ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LMH6683MA/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LMH6683MA/NOPB产品简介:
ICGOO电子元器件商城为您提供LMH6683MA/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMH6683MA/NOPB价格参考。Texas InstrumentsLMH6683MA/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 3 电路 14-SOIC。您可以下载LMH6683MA/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LMH6683MA/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | 190MHz |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP VFB 190MHZ 14SOIC运算放大器 - 运放 190MHz Single Supply, Dual and Triple Operational Amplifiers 14-SOIC -40 to 85 |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,Texas Instruments LMH6683MA/NOPBVIP10™ |
数据手册 | |
产品型号 | LMH6683MA/NOPB |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30123http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30126http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30127 |
产品目录页面 | |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | 14-SOICN |
共模抑制比—最小值 | 75 dB |
关闭 | No Shutdown |
其它名称 | *LMH6683MA |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LMH6683MA/NOPB |
包装 | 管件 |
压摆率 | 940 V/µs |
双重电源电压 | +/- 3 V, +/- 5 V |
商标 | Texas Instruments |
增益带宽积 | - |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 14-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-14 |
工作温度 | -40°C ~ 85°C |
工作电源电压 | 5 V, 9 V |
工厂包装数量 | 55 |
放大器类型 | 电压反馈 |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 55 |
电压-电源,单/双 (±) | 3 V ~ 12 V, ±1.5 V ~ 6 V |
电压-输入失调 | 1mV |
电流-电源 | 6.5mA |
电流-输入偏置 | 5µA |
电流-输出/通道 | 85mA |
电源电流 | 6.5 mA |
电路数 | 3 |
系列 | LMH6683 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
转换速度 | 940 V/us |
输入偏压电流—最大 | 20 uA |
输入补偿电压 | 5 mV |
输出电流 | 80 mA |
输出类型 | - |
通道数量 | 3 Channel |
配用 | /product-detail/zh/CLC730231%2FNOPB/CLC730231%2FNOPB-ND/723556 |
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 LMH6682/6683 190MHz Single Supply, Dual and Triple Operational Amplifiers CheckforSamples:LMH6682,LMH6683 FEATURES DESCRIPTION 1 V = ±5V, T = 25°C, R = 100Ω, A = +2 (Typical The LMH6682 and LMH6683 are high speed 2 S A L ValuesUnlessSpecified) operational amplifiers designed for use in modern video systems. These single supply monolithic • DGerror0.01% amplifiers extend TI's feature-rich, high value video • DPerror0.08° portfolio to include a dual and a triple version. The • −3dBBW(A=+2)190MHz important video specifications of differential gain (± 0.01% typ.) and differential phase (±0.08 degrees) • Slewrate(V =±5V)940V/μs S combined with an output drive current in each • SupplyCurrent6.5mA/amp amplifier of 85mA make the LMH6682 and LMH6683 • OutputCurrent+80/−90mA excellent choices for a full range of video applications. • InputCommonModeVoltage0.5VBeyond V−,1.7VfromV+ Voltage feedback topology in operational amplifiers assures maximum flexibility and ease of use in high • OutputVoltageSwing(R =2kΩ)0.8Vfrom L speed amplifier designs. The LMH6682/83 is Rails fabricated in TI's VIP10 process. This advanced • InputVoltageNoise(100KHz)12nV/√Hz process provides a superior ratio of speed to quiescient current consumption and assures the user APPLICATIONS of high-value amplifier designs. Advanced technology and circuit design enables in these amplifiers a −3db • CD/DVDROM bandwidth of 190MHz, a slew rate of 940V/μsec, and • ADCBufferAmp stabilityforgainsoflessthan−1andgreaterthan+2. • PortableVideo The input stage design of the LM6682/83 enables an • CurrentSenseBuffer input signal range that extends below the negative • PortableCommunications rail. The output stage voltage range reaches to within 0.8V of either rail when driving a 2kΩ load. Other attractive features include fast settling and low distortion. Other applications for these amplifiers include servo control designs. These applications are sensitive to amplifiers that exhibit phase reversal when the inputs exceed the rated voltage range. The LMH6682/83amplifiersaredesignedtobeimmuneto phase reversal when the specified input range is exceeded. See applications section. This feature makes for design simplicity and flexibility in many industrialapplications. The LMH6682 dual operational amplifier is offered in miniature surface mount packages, SOIC-8, and VSSOP-8. The LMH6683 triple amplifier is offered in SOIC-14andTSSOP-14. 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2004–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com Connection Diagram Figure1.SOIC-8/VSSOP-8(LMH6682) Figure2.SOIC-14/TSSOP-14(LMH6683) TopView TopView Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Absolute Maximum Ratings(1)(2) ESDTolerance HumanBodyModel 2KV(3) MachineModel 200V(4) V Differential ±2.5V IN OutputShortCircuitDuration See(5)(6) InputCurrent ±10mA SupplyVoltage(V+-V−) 12.6V VoltageatInput/Outputpins V++0.8V,V−−0.8V SolderingInformation InfraredorConvection(20sec.) 235°C WaveSoldering(10sec.) 260°C StorageTemperatureRange −65°Cto+150°C JunctionTemperature(7) +150°C (1) AbsolutemaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthetest conditions,seetheElectricalCharacteristics. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTISalesOffice/Distributorsforavailabilityandspecifications. (3) Humanbodymodel,1.5kΩinserieswith100pF. (4) MachineModel,0Ωinserieswith200pF. (5) Appliestobothsingle-supplyandsplit-supplyoperation.Continuousshortcircuitoperationatelevatedambienttemperaturecanresultin exceedingthemaximumallowedjunctiontemperatureof150°C. (6) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5ms. S S (7) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) JA A temperatureisP =(T -T )/θ .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A JA Operating Ratings(1) SupplyVoltage(V+–V−) 3Vto12V OperatingTemperatureRange(2) −40°Cto+85°C PackageThermalResistance(2) SOIC-8 190°C/W VSSOP-8 235°C/W SOIC-14 145°C/W TSSOP-14 155°C/W (1) AbsolutemaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthetest conditions,seetheElectricalCharacteristics. (2) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) JA A temperatureisP =(T -T )/θ .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A JA 2 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 5V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforatT =25°C,V+=5V,V−=0V,V =V =V+/2,andR =100ΩtoV+/2,R J O CM L F =510Ω.Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Min(1) Typ(2) Max(1) Units SSBW −3dBBW A=+2,V =200mV 140 180 OUT PP MHz A=−1,V =200mV 180 OUT PP GFP GainFlatnessPeaking A=+2,V =200mV 2.1 dB OUT PP DCto100MHz GFR GainFlatnessRolloff A=+2,V =200mV 0.1 dB OUT PP DCto100MHz LPD1° 1°LinearPhaseDeviation A=+2,V =200mV ,±1° 40 MHz OUT PP GF 0.1dBGainFlatness A=+2,±0.1dB,V =200mV 25 MHz 0.1dB OUT PP FPBW FullPower−1dBBandwidth A=+2,V =2V 110 MHz OUT PP DG DifferentialGain A=+2,R =150ΩtoV+/2 0.03 % L NTSC3.58MHz PosvideoonlyV =2V CM DP DifferentialPhase A=+2,R =150ΩtoV+/2 0.05 deg L NTSC3.58MHz PosvideoonlyV =2V CM TimeDomainResponse T/T RiseandFallTime 20-80%,V =1V ,A =+2 2.1 r f O PP V ns 20-80%,V =1V ,A =−1 2 O PP V OS Overshoot A=+2,V =100mV 22 % O PP T SettlingTime V =2V ,±0.1%,A =+2 49 ns s O PP V SR SlewRate(3) A=+2,V =3V 520 OUT PP V/μs A=−1,V =3V 500 OUT PP DistortionandNoiseResponse HD2 2ndHarmonicDistortion f=5MHz,V =2V ,A=+2,R =2kΩ −60 O PP L f=5MHz,V =2V ,A=+2,R = −61 dBc O PP L 100Ω HD3 3rdHarmonicDistortion f=5MHz,V =2V ,A=+2,R =2kΩ −77 O PP L f=5MHz,V =2V ,A=+2,R = −54 dBc O PP L 100Ω THD TotalHarmonicDistortion f=5MHz,V =2V ,A=+2,R =2kΩ −60 O PP L f=5MHz,V =2V ,A=+2,R = −53 dBc O PP L 100Ω e InputReferredVoltageNoise f=1kHz 17 nV/√Hz n f=100kHz 12 i InputReferredCurrentNoise f=1kHz 8 pA/√Hz n f=100kHz 3 CT Cross-TalkRejection(Amplifier) f=5MHz,A=+2,SND:R =100Ω −77 dB L RCV:R =R =510Ω F G Static,DCPerformance A LargeSignalVoltageGain V =1.25Vto3.75V, 85 95 VOL O R =2kΩtoV+/2 L V =1.5Vto3.5V, 75 85 RO=150ΩtoV+/2 dB L V =2Vto3V, 70 80 O R =50ΩtoV+/2 L CMVR InputCommon-ModeVoltage CMRR≥50dB −0.2 −0.5 Range −0.1 V 3.0 3.3 2.8 (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Slewrateistheaverageoftherisingandfallingslewrates Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com 5V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforatT =25°C,V+=5V,V−=0V,V =V =V+/2,andR =100ΩtoV+/2,R J O CM L F =510Ω.Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Min(1) Typ(2) Max(1) Units V InputOffsetVoltage ±1.1 ±5 OS mV ±7 TCV InputOffsetVoltageAverage See(4) ±2 μV/°C OS Drift I InputBiasCurrent See(5) −5 −20 B μA −30 TC InputBiasCurrentDrift 0.01 nA/°C IB I InputOffsetCurrent 50 300 OS nA 500 CMRR CommonModeRejectionRatio V Steppedfrom0Vto3.0V 72 82 dB CM +PSRR PositivePowerSupplyRejection V+=4.5Vto5.5V,V =1V 70 76 dB CM Ratio I SupplyCurrent(perchannel) Noload 6.5 9 S mA 11 MiscellaneousPerformance V OutputSwing R =2kΩtoV+/2 4.10 4.25 O L High 3.8 R =150ΩtoV+/2 3.90 4.19 L V 3.70 R =75ΩtoV+/2 3.75 4.15 L 3.50 OutputSwing R =2kΩtoV+/2 800 920 L Low 1100 R =150ΩtoV+/2 870 970 L mV 1200 R =75ΩtoV+/2 885 1100 L 1250 I OutputCurrent V =1Vfromeithersupplyrail ±40 +80/−75 mA OUT O I OutputShortCircuit SourcingtoV+/2 −100 −155 SC Current(6)(7)(8) −80 mA SinkingfromV+/2 100 220 80 R CommonModeInputResistance 3 MΩ IN C CommonModeInput 1.6 IN pF Capacitance R OutputResistanceClosedLoop f=1kHz,A=+2,R =50Ω 0.02 OUT L Ω f=1MHz,A=+2,R =50Ω 0.12 L (4) OffsetVoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesintothetotaltemperaturechange. OS (5) Positivecurrentcorrespondstocurrentflowingintothedevice. (6) Shortcircuittestisamomentarytest.Seenextnote. (7) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5ms. S S (8) Positivecurrentcorrespondstocurrentflowingintothedevice. 4 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 ±5V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforatT =25°C,V+=5V,V−=−5V,V =V =0V,andR =100Ωto0V,R = J O CM L F 510Ω.Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Min(1) Typ(2) Max(1) Units SSBW −3dBBW A=+2,V =200mV 150 190 OUT PP MHz A=−1,V =200mV 190 OUT PP GFP GainFlatnessPeaking A=+2,V =200mV 1.7 dB OUT PP DCto100MHz GFR GainFlatnessRolloff A=+2,V =200mV 0.1 dB OUT PP DCto100MHz LPD1° 1°LinearPhaseDeviation A=+2,V =200mV ,±1° 40 MHz OUT PP GF 0.1dBGainFlatness A=+2,±0.1dB,V =200mV 25 MHz 0.1dB OUT PP FPBW FullPower−1dBBandwidth A=+2,V =2V 120 MHz OUT PP DG DifferentialGain A=+2,R =150Ωto0V 0.01 % L NTSC3.58MHz DP DifferentialPhase A=+2,R =150Ωto0V 0.08 deg L NTSC3.58MHz TimeDomainResponse T/T RiseandFallTime 20-80%,V =1V ,A=+2 1.9 r f O PP ns 20-80%,V =1V ,A=−1 2 O PP OS Overshoot A=+2,V =100mV 19 % O PP T SettlingTime V =2V ,±0.1%,A=+2 42 ns s O PP SR SlewRate(3) A=+2,V =6V 940 OUT PP V/μs A=−1,V =6V 900 OUT PP DistortionandNoiseResponse HD2 2ndHarmonicDistortion f=5MHz,V =2V ,A=+2,R =2kΩ −63 O PP L f=5MHz,V =2V ,A=+2,R = −66 dBc O PP L 100Ω HD3 3rdHarmonicDistortion f=5MHz,V =2V ,A=+2,R =2kΩ −82 O PP L f=5MHz,V =2V ,A=+2,R = −54 dBc O PP L 100Ω THD TotalHarmonicDistortion f=5MHz,V =2V ,A=+2,R =2kΩ −63 O PP L f=5MHz,V =2V ,A=+2,R = −54 dBc O PP L 100Ω e InputReferredVoltageNoise f=1kHz 18 nV/√Hz n f=100kHz 12 i InputReferredCurrentNoise f=1kHz 6 pA/√Hz n f=100kHz 3 CT Cross-TalkRejection(Amplifier) f=5MHz,A=+2,SND:R =100Ω −78 dB L RCV:R =R =510Ω F G Static,DCPerformance A LargeSignalVoltageGain V =−3.75Vto3.75V, 87 100 VOL O R =2kΩtoV+/2 L V =−3.5Vto3.5V, 80 90 RO=150ΩtoV+/2 dB L V =−3Vto3V, 75 85 O R =50ΩtoV+/2 L CMVR InputCommonModeVoltage CMRR≥50dB −5.2 −5.5 Range −5.1 V 3.0 3.3 2.8 (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Slewrateistheaverageoftherisingandfallingslewrates Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com ±5V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforatT =25°C,V+=5V,V−=−5V,V =V =0V,andR =100Ωto0V,R = J O CM L F 510Ω.Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Min(1) Typ(2) Max(1) Units V InputOffsetVoltage ±1 ±5 OS mV ±7 TCV InputOffsetVoltageAverage See(4) ±2 μV/°C OS Drift I InputBiasCurrent See(5) −5 −20 B μA −30 TC InputBiasCurrentDrift 0.01 nA/°C IB I InputOffsetCurrent 50 300 OS nA 500 CMRR CommonModeRejectionRatio V Steppedfrom−5Vto3.0V 75 84 dB CM +PSRR PositivePowerSupplyRejection V+=8.5Vto9.5V, 75 82 dB Ratio V−=−1V −PSRR NegativePowerSupplyRejection V−=−4.5Vto−5.5V, 78 85 dB Ratio V+=5V I SupplyCurrent(perchannel) Noload 6.5 9.5 S mA 11 MiscellaneousPerformance V OutputSwing R =2kΩto0V 4.10 4.25 O L High 3.80 R =150Ωto0V 3.90 4.20 L V 3.70 R =75Ωto0V 3.75 4.18 L 3.50 OutputSwing R =2kΩto0V −4.19 −4.07 L Low −3.80 R =150Ωto0V −4.05 −3.89 L mV −3.65 R =75Ωto0V −4.00 −3.70 L −3.50 I OutputCurrent V =1Vfromeithersupplyrail ±45 +85/−80 mA OUT O I OutputShortCircuit Sourcingto0V −120 −180 SC Current(6)(7)(8) −100 mA Sinkingfrom0V 120 230 100 R CommonModeInputResistance 4 MΩ IN C CommonModeInput 1.6 IN pF Capacitance R OutputResistanceClosedLoop f=1kHz,A=+2,R =50Ω 0.02 OUT L Ω f=1MHz,A=+2,R =50Ω 0.12 L (4) OffsetVoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesintothetotaltemperaturechange. OS (5) Positivecurrentcorrespondstocurrentflowingintothedevice. (6) Shortcircuittestisamomentarytest.Seenextnote. (7) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5ms. S S (8) Positivecurrentcorrespondstocurrentflowingintothedevice. 6 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Typical Schematic Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com Typical Performance Characteristics AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F Non-InvertingFrequencyResponse InvertingFrequencyResponse Figure3. Figure4. Non-InvertingFrequencyResponseforVariousGain InvertingFrequencyResponseforVariousGain Figure5. Figure6. Non-InvertingPhasevs.FrequencyforVariousGain InvertingPhasevs.FrequencyforVariousGain Figure7. Figure8. 8 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F OpenLoopGainandPhasevs.FrequencyOver OpenLoopGain&Phasevs.Frequency Temperature Figure9. Figure10. Non-InvertingFrequencyResponseOverTemperature InvertingFrequencyResponseOverTemperature Figure11. Figure12. GainFlatness0.1dB DifferentialGain&PhaseforA=+2 Figure13. Figure14. Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F TransientResponseNegative TransientResponsePositive Figure15. Figure16. Noisevs.Frequency Noisevs.Frequency Figure17. Figure18. HarmonicDistortionvs.V HarmonicDistortionvs.V OUT OUT Figure19. Figure20. 10 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F HarmonicDistortionvs.V THDvs.forVariousFrequencies OUT Figure21. Figure22. HarmonicDistortionvs.Frequency Crosstalkvs.Frequency Figure23. Figure24. R vs.Frequency I vs.V OverTemperature OUT OS SUPPLY Figure25. Figure26. Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F V vs.V @−40°C V vs.V @25°C OS S OS S Figure27. Figure28. V vs.V @85°C V vs.V @125°C OS S OS S Figure29. Figure30. V vs.V V vs.V OS OUT OS OUT Figure31. Figure32. 12 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F I /Ampvs.V I /Ampvs.V SUPPLY CM SUPPLY SUPPLY Figure33. Figure34. V vs.I V vs.I OUT SOURCE OUT SINK Figure35. Figure36. V vs.I V vs.I OUT SOURCE OUT SINK Figure37. Figure38. Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F V vs.V |I |vs.V OS CM B S Figure39. Figure40. ShortCircuitI vs.V ShortCircuitI vs.V SOURCE S SINK S Figure41. Figure42. LinearityInputvs.Output LinearityInputvs.Output Figure43. Figure44. 14 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Typical Performance Characteristics (continued) AtT =25°C,V+=+5V,V−=−5V,R =510ΩforA=+2;unlessotherwisespecified. A F CMRRvs.Frequency PSRRvs.Frequency Figure45. Figure46. SmallSignalPulseResponseforA=+2 SmallSignalPulseResponseA=−1 Figure47. Figure48. LargeSignalPulseResponse LargeSignalPulseResponse Figure49. Figure50. Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com APPLICATIONS SECTION LARGE SIGNAL BEHAVIOR Amplifying high frequency signals with large amplitudes (as in video applications) has some special aspects to look after. The bandwidth of the Op Amp for large amplitudes is less than the small signal bandwidth because of slew rate limitations. While amplifying pulse shaped signals the slew rate properties of the OpAmp become more importantathigheramplituderanges.DuetotheinternalstructureofanOpAmptheoutputcanonlychangewith a limited voltage difference per time unit (dV/dt). This can be explained as follows: To keep it simple, assume that an Op Amp consists of two parts; the input stage and the output stage. In order to stabilize the Op Amp, the output stage has a compensation capacitor in its feedback path. This Miller C integrates the current from the input stage and determines the pulse response of the Op Amp. The input stage must charge/discharge the feedbackcapacitor,ascanbeseeninFigure51. Figure51. When a voltage transient is applied to the non inverting input of the Op Amp, the current from the input stage will charge the capacitor and the output voltage will slope up. The overall feedback will subtract the gradually increasing output voltage from the input voltage. The decreasing differential input voltage is converted into a currentbytheinputstage(Gm). I*Δt=C*ΔV (1) ΔV/Δt=I/C (2) I=ΔV*Gm (3) whereI=current t=time C=capacitance V=voltage Gm=transconductance SlewrateΔV/Δt=volt/second In most amplifier designs the current I is limited for high differential voltages (Gm becomes zero). The slew rate willthanbelimitedaswell: ΔV/Δt=Imax/C (4) The LMH6682/83 has a different setup of the input stage. It has the property to deliver more current to the output stage when the input voltage is higher (class AB input). The current into the Miller capacitor exhibits an exponential character, while this current in other Op Amp designs reaches a saturation level at high input levels: (seeFigure52) 16 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Figure52. ThispropertyoftheLMH6682/83guarantiesahigherslewrateathigherdifferentialinputvoltages. ΔV/Δt=ΔV*Gm/C (5) InFigure53onecanseethatahighertransientvoltagethanwillleadtoahigherslewrate. Figure53. HANDLING VIDEO SIGNALS Whenhandlingvideosignals,twoaspectsareveryimportantespeciallywhencascadingamplifiersinaNTSC-or PAL video system. A composite video signal consists of both amplitude and phase information. The amplitude represents saturation while phase determines color (color burst is 3.59MHz for NTSC and 4.58MHz for PAL systems). In this case it is not only important to have an accurate amplification of the amplitude but also it is important not to add a varying phase shift to the video signals. It is a known phenomena that at different dc levels over a certain load the phase of the amplified signal will vary a little bit. In a video chain many amplifiers will be cascaded and all errors will be added together. For this reason, it is necessary to have strict requirements for the variation in gain and phase in conjunction to different dc levels. As can be seen in the tables the number forthedifferentialgainfortheLMH6682/83isonly0.01%andforthedifferentialphaseitisonly0.08°atasupply voltage of ±5V. Note that the phase is very dependent of the load resistance, mainly because of the dc current delivered by the parts output stage into the load. For more information about differential gain and phase and how to measure it see Application Note OA-24 SNOA370 which can be found on via TI's home page http://www.ti.com Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com OUTPUT PHASE REVERSAL Thisisaproblemwithsomeoperationalamplifiers.Thiseffectiscausedbyphasereversalintheinputstagedue to saturation of one or more of the transistors when the inputs exceed the normal expected range of voltages. Some applications, such as servo control loops among others, are sensitive to this kind of behavior and would need special safeguards to ensure proper functioning. The LMH6682/6683 is immune to output phase reversal with input overload. With inputs exceeded, the LMH6682/6683 output will stay at the clamped voltage from the supply rail. Exceeding the input supply voltages beyond the Absolute Maximum Ratings of the device could howeverdamageorotherwiseadverselyeffectthereliabilityorlifeofthedevice. DRIVING CAPACITIVE LOADS The LMH6682/6683 can drive moderate values of capacitance by utilizing a series isolation resistor between the output and the capacitive load. Capacitive load tolerance will improve with higher closed loop gain values. Applications such as ADC buffers, among others, present complex and varying capacitive loads to the Op Amp; best value for this isolation resistance is often found by experimentation and actual trial and error for each application. DISTORTION Applications with demanding distortion performance requirements are best served with the device operating in the inverting mode. The reason for this is that in the inverting configuration, the input common mode voltage does not vary with the signal and there is no subsequent ill effects due to this shift in operating point and the possibility of additional non-linearity. Moreover, under low closed loop gain settings (most suited to low distortion), the non-inverting configuration is at a further disadvantage of having to contend with the input common voltage range. There is also a strong relationship between output loading and distortion performance (i.e. 2kΩ vs. 100Ω distortion improves by about 15dB @1MHz) especially at the lower frequency end where the distortion tends to be lower. At higher frequency, this dependence diminishes greatly such that this difference is only about 5dB at 10MHz. But, in general, lighter output load leads to reduced HD3 term and thus improves THD.(SeeHarmonicDistortionplots,Figures19through23). PRINTED CIRCUIT BOARD LAYOUT AND COMPONENT VALUES SELECTION Generally it is a good idea to keep in mind that for a good high frequency design both the active parts and the passive ones are suitable for the purpose you are using them for. Amplifying frequencies of several hundreds of MHz is possible while using standard resistors but it makes life much easier when using surface mount ones. These resistors (and capacitors) are smaller and therefore parasitics have lower values and will have less influence on the properties of the amplifier. Another important issue is the PCB, which is no longer a simple carrier for all the parts and a medium to interconnect them. The board becomes a real part itself, adding its own high frequency properties to the overall performance of the circuit. It's good practice to have at least one ground plane on a PCB giving a low impedance path for all decouplings and other ground connections. Care should be taken especially that on board transmission lines have the same impedance as the cables they are connected to (i.e. 50Ω for most applications and 75Ω in case of video and cable TV applications). These transmission lines usually require much wider traces on a standard double sided PCB than needed for a 'normal' connection. Another important issue is that inputs and outputs must not 'see' each other or are routed together over the PCB at a small distance. Furthermore it is important that components are placed as flat as possible on the surface of the PCB. For higher frequencies a long lead can act as a coil, a capacitor or an antenna. A pair of leads can even form a transformer. Careful design of the PCB avoids oscillations or other unwanted behavior. When working with really high frequencies, the only components which can be used will be the surface mount ones (for moreinformationseeOA-15SNOA367). As an example of how important the component values are for the behavior of your circuit, look at the following case: On a board with good high frequency layout, an amplifier is placed. For the two (equal) resistors in the feedbackpath,5differentvaluesareusedtosetthegainto+2.Theresistorsvaryfrom200Ω to3kΩ. 18 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 www.ti.com SNOSA43A–MAY2004–REVISEDAPRIL2013 Figure54. In Figure 54 it can be seen that there's more peaking with higher resistor values, which can lead to oscillations and bad pulse responses. On the other hand the low resistor values will contribute to higher overall power consumption. TI suggests the following evaluation boards as a guide for high frequency layout and as an aid in device testing andcharacterization. Device Package EvaluationBoardPN LMH6682MA 8-PinSOIC CLC730036 LMH6682MM 8-PinVSSOP CLC730123 LMH6683MA 14-PinSOIC CLC730031 LMH6683MT 14-PinTSSOP CLC730131 Copyright©2004–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LMH6682 LMH6683
LMH6682, LMH6683 SNOSA43A–MAY2004–REVISEDAPRIL2013 www.ti.com REVISION HISTORY ChangesfromOriginal(April2013)toRevisionA Page • ChangedlayoutofNationalDataSheettoTIformat.......................................................................................................... 19 20 SubmitDocumentationFeedback Copyright©2004–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMH6682 LMH6683
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMH6682MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 82MA LMH6682MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 82MA LMH6682MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 A90A & no Sb/Br) LMH6682MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 A90A & no Sb/Br) LMH6683MA/NOPB ACTIVE SOIC D 14 55 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 83MA LMH6683MAX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 83MA LMH6683MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 83MT LMH6683MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 83MT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 6-Nov-2015 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMH6682MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMH6682MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMH6682MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMH6683MAX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMH6683MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 LMH6683MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 6-Nov-2015 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMH6682MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMH6682MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMH6682MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMH6683MAX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMH6683MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 LMH6683MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 PackMaterials-Page2
None
None
None
None
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated