SOT-23(5) 2.90mm×1.60mm LMV116 SOT-23(6) 2.90mm×1.60mm SOT-23(5) 2.90mm×1.60mm LMV118 SOT-23(6) 2.90mm×1.60mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplication 2.7V 100k: 15.36MHz SINE WAVE R1 + OUTPUT C1 LMV116/ 0.1PF LMV118 47k: - R2 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................13 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 15 3 Description............................................................. 1 8.1 ApplicationInformation............................................15 4 RevisionHistory..................................................... 2 8.2 TypicalApplication:2.7-VSingleSupply2:1MUX 15 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 16 6 Specifications......................................................... 4 10 Layout................................................................... 17 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................17 6.2 ESDRatings..............................................................4 10.2 LayoutExample....................................................17 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 18 6.4 ThermalInformation..................................................4 11.1 RelatedDocumentation.........................................18 6.5 ElectricalCharacteristics:2.7V................................5 11.2 RelatedLinks........................................................18 6.6 ElectricalCharacteristics:5V...................................6 11.3 ReceivingNotificationofDocumentationUpdates18 6.7 ElectricalCharacteristics:±5V.................................7 11.4 CommunityResources..........................................18 6.8 TypicalCharacteristics..............................................8 11.5 Trademarks...........................................................18 7 DetailedDescription............................................ 12 11.6 ElectrostaticDischargeCaution............................18 7.1 Overview.................................................................12 11.7 Glossary................................................................18 7.2 FunctionalBlockDiagram.......................................12 12 Mechanical,Packaging,andOrderable Information........................................................... 18 7.3 FeatureDescription.................................................12 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionB(May2013)toRevisionC Page • AddedDeviceInformationandPinConfigurationandFunctionssections,ESDRatingsandThermalInformation tables,FunctionalBlockDiagram,FeatureDescription,DeviceFunctionalModes,ApplicationandImplementation, PowerSupplyRecommendations,Layout,DeviceandDocumentationSupport,andMechanical,Packaging,and OrderableInformationsections.............................................................................................................................................. 1 • ChangedR from265°C/Wto182.7°C/W........................................................................................................................... 4 θJA ChangesfromRevisionA(May2013)toRevisionB Page • ChangedlayoutofNationalSemiconductordatasheettoTIformat.................................................................................... 17 2 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 5 Pin Configuration and Functions SOT-23Package SOT-23Package 5-PinDBV 6-PinDBV TopView TopView OUTPUT 1 5 V+ OUTPUT 1 6 V+ 5 SD V- 2 V- 2 + - + - +IN 3 4 -IN +IN 3 4 -IN PinFunctions PIN I/O DESCRIPTION NAME LMV116 LMV118 +IN 3 3 Input Non-invertinginput –IN 4 4 Input Invertinginput OUTPUT 1 1 Output Output Shutdowninput.Activehigh,mustbetiedtoV–withresistorfornormal SD — 5 Input operation. V+ 5 6 Power Positive(highest)powersupply V– 2 2 Power Negative(lowest)powersupply Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT Supplyvoltage(V+-V−) 12.6 V VoltageatINPUTandOUTPUTpins V−−0.8 V++0.8 V Outputshort-circuitduration See(3), (4) Junctiontemperature(5) 150 °C Infraredorconvection(20seconds) 235 °C Solderinginformation Wavesolderingleadtemperature(10seconds) 260 °C Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) IfMilitary/Aerospacespecifieddevicesarerequired,contacttheTISalesOffice/Distributorsforavailabilityandspecifications. (3) Appliestobothsingle-supplyandsplit-supplyoperation.Continuousshortcircuitoperationatelevatedambienttemperaturecanresultin exceedingthemaximumallowedjunctiontemperatureof150°C. (4) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5 S S ms. (5) ThemaximumpowerdissipationisafunctionofT ,R ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) θJA A temperatureisP =(T –T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A θJA 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Machinemodel ±200 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT Supplyvoltage(V+–V−) 2.5 12 V Temperature(1) −40 85 °C (1) ThemaximumpowerdissipationisafunctionofT ,R ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) θJA A temperatureisP =(T –T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A θJA 6.4 Thermal Information LMV116 LMV118 THERMALMETRIC(1) DBV(SOT-23) DBV(SOT-23) UNIT 5PINS 6PINS R Junction-to-ambientthermalresistance 182.7 182.7 °C/W θJA R Junction-to-case(top)thermalresistance 139.9 139.9 °C/W θJC(top) R Junction-to-boardthermalresistance 41.4 41.4 °C/W θJB ψ Junction-to-topcharacterizationparameter 28.5 28.5 °C/W JT ψ Junction-to-boardcharacterizationparameter 40.9 40.9 °C/W JB (1) Formoreinformationabouttraditionalandnewthermalmetrics,seeSemiconductorandICPackageThermalMetrics. 4 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 6.5 Electrical Characteristics: 2.7 V Unlessotherwisespecified,alllimitsapplyforT =25°C,V+=2.7V,V−=0V,V =V =V+/2,andR =2kΩ,and J CM O F R =1kΩtoV+/2. L PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT 0V≤V ≤1.7V ±1 ±5 mV CM VOS Inputoffsetvoltage 0V≤VCM≤1.7V ±6 –40°Cto85°C TCV Inputoffsetaveragedrift See(3) ±5 μV/C OS See(4) −2 −0.4 I Inputbiascurrent μA B See(4),–40°Cto85°C –2.2 I Inputoffsetcurrent 1 500 nA OS CMRR Commonmoderejectionratio V steppedfrom0Vto1.55V 73 88 dB CM PSRR Powersupplyrejectionratio V+=2.7Vto3.7VorV−=0Vto−1V 72 85 dB R Commonmodeinputresistance 3 MΩ IN C Commonmodeinputcapacitance 2 pF IN Inputcommon-modevoltage CMRR≥50dB −0.3 1.7 CMVR V range CMRR≥50dB,–40°Cto85°C –0.1 V =0.35Vto2.35V 73 87 O A Largesignalvoltagegain dB VOL V =0.35Vto2.35V,–40°Cto85°C 70 O R =1kΩtoV+/2 2.55 2.66 L Outputswinghigh V R =10kΩtoV+/2 2.68 L V O R =1kΩtoV+/2 150 40 L Outputswinglow mV R =10kΩtoV+/2 20 L SourcingtoV− V =200mV(5) 25 35 ID I Outputshort-circuitcurrent mA SC SinkingtoV+ V =−200mV(5) 25 32 ID I Outputcurrent V =0.5Vfromrails ±20 mA OUT OUT Normaloperation 600 900 I Supplycurrent μA S Shutdownmode(LMV118) 15 50 SR Slewrate (6) A =+1,V =1V 40 V/μs V O PP BW −3dBBW A =+1,V =200mV 45 MHz V OUT PP f=100kHz 40 e Input-referredvoltagenoise nV/√Hz n f=1kHz 60 f=100kHz 0.75 i Input-referredcurrentnoise pA/√Hz n f=1kHz 1.2 t Turnontime(LMV118) 250 ns on t Turnofftime(LMV118) 560 ns off TH Shutdownthreshold(LMV118) I ≤50μA 1.95 2.3 V SD S SHUTDOWNpininputcurrent See(4) I −20 μA SD (LMV118) (1) Alllimitsarespecifiedbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) OffsetvoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesintothetotaltemperaturechange. OS (4) Positivecurrentcorrespondstocurrentflowingintothedevice. (5) Short-circuittestisamomentarytest.SeeAbsoluteMaximumRatings,note4. (6) Slewrateistheaverageoftherisingandfallingslewrates. Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com 6.6 Electrical Characteristics: 5 V Unlessotherwisespecified,alllimitsapplyforT =25°C,V+=5V,V−=0V,V =V =V+/2,andR =2kΩ,andR =1kΩ J CM O F L toV+/2. PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT 0V≤V ≤1.7V ±1 ±5 CM VOS Inputoffsetvoltage 0V≤VCM≤1.7V ±6 mV –40°Cto85°C TCV Inputoffsetaveragedrift See(3) ±5 μV/C OS See(4) −2 −0.4 I Inputbiascurrent μA B See(4),–40°Cto85°C –2.2 I Inputoffsetcurrent 1 500 nA OS CMRR Commonmoderejectionratio V steppedfrom0Vto3.8V 77 85 dB CM PSRR Powersupplyrejectionratio V+=5Vto6VorV−=0Vto−1V 72 95 dB R Commonmodeinputresistance 3 MΩ IN C Commonmodeinputcapacitance 2 pF IN Inputcommon-modevoltage CMRR≥50dB −0.3 4 CMVR V range CMRR≥50dB,–40°Cto85°C –0.1 V =1.5Vto3.5V 73 87 O A Largesignalvoltagegain dB VOL V =1.5Vto3.5V,–40°Cto85°C 70 O R =1kΩtoV+/2 4.8 4.95 L Outputswinghigh V R =10kΩtoV+/2 4.98 L V O R =1kΩtoV+/2 200 50 L Outputswinglow mV R =10kΩtoV+/2 20 L SourcingtoV− V =200mV(5) 35 45 ID I Outputshort-circuitcurrent mA SC SinkingtoV+ V =–200mV(5) 35 43 ID I Outputcurrent V =0.5Vfromrails ±20 mA OUT OUT Normaloperation 600 900 I Supplycurrent μA S Shutdownmode(LMV118) 10 50 SR Slewrate (6) A =+1,V =1V 40 V/μs V O PP BW −3dBBW A =+1,V =200mV 45 MHz V OUT PP f=100kHz 40 e Input-referredvoltagenoise nV/√Hz n f=1kHz 60 f=100kHz 0.75 i Input-referredcurrentnoise pA/√Hz n f=1kHz 1.2 t Turnontime(LMV118) 210 ns on t Turnofftime(LMV118) 500 ns off TH Shutdownthreshold(LMV118) I ≤50μA 4.25 4.6 V SD S SHUTDOWNpininputcurrent See(4) I −20 μA SD (LMV118) (1) Alllimitsarespecifiedbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) OffsetvoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesintothetotaltemperaturechange. OS (4) Positivecurrentcorrespondstocurrentflowingintothedevice. (5) Short-circuittestisamomentarytest.SeeAbsoluteMaximumRatings,note4. (6) Slewrateistheaverageoftherisingandfallingslewrates. 6 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 6.7 Electrical Characteristics: ±5 V Unlessotherwisespecified,alllimitsapplyforT =25°C,V+=5V,V−=–5V,V =V =0V,andR =2kΩ,andR =1kΩ J CM O F L toV+/2. PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT 0V≤V ≤1.7V ±1 ±5 CM VOS Inputoffsetvoltage 0V≤VCM≤1.7V ±6 mV –40°Cto85°C TCV Inputoffsetaveragedrift See(3) ±5 μV/C OS See(4) −2 −0.4 I Inputbiascurrent μA B See(4),–40°Cto85°C –2.2 I Inputoffsetcurrent 3 500 nA OS CMRR Commonmoderejectionratio V steppedfrom0Vto3.8V 78 104 dB CM PSRR Powersupplyrejectionratio V+=5Vto6VorV−=0Vto−1V 72 95 dB R Commonmodeinputresistance 3 MΩ IN C Commonmodeinputcapacitance 2 pF IN CMRR≥50dB −5.3 4 CMVR Inputcommon-modevoltagerange V CMRR≥50dB,–40°Cto85°C –5.1 V =1.5Vto3.5V 74 85 O A Largesignalvoltagegain dB VOL V =1.5Vto3.5V,–40°Cto85°C 71 O R =1kΩtoV+/2 4.7 4.92 L Outputswinghigh V R =10kΩtoV+/2 4.97 L V O R =1kΩtoV+/2 –4.7 –4.92 L Outputswinglow V R =10kΩtoV+/2 –4.98 L SourcingtoV− V =200mV(5) 40 57 ID I Outputshort-circuitcurrent mA SC SinkingtoV+ V =−200mV(5) 40 54 ID I Outputcurrent V =0.5Vfromrails ±20 mA OUT OUT Normaloperation 600 900 I Supplycurrent μA S Shutdownmode(LMV118) 15 50 SR Slewrate (6) A =1,V =1V 35 V/μs V O PP BW −3dBBW A =1,V =200mV 45 MHz V OUT PP f=100kHz 40 e Input-referredvoltagenoise nV/√Hz n f=1kHz 60 f=100kHz 0.75 i Input-referredcurrentnoise pA/√Hz n f=1kHz 1.2 t Turnontime(LMV118) 200 ns on t Turnofftime(LMV118) 700 ns off TH Shutdownthreshold(LMV118) I ≤50μA 4.25 4.6 V SD S I SHUTDOWNpininputcurrent See(4) −20 μA SD (LMV118) (1) Typicalvaluesrepresentthemostlikelyparametricnorm. (2) OffsetvoltageaveragedriftdeterminedbydividingthechangeinV .Alllimitsarespecifiedbytestingorstatisticalanalysis. OS (3) attemperatureextremesintothetotaltemperaturechange. (4) Positivecurrentcorrespondstocurrentflowingintothedevice. (5) Short-circuittestisamomentarytest.SeeAbsoluteMaximumRatings,note4. (6) Slewrateistheaverageoftherisingandfallingslewrates. Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com 6.8 Typical Characteristics AtT =25°C.Unlessotherwisespecified. J 0.9 1.4 85(cid:176)C 1.2 0.8 )A m 1 0.7 25(cid:176)C ( TN 85(cid:176)C )Am( IS 0.6 ERRUC 00..68 25(cid:176)C -40(cid:176)C Y 0.5 LP P 0.4 US -40(cid:176)C 0.4 0.2 0.3 0 1 3 5 7 9 11 12 -6 -4 -2 0 2 4 6 VS (V) VCM (V) Figure1.SupplyCurrentvsSupplyVoltage Figure2.SupplyCurrentvsV CM 70 90 VS = 5V 60 80 PHASE 50 100 70 40 80 GAIN )Bd( NIA 2300 85(cid:176)C 85(cid:176)C 4600 °) E(SAH )Bd( RRM 5600 G 10 -40(cid:176)C 20 P C 40 0 0 30 -40(cid:176)C -20 VS = ±2.5V 20 RL = 2k 10 100k 1M 10M 100M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure3.GainandPhasevsFrequency Figure4.CMRRvsFrequency 110 1000 100 90 +PSRR 80 )B 70 Hz) VOLTAGE d ( RRS 6500 (nV/n 100 P -PSRR e 40 30 20 VS = ±5V 10 10 100 1k 10k 100k 1M 10M 10 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure6.InputVoltageNoisevsFrequency Figure5.PSRRvsFrequency 8 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 Typical Characteristics (continued) AtT =25°C.Unlessotherwisespecified. J 10.00 GAIN AV = +2 0 AV = +1 -2 Hz) (pA/n1.00 CURRENT )Bd( NIAG -4 APHVA =S E+10 500 PHASE (°) i 100 VS = ±5V AV = +5 RL = 1k: 0.10 10 100 1k 10k 100k 100k 1M 10M 200M FREQUENCY (Hz) FREQUENCY (Hz) Figure7.InputCurrentNoisevsFrequency Figure8.Closed-LoopFrequencyResponseforVarious Temperature GAIN 85(cid:176)C 0 25(cid:176)C -2 )Bd( NIA -4 PHASE 0 HASE (°) G 50 P AV = +1 100 VS = ±5V -40(cid:176)C VS = ±2.5V RL = 1K RL = 1k: VOUT = 200mVPP VOUT = 1VPP 100k 1M 10M 100M200M FREQUENCY (Hz) 0.2 V/DIV 40 ns/DIV Figure9.FrequencyResponseForVarious(A ) Figure10.LargeSignalStepResponse V 1.2 1.4 85(cid:176)C VS = 5V 25(cid:176)C 1.3 1.1 25(cid:176)C 1.2 85(cid:176)C )Vm 1 )Vm 1.1 -40(cid:176)C ( S -40(cid:176)C ( S 1.0 O O V 0.9 V 0.9 0.8 0.8 0.7 VS = 2.7V 0.7 0.6 0 0.5 1 1.5 2 0 1 2 3 4 5 VCM (V) VCM (V) Figure11.OffsetVoltagevsCommonModeVoltage Figure12.OffsetVoltagevsCommonModeVoltage(a (aTypicalUnit) TypicalUnit) Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com Typical Characteristics (continued) AtT =25°C.Unlessotherwisespecified. J 1.4 -0.15 VS = ±5V 25(cid:176)C 1.3 -0.17 85(cid:176)C 1.2 )A( TP -0.19 -40(cid:176)C 1.1 N )Vm( SO 0.19 -40(cid:176)C ERRUC S --00..2231 25(cid:176)C V 00..78 AIB TUP --00..2275 85(cid:176)C N I 0.6 -0.29 0.5 -0.31 -5 -3.5 -2 -0.5 1 2.5 4 0 2 4 6 8 10 12 VCM (V) SUPPLY VOLTAGE (V) Figure13.OffsetVoltagevsCommonModeRange Figure14.InputBiasCurrentvsSupplyVoltage (aTypicalUnit) -0.12 35 85(cid:176)C -0.14 30 )A -0.16 P 25 ( T -0.18 25(cid:176)C N E -0.20 20 25(cid:176)C R 85(cid:176)C )A R -0.22 m UC SAIB TU ---000...222864 -40(cid:176)C ( IKNIS 11505 -40(cid:176)C P N -0.30 I 0 -0.32 VS = 2.7V -0.34 -5 -5 -3 -1 1 3 5 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 VCM (V) VOUT (V) Figure15.InputBiasCurrentvsVCM Figure16.SinkCurrentvsVOUT 45 40 85(cid:176)C 85(cid:176)C 40 35 35 30 30 -40(cid:176)C 25(cid:176)C 25(cid:176)C )A 25 -40(cid:176)C )A 25 m m( IKNIS 1250 ( ECRUOS 1250 I 10 10 5 5 0 0 VS = 5V VS = 2.7V -5 -5 -0.5 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 VOUT (V) VOUT (V) Figure17.SinkCurrentvsVOUT Figure18.SouceCurrentvsVOUT 10 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 Typical Characteristics (continued) AtT =25°C.Unlessotherwisespecified. J 50 85(cid:176)C 45 40 35 )A 25(cid:176)C m 30 ( EC 25 -40(cid:176)C R UO 20 S I 15 10 5 0 VS = 5V -5 0 0.5 1 1.5 2 2.5 3 VOUT (V) Figure19.SourceCurrentvsV OUT Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com 7 Detailed Description 7.1 Overview TheLMV116andLMV118arebasedonTI’sproprietaryVIP10dielectricallyisolatedbipolarprocess. TheLMV116andLMV118architecturefeaturesthefollowing: • Complementary bipolar devices with exceptionally high f (approximately 8 GHz) even under low supply t voltage(2.7V)andlowcollectorbiascurrent. • Common emitter push-pull output stage capable of 20-mA output current (at 0.5 V from the supply rails) while consuming only 600 μA of total supply current. This architecture allows output to reach within milli-volts of eithersupplyrailatlightloads. • Consistent performance from any supply voltage (2.7 V to 10 V) with little variation with supply voltage for the mostimportantspecifications(forexample,BW,SR,I ,etc.) OUT 7.2 Functional Block Diagram V+ +IN Power Clamp Reference Input Clamp Input Stage Output Stage OUTPUT -IN V- Copyright © 2016, Texas Instruments Incorporated 7.3 Feature Description The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (–IN). The amplifier amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The outputvoltageoftheop-ampV isgivenbyEquation1: OUT V =A (+IN––IN) OUT VOL where • A istheopen-loopgainoftheamplifier,typicallyaround85dB. (1) VOL 12 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 7.4 Device Functional Modes 7.4.1 Quasi-SaturatedState When the output swing approaches either supply rail, the output transistor enters a quasi-saturated state. A subtle effect of this operational region is that there is an increase in supply current in this state (up to 1 mA). The onset of quasi-saturation region is a function of output loading (current) and varies from 100 mV at no load to about 1 V when output is delivering 20 mA, as measured from supplies. Both input common mode voltage and outputvoltagelevelaffectthesupplycurrent(seeTypicalCharacteristicsforplot). 7.4.2 Micro-PowerShutdown The LMV118 can be shut down to save power and reduce its supply current to less than the 50 μA specified by applying a voltage to the SD pin. The SD pin is active high and needs to be tied to V− for normal operation. This input is low current (< 20-μA, 4-pF equivalent capacitance) and a resistor to V− (≤ 20 kΩ) results in normal operation. Shutdown is specified when SD pin is 0.4 V or less from V+ at any operating supply voltage and temperature. Intheshutdownmode,essentiallyallinternaldevicebiasingisturnedoffinordertominimizesupplycurrentflow, and the output goes into Hi-Z (high impedance) mode. Complete device turnon and turnoff times vary considerably relative to the output loading conditions, output voltage, and input impedance, but is generally limited to less than 1 μs (see Electrical Characteristics: 2.7 V, Electrical Characteristics: 5 V, and Electrical Characteristics: ±5V) Duringshutdown,theinputstagehasanequivalentcircuitasshowninFigure20. RS 200-400: INVERTING INPUT D4 D1 D3 D2 NON-INVERTING INPUT Figure20. InputStageShutdownEquivalentCircuit As can be seen from Figure 20, in shutdown there may be current flow through the internal diodes shown, causedbyinputpotential,ifpresent.Thiscurrentmayflowthroughtheexternalfeedbackresistorandresultinan apparent output signal. In most shutdown applications the presence of this output is inconsequential. However, if the output is forced by another device such as in a multiplexer, the other device must conduct the current describedinordertomaintaintheoutputpotential. To keep the output at or near ground during shutdown when there is no other device to hold the output low, a switch (transistor) could be used to shunt the output to ground. Figure 21 shows a circuit where a NPN bipolar is usedtokeeptheoutputnearground(approximately80mV): Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com Device Functional Modes (continued) 5V - VOUT LMV118 VIN + SD - V SHUTDOWN Q1 INPUT RS 10k Figure21. ActivePulldownSchematic Figure22showstheoutputwaveform. VOUT VS = 5V AV = +1 VIN = 3.5VPP SD 2 V/DIV 2.00 (cid:181)s/DIV Figure22. OutputHeldLowbyActivePulldownCircuit If bipolar transistor power dissipation is not tolerable, the switch can be done by an N-channel enhancement- modeMOSFET. 14 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The LMV11x rail-to-rail output voltage feedback amplifiers offer high-speed (45 MHz) operation with low input voltage (2.7 V). Output voltage range extends to within 20 mV of either supply rail, allowing wide dynamic range especially in low voltage applications. Even with low supply current of 600 μA, output current capability is kept at a respectable ±20 mA. For portable applications, the LMV118 provides shutdown capability while keeping the turnoff current to 15 μA. Both turnon and turnoff characteristics are well behaved with minimal output fluctuations duringtransitionswhichenablestheuseofLMV118inmultiplexingapplications. 8.2 Typical Application: 2.7-V Single Supply 2:1 MUX The schematic shown in Figure 23 functions as a 2:1 MUX operating on a single 2.7-V power supply, by utilizing the shutdown feature of the LMV118. Select input signal is connected to the shutdown pin of the first LMV118 through 74HC04 inverter. This signal is connected to the shutdown pin of the second LMV118 through another inverter. With this setup one of the LMV118 operational amplifiers is always in shutdown mode while the other is inactivemode. 1/5 1/5 74HC04 74HC04 SELECT INPUT 2k 2k 2.7V - SHUTDOWN LMV118 + INPUT A 2.7V RL SHUTDOWN + INPUT B LMV118 - 2k 2k Figure23. 2:1MUXOperatingOffa2.7-VSingleSupply Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com Typical Application: 2.7-V Single Supply 2:1 MUX (continued) 8.2.1 DesignRequirements Fortypicaloperational-amplifierapplications,usetheparameterslistedinTable1. Table1.DesignParameters DESIGNPARAMETER EXAMPLEVALUE Supplyvoltage 2.7V Linearoutputcurrent ±20mA(typical) PSRR 85dB(typical) 8.2.2 DetailedDesignProcedure It is important to carefully select the values of the external resistors. Choosing large valued external resistors affects the closed-loop behavior of the stage because of the interaction of these resistors with parasitic capacitances. These capacitors could be inherent to the device or a by-product of the board layout and component placement. Either way, keeping the resistor values lower diminishes this interaction. On the other hand, choosing very low-value resistors could load down nodes and contribute to higher overall power dissipation. 8.2.3 ApplicationCurve Figure24showstheMUXoutputwhenselectingbetweena1-MHzsineanda250-kHztriangularwaveform. AscanbeseeninFigure24,theoutputiswellbehaved,andtherearenospikesorglitchesduetotheswitching. Switchingtimesareapproximatelyaround500nsbasedonthetimewhentheoutputisconsidered valid. VOUT SELECT 1 V/DIV 1 (cid:181)s/DIV Figure24. 2:1MUXOutput 9 Power Supply Recommendations The LMV11x is specified for operation from 2.7 V to 12 V (±1.35 V to ±6 V) over a –40°C to +85°C temperature range. For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines it is suggested that 100-nF capacitors be placed as close as possible to the operational amplifier power supply pins. For single supply, place a capacitor between V+ and V– supply leads. For dual supplies, place one capacitor betweenV+andground,andonecapacitorbetweenV–andground. 16 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 www.ti.com SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 10 Layout 10.1 Layout Guidelines Generally, a good high-frequency layout keeps power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground cause frequency response peaking and possible circuit oscillations (see OA-15 Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers formoreinformation). TI suggests the following evaluation boards as a guide for high-frequency layout and as an aid in device testing andcharacterization: DEVICE PACKAGE EVALUATIONBOARDP/N LMV116 SOT-23-5 CLC730068 LMV118 SOT-23-6 CLC730116 10.2 Layout Example Supply voltage R1 OUTPUT 1 OUTPUT V+ 5 Via to GND plane C1 2 V- INPUT R2 3 +IN -IN 4 Figure25. LMV116/LMV118Layout Copyright©2003–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMV116 LMV118
LMV116,LMV118 SNOSA87C–OCTOBER2003–REVISEDOCTOBER2016 www.ti.com 11 Device and Documentation Support 11.1 Related Documentation Foradditionalinformation,seethefollowing: OA-15FrequentFauxPasinApplyingWidebandCurrentFeedbackAmplifiers 11.2 Related Links Table 2 lists quick access links. Categories include technical documents, support and community resources, toolsandsoftware,andquickaccesstosampleorbuy. Table2.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LMV116 Clickhere Clickhere Clickhere Clickhere Clickhere LMV118 Clickhere Clickhere Clickhere Clickhere Clickhere 11.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 11.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.5 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 18 SubmitDocumentationFeedback Copyright©2003–2016,TexasInstrumentsIncorporated ProductFolderLinks:LMV116 LMV118
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMV116MF/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AC1A & no Sb/Br) LMV116MFX/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AC1A & no Sb/Br) LMV118MF/NOPB ACTIVE SOT-23 DBV 6 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AD1A & no Sb/Br) LMV118MFX/NOPB ACTIVE SOT-23 DBV 6 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 AD1A & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 20-Dec-2016 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMV116MF/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV116MFX/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV118MF/NOPB SOT-23 DBV 6 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMV118MFX/NOPB SOT-23 DBV 6 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 20-Dec-2016 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMV116MF/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LMV116MFX/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LMV118MF/NOPB SOT-23 DBV 6 1000 210.0 185.0 35.0 LMV118MFX/NOPB SOT-23 DBV 6 3000 210.0 185.0 35.0 PackMaterials-Page2
PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com
EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com
PACKAGE OUTLINE DBV0006A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 B A 1.45 MAX PIN 1 INDEX AREA 1 6 2X 0.95 3.05 2.75 1.9 5 2 4 3 0.50 6X 0.25 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214840/B 03/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178. www.ti.com
EXAMPLE BOARD LAYOUT DBV0006A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 1 6X (0.6) 6 SYMM 2 5 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214840/B 03/2018 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBV0006A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 1 6X (0.6) 6 SYMM 2 5 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214840/B 03/2018 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated