ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LMH6644MTX/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LMH6644MTX/NOPB产品简介:
ICGOO电子元器件商城为您提供LMH6644MTX/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMH6644MTX/NOPB价格参考¥9.43-¥19.23。Texas InstrumentsLMH6644MTX/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 4 电路 满摆幅 14-TSSOP。您可以下载LMH6644MTX/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LMH6644MTX/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | 130MHz |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP VFB 130MHZ RRO 14TSSOP运算放大器 - 运放 Low Power, 130MHz, 75mA Rail-to-Rail Output Amplifiers 14-TSSOP -40 to 85 |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,Texas Instruments LMH6644MTX/NOPB- |
数据手册 | |
产品型号 | LMH6644MTX/NOPB |
PCN组件/产地 | |
PCN设计/规格 | |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | 14-TSSOP |
共模抑制比—最小值 | 74 dB |
关闭 | No Shutdown |
其它名称 | LMH6644MTX/NOPBTR |
包装 | 带卷 (TR) |
压摆率 | 135 V/µs |
双重电源电压 | +/- 3 V, +/- 5 V |
商标 | Texas Instruments |
增益带宽积 | - |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 14-TSSOP(0.173",4.40mm 宽) |
封装/箱体 | TSSOP-14 |
工作温度 | -40°C ~ 85°C |
工作电源电压 | 3 V, 5 V, 9 V, 12 V |
工厂包装数量 | 2500 |
放大器类型 | 电压反馈 |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 2,500 |
电压-电源,单/双 (±) | 2.7 V ~ 12.8 V, ±1.35 V ~ 6.4 V |
电压-输入失调 | 1mV |
电流-电源 | 2.7mA |
电流-输入偏置 | 20nA |
电流-输出/通道 | 75mA |
电源电流 | 2.7 mA |
电路数 | 4 |
系列 | LMH6644 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
转换速度 | 135 V/us |
输入偏压电流—最大 | 3.25 uA |
输入补偿电压 | 5 mV |
输出电流 | 75 mA |
输出类型 | 满摆幅 |
通道数量 | 4 Channel |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 LMH664x Low Power, 130 MHz, 75 mA Rail-to-Rail Output Amplifiers 1 Features 3 Description (V = ±5 V, T = 25°C, R = 2 kΩ, A = +1. The LMH664X family true single supply voltage 1 S A L V TypicalValuesUnlessSpecified). feedback amplifiers offer high speed (130 MHz), low distortion (−62 dBc), and exceptionally high output • −3dBBW(A =+1)130MHz V current (approximately 75 mA) at low cost and with • SupplyVoltageRange2.7Vto12.8V reduced power consumption when compared against • SlewRate,(A =−1)130V/µs(1) existingdeviceswithsimilarperformance. V • SupplyCurrent(noload)2.7mA/amp Input common mode voltage range extends to 0.5 V below V− and 1 V from V+. Output voltage range • OutputShortCircuitCurrent+115mAto145mA extends to within 40 mV of either supply rail, allowing • LinearOutputCurrent±75mA wide dynamic range especially desirable in low • InputCommonModeVolt.0.5VBeyondV−,1V voltage applications. The output stage is capable of fromV+ approximately 75 mA in order to drive heavy loads. • OutputVoltageSwing40mVfromRails Fast output Slew Rate (130 V/µs) ensures large peak-to-peak output swings can be maintained even • InputVoltageNoise(100kHz)17nV/√Hz at higher speeds, resulting in exceptional full power • InputCurrentNoise(100kHz)0.9pA/√Hz bandwidth of 40 MHz with a 3 V supply. These • THD(5MHz,R =2kΩ,V =2V ,A =+2)−62 characteristics, along with low cost, are ideal features L O PP V dBc for a multitude of industrial and commercial applications. • SettlingTime68ns • FullyCharacterizedfor3V,5V,and ±5V DeviceInformation(1) • OverdriveRecovery100ns PARTNUMBER PACKAGE BODYSIZE(NOM) • OutputShortCircuitProtected(2) SOT-23(5) 2.90mm×1.60mm LMH6642 • NoOutputPhaseReversalwithCMVRExceeded SOIC(8) 4.90mm×3.91mm SOIC(8) (1)Slewrateistheaverageoftherisingandfallingslewrates LMH6643 3.00mm×3.00mm VSSOP(8) (2)OutputshortcircuitdurationisinfiniteforV <6Vatroom S SOIC(14) 8.64mm×3.91mm temperatureandbelow.ForVS>6V,allowableshortcircuit LMH6644 durationis1.5ms. TSSOP(14) 5.00mm×4.40mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. 2 Applications • ActiveFilters ClosedLoopGainvs.Frequency forVariousSupplies • CD/DVDROM 8.0 • ADCBufferAmp ±1.5V 6.0 • PortableVideo 4.0 • CurrentSenseBuffer ±5 2.0 )B 0.0 ±2.5V d ( N IA G VO= 0.2VPP AV= +2 RF= RL= 2k 100k 1M 10M 200M FREQUENCY(Hz) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com Table of Contents 1 Features.................................................................. 1 8.2 FunctionalBlockDiagram.......................................21 2 Applications........................................................... 1 8.3 FeatureDescription.................................................21 3 Description............................................................. 1 8.4 DeviceFunctionalModes........................................21 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 22 9.1 ApplicationInformation............................................22 5 Description(continued)......................................... 3 9.2 TypicalApplication..................................................22 6 PinConfigurationandFunctions......................... 4 10 PowerSupplyRecommendations..................... 24 7 Specifications......................................................... 5 11 Layout................................................................... 25 7.1 AbsoluteMaximumRatings......................................5 11.1 LayoutGuidelines.................................................25 7.2 HandlingRatings.......................................................5 11.2 LayoutExample....................................................25 7.3 RecommendedOperatingConditions.......................5 12 DeviceandDocumentationSupport................. 26 7.4 ThermalInformation..................................................5 7.5 3VElectricalCharacteristics....................................6 12.1 RelatedLinks........................................................26 7.6 5VElectricalCharacteristics....................................8 12.2 Trademarks...........................................................26 7.7 ±5VElectricalCharacteristics................................10 12.3 ElectrostaticDischargeCaution............................26 7.8 TypicalPerformanceCharacteristics......................12 12.4 Glossary................................................................26 8 DetailedDescription............................................ 21 13 Mechanical,Packaging,andOrderable Information........................................................... 26 8.1 Overview.................................................................21 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionP(March2013)toRevisionQ Page • Added,revised,orupdatedthefollowingsections:DeviceInformationTable,ApplicationandImplementation;Power SupplyRecommendations;DeviceandDocumentationSupport;Mechanical,Packaging,andOrderingInformation ........1 • Changed"JunctionTemperatureRange"to"OperatingTemperatureRange"...................................................................... 5 • DeletedT =25°CforElectricalCharacteristicstables.......................................................................................................... 6 J • Changedfrom"R "to"Rf"..................................................................................................................................................... 6 L • DeletedT =25°CforTypicalPerformanceCharacteristics................................................................................................ 12 J ChangesfromRevisionO(March2013)toRevisionP Page • ChangedlayoutofNationalDataSheettoTIformat............................................................................................................. 1 2 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 5 Description (continued) Careful attention has been paid to ensure device stability under all operating voltages and modes. The result is a very well behaved frequency response characteristic (0.1dB gain flatness up the 12 MHz under 150 Ω load and A = +2) with minimal peaking (typically 2dB maximum) for any gain setting and under both heavy and light V loads. This along with fast settling time (68ns) and low distortion allows the device to operate well in an ADC bufferaswellashighfrequencyfilterapplications. This device family offers professional quality video performance with low DG (0.01%) and DP (0.01°) characteristics. Differential Gain and Differential Phase characteristics are also well maintained under heavy loads (150 Ω) and throughout the output voltage range. The LMH664X family is offered in single (LMH6642), dual(LMH6643),andquad(LMH6644)options. Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 6 Pin Configuration and Functions 5-PinSOT-23(LMH6642) 8-PinSOIC(LMH6642) PackageDBV05A PackageD08A TopView TopView 1 5 + 1 8 OUTPUT V N/C N/C 2 7 + -IN - V - 2 V 3 6 + - +IN + OUTPUT +IN 3 4 -IN V- 4 5 N/C 8-PinSOICandVSSOP(LMH6643) 14-PinSOICand14-PinTSSOP(LMH6644) PackageDGK08A PackageD14A,PW14A TopView TopView OUT A 1 8 V+ OUT A 1 14 OUT D 2 A D 13 A ±IN A ± + + ± ±IN D 2 - + 7 3 12 -IN A OUT B +IN A +IN D 4 11 V+ V± +IN A 3 B 6 -IN B +IN B 5 10 +IN C + - ±IN B 6 ±B+ +C± 9 ±IN C 4 5 V- +IN B 7 8 OUT B OUT C PinFunctions PIN LMH6642 LMH6643 LMH6644 I/O DESCRIPTION NAME D14Aand DBV05A D08A DGK08A PW14A -IN 4 2 I InvertingInput +IN 3 3 I Non-invertingInput -INA 2 2 I ChAInvertingInput +INA 3 3 I ChANon-invertingInput -INB 6 6 I ChBInvertingInput +INB 5 5 I ChBNon-invertingInput -INC 9 I ChCInvertingInput +INC 10 I ChCNon-invertingInput -IND 13 I ChDInvertingInput +IND 12 I ChDNon-invertingInput N/C 1,5,8 –– Noconnection OUTA 1 1 O ChAOutput OUTB 7 7 O ChBOutput OUTC 8 O ChCOutput OUTD 14 O ChDOutput OUTPUT 1 6 O Output V- 2 4 4 11 I NegativeSupply V+ 5 7 8 4 I PositiveSupply 4 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 7 Specifications 7.1 Absolute Maximum Ratings(1)(2) overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT V Differential ±2.5 V IN OutputShortCircuitDuration See (3)and (4) SupplyVoltage(V+-V−) 13.5 V V++0.8 VoltageatInput/Outputpins V−−0.8 V InputCurrent ±10 mA JunctionTemperature(5) +150 °C InfraredorConvectionReflow(20sec) 235 °C SolderingInformation WaveSolderingLeadTemp.(10sec) 260 °C (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthetest conditions,seetheElectricalCharacteristics. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTISalesOffice/Distributorsforavailabilityandspecifications. (3) Appliestobothsingle-supplyandsplit-supplyoperation.Continuousshortcircuitoperationatelevatedambienttemperaturecanresultin exceedingthemaximumallowedjunctiontemperatureof150°C. (4) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5ms. S S (5) ThemaximumpowerdissipationisafunctionofT ,R ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) θJA A temperatureisP =(T -T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A θJA 7.2 Handling Ratings MIN MAX UNIT T Storagetemperaturerange −65 +150 °C stg Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001, 2000 allpins(2) V(ESD) Edilsecchtraorsgtea(t1ic) Machinemodel(MM)(3) 200 V Chargeddevicemodel(CDM),perJEDECspecification 1000 JESD22-C101,allpins(4) (1) Humanbodymodel,1.5kΩinserieswith100pF.MachineModel,0Ωinserieswith200pF. (2) JEDECdocumentJEP155statesthat2000-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (3) JEDECdocumentJEP157statesthat200-VMMallowssafemanufacturingwithastandardESDcontrolprocess. (4) JEDECdocumentJEP157statesthat1000-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3 Recommended Operating Conditions(1) overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT SupplyVoltage(V+–V−) 2.7 12.8 V OperatingTemperatureRange(2) −40 +85 °C (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthetest conditions,seetheElectricalCharacteristics. (2) ThemaximumpowerdissipationisafunctionofT ,R ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) θJA A temperatureisP =(T -T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A θJA 7.4 Thermal Information LMH6642 LMH6643 LMH6644 THERMALMETRIC(1) DBV05A D08A DGK08A D14A PW14A UNIT 5PINS 8PINS 8PINS 14PINS 14PINS R Junction-to-ambientThermalResistance(2) 265 190 235 145 155 °C/W θJA (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. (2) ThemaximumpowerdissipationisafunctionofT ,R ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) θJA A temperatureisP =(T -T )/R .AllnumbersapplyforpackagessoldereddirectlyontoaPCboard. D J(MAX) A θJA Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 7.5 3V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforV+=3V,V−=0V,V =V =V+/2,V (inputdifferentialvoltage)asnoted CM O ID (whereapplicable)andR =2kΩtoV+/2. L PARAMETER TESTCONDITIONS AT V+=3V,V−=0V, UNIT TEMPERATURE V =V =V+/2,V CM O ID EXTREMES R =2kΩtoV+/2 L MIN TYP MAX MIN(1) TYP(2) MAX(1) BW −3dBBW A =+1,V =200mV 80 115 V OUT PP MHz A =+2,−1,V =200mV 46 V OUT PP BW 0.1dBGain A =+2,R =150ΩtoV+/2, MHz 0.1dB V L 19 Flatness Rf=402Ω,V =200mV OUT PP PBW FullPower A =+1,−1dB,V =1V MHz V OUT PP 40 Bandwidth e Input-Referred f=100kHz 17 n VoltageNoise nV/√Hz f=1kHz 48 i Input-Referred f=100kHz 0.90 n CurrentNoise pA/√Hz f=1kHz 3.3 THD TotalHarmonic f=5MHz,V =2V ,A =−1, Distortion R =100ΩtOoV+/2PP V −48 dBc L DG DifferentialGain V =1V,NTSC,A =+2 RCM=150ΩtoV+/2 V 0.17% L R =1kΩtoV+/2 0.03% L DP Differential V =1V,NTSC,A =+2 Phase RCLM=150ΩtoV+/2 V 0.05 deg R =1kΩtoV+/2 0.03 L CTRej. Cross-Talk f=5MHz,Receiver: dB 47 Rejection R =R =510Ω,A =+2 f g V T SettlingTime V =2V ,±0.1%,8pFLoad, ns S O PP 68 V =5V S SR SlewRate (3) A =−1,V =2V 90 120 V/µs V I PP V InputOffset ForLMH6642andLMH6644 ±7 ±1 ±5 OS Voltage mV ForLMH6643 ±7 ±1 ±3.4 TCV InputOffset See (4) µV/°C OS ±5 AverageDrift I InputBias See (5) B −3.25 −1.50 −2.60 µA Current I InputOffset OS 1000 20 800 nA Current R CommonMode MΩ IN 3 InputResistance (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Slewrateistheaverageoftherisingandfallingslewrates. (4) OffsetvoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesbythetotaltemperaturechange. OS (5) Positivecurrentcorrespondstocurrentflowingintothedevice. 6 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 3V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforV+=3V,V−=0V,V =V =V+/2,V (inputdifferentialvoltage)asnoted CM O ID (whereapplicable)andR =2kΩtoV+/2. L PARAMETER TESTCONDITIONS AT V+=3V,V−=0V, UNIT TEMPERATURE V =V =V+/2,V CM O ID EXTREMES R =2kΩtoV+/2 L MIN TYP MAX MIN(1) TYP(2) MAX(1) C CommonMode pF IN Input 2 Capacitance CMVR InputCommon- CMRR≥50dB −0.1 −0.5 −0.2 ModeVoltage V Range 1.6 1.8 2.0 CMRR CommonMode V Steppedfrom0Vto1.5V dB CM 72 95 RejectionRatio A LargeSignal V =0.5Vto2.5V VOL VoltageGain RO=2kΩtoV+/2 75 80 96 L dB V =0.5Vto2.5V RO=150ΩtoV+/2 70 74 82 L V OutputSwing R =2kΩtoV+/2,V =200mV 2.90 2.98 O L ID High R =150ΩtoV+/2,V =200mV 2.80 2.93 V L ID OutputSwing R =2kΩtoV+/2,V =−200mV 25 75 L ID Low R =150ΩtoV+/2,V =−200mV 75 150 mV L ID I OutputShort SourcingtoV+/2 SC CircuitCurrent V =200mV (6) 35 50 95 ID mA SinkingtoV+/2 V =−200mV (6) 40 55 110 ID I OutputCurrent V =0.5Vfromeithersupply ±65 mA OUT OUT +PSRR PositivePower V+=3.0Vto3.5V,V =1.5V dB CM Supply 75 85 RejectionRatio I SupplyCurrent NoLoad S 4.50 2.70 4.00 mA (perchannel) (6) Shortcircuittestisamomentarytest.SeeNote7under5VElectricalCharacteristics. Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 7.6 5V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforV+=5V,V−=0V,V =V =V+/2,V (inputdifferentialvoltage)asnoted CM O ID (whereapplicable)andR =2kΩtoV+/2. L V+=5V,V−=0V, UNIT ATTEMPERATURE V =V =V+/2,V PARAMETER TESTCONDITIONS EXTREMES CRM =2OkΩtoV+/2ID L MIN TYP MAX MIN(1) TYP(2) MAX(1) BW −3dBBW A =+1,V =200mV 90 120 V OUT PP MHz A =+2,−1,V =200mV 46 V OUT PP BW 0.1dBGain A =+2,R =150ΩtoV+/2, MHz 0.1dB V L 15 Flatness R =402Ω,V =200mV f OUT PP PBW FullPower A =+1,−1dB,V =2V MHz V OUT PP 22 Bandwidth e Input-Referred f=100kHz 17 n VoltageNoise nV/√Hz f=1kHz 48 i Input-Referred f=100kHz 0.90 n CurrentNoise pA/√Hz f=1kHz 3.3 THD TotalHarmonic f=5MHz,V =2V ,A =+2 dBc O PP V −60 Distortion DG DifferentialGain NTSC,A =+2 R =150ΩVtoV+/2 0.16% L R =1kΩtoV+/2 0.05% L DP Differential NTSC,A =+2 Phase RL=150VΩtoV+/2 0.05 deg R =1kΩtoV+/2 0.01 L CTRej. Cross-Talk f=5MHz,Receiver: 47 dB Rejection R =R =510Ω,A =+2 f g V T SettlingTime V =2V ,±0.1%,8pFLoad 68 ns S O PP SR SlewRate (3) A =−1,V =2V 95 125 V/µs V I PP V InputOffset ForLMH6642andLMH6644 ±7 ±1 ±5 OS Voltage mV ForLMH6643 ±7 ±1 ±3.4 TCV InputOffset See (4) µV/°C OS ±5 AverageDrift I InputBias See (5) B −3.25 −1.70 −2.60 µA Current I InputOffset OS 1000 20 800 nA Current R CommonMode MΩ IN Input 3 Resistance C CommonMode pF IN Input 2 Capacitance CMVR InputCommon- CMRR≥50dB −0.1 −0.5 −0.2 ModeVoltage V Range 3.6 3.8 4.0 CMRR CommonMode V Steppedfrom0Vto3.5V dB CM 72 95 RejectionRatio A LargeSignal V =0.5Vto4.50V VOL VoltageGain RO=2kΩtoV+/2 82 86 98 L dB V =0.5Vto4.25V RO=150ΩtoV+/2 72 76 82 L (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Slewrateistheaverageoftherisingandfallingslewrates. (4) OffsetvoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesbythetotaltemperaturechange. OS (5) Positivecurrentcorrespondstocurrentflowingintothedevice. 8 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 5V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforV+=5V,V−=0V,V =V =V+/2,V (inputdifferentialvoltage)asnoted CM O ID (whereapplicable)andR =2kΩtoV+/2. L V+=5V,V−=0V, UNIT ATTEMPERATURE V =V =V+/2,V PARAMETER TESTCONDITIONS EXTREMES CRM =2OkΩtoV+/2ID L MIN TYP MAX MIN(1) TYP(2) MAX(1) V OutputSwing R =2kΩtoV+/2,V =200mV 4.90 4.98 O L ID High R =150ΩtoV+/2,V =200mV 4.65 4.90 V L ID OutputSwing R =2kΩtoV+/2,V =−200mV 25 100 L ID Low R =150ΩtoV+/2,V =−200mV 100 150 mV L ID I OutputShort SourcingtoV+/2 SC CircuitCurrent V =200mV (6)(7) 40 55 115 ID mA SinkingtoV+/2 V =−200mV (6)(7) 55 70 140 ID I OutputCurrent V =0.5Vfromeithersupply ±70 mA OUT O +PSRR PositivePower V+=4.0Vto6V dB Supply 79 90 RejectionRatio I SupplyCurrent NoLoad S 5.00 2.70 4.25 mA (perchannel) (6) Shortcircuittestisamomentarytest.SeeNote7. (7) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5ms. S S Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 7.7 ±5V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforV+=5V,V−=−5V,V =V =0V,V (inputdifferentialvoltage)asnoted CM O ID (whereapplicable)andR =2kΩtoground. L ATTEMPERATURE V+=5V,V−=−5V, UNIT PARAMETER TESTCONDITIONS EXTREMES VCM=VO=0V,VID MIN TYP MAX MIN(1) TYP(2) MAX(1) BW −3dBBW A =+1,V =200mV 95 130 V OUT PP MHz A =+2,−1,V =200mV 46 V OUT PP BW 0.1dBGain A =+2,R =150ΩtoV+/2, MHz 0.1dB V L 12 Flatness R =806Ω,V =200mV f OUT PP PBW FullPower A =+1,−1dB,V =2V MHz V OUT PP 24 Bandwidth e Input-Referred f=100kHz 17 n VoltageNoise nV/√Hz f=1kHz 48 i Input-Referred f=100kHz 0.90 n CurrentNoise pA/√Hz f=1kHz 3.3 THD TotalHarmonic f=5MHz,V =2V ,A =+2 dBc O PP V −62 Distortion DG DifferentialGain NTSC,A =+2 R =150VΩtoV+/2 0.15% L R =1kΩtoV+/2 0.01% L DP Differential NTSC,A =+2 Phase RL=150VΩtoV+/2 0.04 deg R =1kΩtoV+/2 0.01 L CTRej. Cross-Talk f=5MHz,Receiver: 47 dB Rejection R =R =510Ω,A =+2 f g V T SettlingTime V =2V ,±0.1%,8pFLoad, ns S O PP 68 V =5V S SR SlewRate (3) A =−1,V =2V 100 135 V/µs V I PP V InputOffset ForLMH6642andLMH6644 ±7 ±1 ±5 OS Voltage mV ForLMH6643 ±7 ±1 ±3.4 TCV InputOffset See (4) µV/°C OS ±5 AverageDrift I InputBias See (5) B −3.25 −1.60 −2.60 µA Current I InputOffset OS 1000 20 800 nA Current R CommonMode MΩ IN Input 3 Resistance C CommonMode pF IN Input 2 Capacitance CMVR InputCommon- CMRR≥50dB −5.1 −5.5 −5.2 ModeVoltage V Range 3.6 3.8 4.0 CMRR CommonMode V Steppedfrom−5Vto3.5V dB CM 74 95 RejectionRatio (1) Alllimitsareensuredbytestingorstatisticalanalysis. (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Slewrateistheaverageoftherisingandfallingslewrates. (4) OffsetvoltageaveragedriftdeterminedbydividingthechangeinV attemperatureextremesbythetotaltemperaturechange. OS (5) Positivecurrentcorrespondstocurrentflowingintothedevice. 10 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 ±5V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforV+=5V,V−=−5V,V =V =0V,V (inputdifferentialvoltage)asnoted CM O ID (whereapplicable)andR =2kΩtoground. L ATTEMPERATURE V+=5V,V−=−5V, UNIT PARAMETER TESTCONDITIONS EXTREMES VCM=VO=0V,VID MIN TYP MAX MIN(1) TYP(2) MAX(1) A LargeSignal V =−4.5Vto4.5V, VOL O 84 88 96 VoltageGain R =2kΩ L dB V =−4.0Vto4.0V, O 74 78 82 R =150Ω L V OutputSwing R =2kΩ,V =200mV 4.90 4.96 O L ID High V R =150Ω,V =200mV 4.65 4.80 L ID OutputSwing R =2kΩ,V =−200mV −4.96 −4.90 L ID Low V R =150Ω,V =−200mV −4.80 −4.65 L ID I OutputShort SourcingtoGround SC CircuitCurrent V =200mV (6)(7) 35 60 115 ID mA SinkingtoGround V =−200mV (6)(7) 65 85 145 ID I OutputCurrent V =0.5Vfromeithersupply ±75 mA OUT O PSRR PowerSupply (V+,V−)=(4.5V,−4.5V)to(5.5V, dB 78 90 RejectionRatio −5.5V) I SupplyCurrent NoLoad S 5.50 2.70 4.50 mA (perchannel) (6) Shortcircuittestisamomentarytest.See(7). (7) OutputshortcircuitdurationisinfiniteforV <6Vatroomtemperatureandbelow.ForV >6V,allowableshortcircuitdurationis1.5ms. S S Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 7.8 Typical Performance Characteristics V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L +3 VS = ±1.5V +2 VS = ±5V 0 RL = 2k VS = ±2.5V )B +1 VOUT = 0.2VPP -1 VS = ±5V d( N 0 )Bd -2 IAG -1 ( NIAG -3 VSV S= =± 1±.25.V5V DEZILA --32 AAV V= =+ 1+05 M AV = +1 VS = ±5V RO AV = +2 N RL = 2k AV = +1 VOUT = 0.2VPP 100k 1M 10M 200M 500 10k 100k 1M 10M 100M FREQUENCY (Hz) M FREQUENCY (Hz) Figure1.ClosedLoopFrequencyResponse Figure2.ClosedLoopGainvs.Frequency forVariousSupplies forVariousGain +3 85°C +2 VRSL == 2±k1.5V AV = +1 0 -40°C )B +1 VOUT = 0.2VPP -2 25°C d( N 0 -4 IAG -1 )B -6 DE -2 AV = +10 d( N ZILA -3 IAG M RO AV = +5 VS = ±1.5V N RL = 2k AV = +2 AV = +1 VO = 0.2VPP 10k 100k 1M 10M 100M 500M 10k 100k 1M 10M 100M 500M FREQUENCY (Hz) FREQUENCY (Hz) Figure3.ClosedLoopGainvs.Frequency Figure4.ClosedLoopFrequencyResponse forVariousGain forVariousTemperature ±1.5V 85°C 7.0 ±2.5V 0 6.5 -2 25°C 6.0 -4 ±5V )Bd( N 55..50 )Bd( N IAG IAG AV = +2 VS = ±5V RF = 2k RL = 2k -40°C RL = 150 AV = +1 VO = 0.2VPP VOUT = 0.2VPP 100k 1M 10M 200M 10k 100k 1M 10M 100M 500M FREQUENCY (Hz) FREQUENCY (Hz) Figure5.ClosedLoopGainvs.Frequency Figure6.ClosedLoopFrequencyResponse forVariousSupplies forVariousTemperature 12 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L 8.0 8.0 ±2.5V ±1.5V 6.0 2VPP 6.0 4.0 ±5V 4.0 4VPP ±5 2.0 2.0 )Bd( NIAG 0.0 )Bd( NIA 0.0 ±2.5V G AV = +2 VO= 0.2VPP RF = RL = 2k AV= +2 RF= RL= 2k 100k 1M 10M 200M FREQUENCY (Hz) 100k 1M 10M 200M FREQUENCY(Hz) Figure7.LargeSignalFrequencyResponse Figure8.ClosedLoopSmallSignalFrequencyResponse forVariousSupplies ±5V 6 ±1.5V 4 ±1.5V +0.3 ±2.5V 2 +0.2 )Bd( NIAG 0 VO = 0.4VPP ±2.5V )Bd( NIAG +-00..011 VOG =A 0IN.4VPP P±H5VASE ±5V +--226055 )ged( ESAHP ARRVFL ==(cid:3) 1+850206:: ARRVFL === 1+850206:: ±2±.15.V5V --115150 100K 1M 10M 200M 100K 1M 10M 200M FREQUENCY (Hz) FREQUENCY (Hz) Figure9.ClosedLoopFrequencyResponse Figure10.±0.1dBGainFlatness forVariousSupplies forVariousSupplies 3 5 RL = 2k 4 RL = 100: 2 )P )P 3 P P V V ( T ( T U U O O 2 V V 1 VS = 5V 1 AV = -1 VS = 3V Rf = 2k AV = -1 RL = 2K to VS/2 0 0 100k 1M 10M 100M 100K 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) Figure11.V (V )forTHD<0.5% Figure12.V (V )forTHD<0.5% OUT PP OUT PP Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L 10 80 85°C 9 RL = 8 2K 60 PHASE 7 )V( VPPTUO 465 )Bd( NIAG 2400 -40°C GAIN 4600 ge)D( ESAH P 3 20 2 RL = 100: 0 0 VS = ±5V VS = ±1.5V 1 AV = -1 RL= 2k 25°C 0 -20 100k 1M 10M 100M 10k 100k 1M 10M 150M FREQUENCY (Hz) FREQUENCY (Hz) Figure14.OpenLoopGain/Phase Figure13.V (V )forTHD<0.5% OUT PP forVariousTemperature 80 -80 85°C GAIN -75 60 -70 PHASE -65 5MHz )Bd( NIAG 2400 25°C 4600 )geD( ESAHP )cBd( 2DH ---556050 20 -45 10MHz 0 VS = ±5V -40°C 0 -40 VASV == 5-1V RL = 2k -35 RL = 2k to VS/2 -20 -30 10k 100k 1M 10M 150M 0 1 2 3 4 5 FREQUENCY (Hz) VOUT (VPP) Figure15.OpenLoopGain/Phase Figure16.HD2(dBc)vs.OutputSwing forVariousTemperature -80 -90 100:,1MHz -75 -80 -70 100:(cid:15)(cid:3)5MHz -65 -70 5MHz 2k:, 5MHz )cB -60 )cB -60 d( 3 -55 d( 2 D D -50 H -50 H 2k:, 10MHz -45 -40 -40 VS = 5V 100:, 10MHz AV = -1 10MHz -30 VS = 5V, AV = +2 -35 RL = 2k to VS/2 RL = 2k: & 100: to VS/2 -30 -20 0 1 2 3 4 5 0.0 1.0 2.0 3.0 4.0 5.0 VOUT (VPP) VOUT (VPP) Figure18.HD2vs.OutputSwing Figure17.HD3(dBc)vs.OutputSwing 14 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L -90 -80 -75 RL = 2k TO VS/2 -80 100:,1MHz -70 VS = 5V AV = -1 -70 -65 )cBd( 3 -60 2k:,10MHz 2k:,5MHz )cBd( D --5650 5MHz DH -50 HT -50 -40 100:, -45 5MHz -40 -30 VS = 5V, AV = +2 -35 10MHz RL = 2k: &100: to VS/2 100:, 10MHz -20 -30 0.0 1.0 2.0 3.0 4.0 5.0 0 1 2 3 4 5 VOUT (VPP) VOUT (VPP) Figure19.HD3vs.OutputSwing Figure20.THD(dBc)vs.OutputSwing 80 1k 100 70 E 60 MIT 100 10 GNILTTES %1 345000 VS = 5V Hz)/Vn( en 10 CURRENT VOLTAGE 1 Hz)A/p (in .0± 20 AV = -1 10 Rf = RL = 2k CL = 8pF 0 1 0.1 0.5 1 1.5 2 10 100 1K 10K 100K 1M INPUT STEP AMPLITUDE (VPP) FREQUENCY (Hz) Figure22.InputNoisevs.Frequency Figure21.SettlingTimevs.InputStepAmplitude (OutputSlewandSettleTime) 10 10 VS = ±1.5V VS=±1.5V +)V( V MORF VTUO 0.11 85°C -)V( V MORF VTUO 0.11 85°C -40°C -40°C 25°C 25°C 0.01 0.01 1 10 100 1k 1 10 100 1K ISOURCE (mA) ISINK (mA) Figure23.VOUTfromV+vs.ISOURCE Figure24.VOUTfromV−vs.ISINK Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L 10 10 VS = ±5V 85°C VS = ±5V -40°C 25°C +)V( V 1 -)V( V 1 M M ORF TUO 0.1 8C5° ORF TUO 0.1 85°C V -40°C V -40°C 25°C 0.01 0.01 1 10 100 1k 1 10 100 1k ISOURCE (mA) ISINK (mA) Figure25.V fromV+vs.I Figure26.V fromV−vs.I OUT SOURCE OUT SINK 160 180 RL = 150: 85°C, Sourcing 160 85°C, Sink -40°C, Sink 140 25°C, Sink )V 25°C, Sourcing 140 m( Y 120 120 L -40°C, Sourcing PPU 100 )Am 100 S MO 80 (I CS 80 25°C, Source RF 60 85°C, Source TUO 60 85°C, Sinking 40 V 40 25°C, Sinking 20 -40°C, Source -40°C, Sinking 20 0 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 VS (V) VS (V) Figure27.Swingvs.VS Figure28.ShortCircuitCurrent(toVS/2)vs.VS 1 1 VS = ±2.5 0.9 0.9 VS = ±2.5V 0.8 85°C 0.8 -)V( V M 00..67 + )V(V MO 00..67 2 855°C°C O 0.5 25°C R 0.5 R F F T 0.4 TU 0.4 U O VO 0.3 V 0.3 0.2 0.2 -40°C 0.1 0.1 -40°C 0 0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 ISINK(mA) ISOURCING (mA) Figure29.OutputSinkingSaturationVoltagevs.I OUT Figure30.OutputSourcingSaturationVoltagevs.I OUT 16 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L 1000 90 AV = +1 80 VS = 5V 100 AV = +10 70 + PSRR 60 :)( TUO 10 )Bd( RR 4500 Z 1 SP - PSRR 30 0.1 20 10 0.01 0 1k 10k 100k 1M 10M 100M 10k 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) Figure31.ClosedLoopOutputImpedance Figure32.PSRRvs.Frequency vs.FrequencyA =+1 V 100 100 90 90 80 80 )Bd( RRMC 6700 )Bd( )jer( TC 6700 50 50 40 VS = 5V 40 AV = +6 Receive CH.: AV = +2, Rf = Rg = 510 30 30 100 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure33.CMRRvs.Frequency Figure34.CrosstalkRejectionvs.Frequency (OutputtoOutput) 1 2 0.8 VRSL == 51V50: to V+/2 1.5 VS = 10V 0.6 1.0 0.4 85°C )Vm( VSO 0.02 85°C )Vm( SO 0.05 25°C -0.2 V -0.5 -0.4 25°C -40°C -1 -0.6 -1.5 -0.8 -40°C -1 -2 0 1 2 3 4 5 -2 0 2 4 6 8 10 VOUT (V) VCM (V) Figure35.VOSvs.VOUT(TypicalUnit) Figure36.VOSvs.VCM(TypicalUnit) Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L 1 1 -40°C 0.8 0.8 Unit #1 Unit #1 0.6 0.6 25°C 0.4 0.4 )V 0.2 )V 0.2 m m ( S 0 ( S 0 Unit #2 O O V -0.2 V -0.2 Unit #2 -0.4 -0.4 Unit #3 -0.6 -0.6 Unit #3 -0.8 -0.8 -1 -1 2 4 6 8 10 12 2 3 4 5 6 7 8 9 10 11 VS (V) VS (V) Figure37.V vs.V (for3RepresentativeUnits) Figure38.V vs.V (for3RepresentativeUnits) OS S OS S 1 -1000 0.8 -1100 85°C Unit #1 0.6 -1200 -40°C 0.4 -1300 )Vm( SO 0.02 Unit #2 )An( IB --11540000 25°C V -0.2 -1600 -0.4 85°C -1700 -0.6 Unit #3 -0.8 -1800 -1 -1900 2 3 4 5 6 7 8 9 10 12 2 4 6 8 10 12 VS (V) VS (V) Figure39.VOSvs.VS(for3RepresentativeUnits) Figure40.IBvs.VS 50 4 45 3.5 VS = 10V 85°C 40 )L 3 35 ENN 2.5 25°C )An(ISO 12235050 -40°C 25°C AHC REP( )Am 1.152 -40°C 10 ( IS 0.5 5 85°C 0 0 -0.5 2 4 6 8 10 12 -2 0 2 4 6 8 10 VS (V) VCM (V) Figure41.IOSvs.VS Figure42.ISvs.VCM 18 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L 4 VS = 3V 85°C VO = 100mVPP RL = 2k to VS/2 )LE AV = -1 NN 3 AH 25°C C R E P ( )A 2 -40°C m ( S I 1 40 mV/DIV 20 ns/DIV 2 4 6 8 10 12 VS (V) Figure43.ISvs.VS Figure44.SmallSignalStepResponse AV = +2 VS = ±5V VO = 8VPP AV = +1 RL= 2k VS=±1.5V VO=2VPP AV= -1 RL=2k 4 /DIV 200.0 ns/DIV 400 mV/DIV 40.0 nS/DIV Figure45.LargeSignalStepResponse Figure46.LargeSignalStepResponse VS = 3V VS = ±5V VO = 100mVPP VO = 100mVPP RL = 2k to VS/2 AV = +1, RL = 2k AV = +1 40 mV/DIV 10 ns/DIV 40 mV/DIV 10.0 ns/DIV Figure47.SmallSignalStepResponse Figure48.SmallSignalStepResponse Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com Typical Performance Characteristics (continued) V+=+5,V−=−5V,R =R =2kΩ.Unlessotherwisespecified. F L VS = ±5V VS = ±5V VO = 100mVPP VO = 200mVPP RL = 2k A RVL = = +22k, AV = -1 40 mV/DIV 20 ns/DIV 40 mV/DIV 20.0 ns/DIV Figure49.SmallSignalStepResponse Figure50.SmallSignalStepResponse VS = ±5V VS = ±5V VO = 8VPP VO = 2VPP AV = +2 RL = 2k RL = 2k AV = -1 2 V/DIV 40.0 ns/DIV 400 mV/DIV 20 ns/DIV Figure51.LargeSignalStepResponse Figure52.LargeSignalStepResponse AV = -1 VS = ±5V VOUT = 8VPP RL = 2K: 2 V/DIV 100 ns/DIV Figure53.LargeSignalStepResponse 20 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 8 Detailed Description 8.1 Overview The LMH664X family is based on proprietary VIP10 dielectrically isolated bipolar process. This device family architecturefeaturesthefollowing: • Complimentary bipolar devices with exceptionally high f (∼8 GHz) even under low supply voltage (2.7 V) and t lowbiascurrent. • A class A-B “turn-around” stage with improved noise, offset, and reduced power dissipation compared to similarspeeddevices(patentpending). • Common Emitter push-push output stage capable of 75 mA output current (at 0.5 V from the supply rails) while consuming only 2.7 mA of total supply current per channel. This architecture allows output to reach withinmVofeithersupplyrail. • Consistent performance over the entire operating supply voltage range with little variation for the most importantspecifications(forexample,BW,SR,I ,andsoforth) OUT • Significantpowersaving(∼40%)comparedtocompetitivedevicesonthemarketwithsimilarperformance. 8.2 Functional Block Diagram V+ V+ V+ R R IN+ IN- V- V- Figure54. InputEquivalentCircuit 8.3 Feature Description The LMH664X family is a drop-in replacement for the AD805X family of high speed Op Amps in most applications. In addition, the LMH664X will typically save about 40% on power dissipation, due to lower supply current, when compared to competition. All AD805X family’s specified parameters are included in the list of LMH664X ensured specifications in order to ensure equal or better level of performance. However, as in most high performance parts, due to subtleties of applications, it is strongly recommended that the performance of the parttobeevaluatedistestedunderactualoperatingconditionstoensurefullcompliancetoallspecifications. 8.4 Device Functional Modes With 3-V supplies and a common mode input voltage range that extends 0.5 V below V−, the LMH664X find applications in low voltage/low power applications. Even with 3-V supplies, the −3dB BW (@ A = +1) is typically V 115MHzwithatestedlimitof80MHz.Productiontestingguaranteesthatprocessvariationswillnotcompromise speed. High frequency response is exceptionally stable, confining the typical −3dB BW over the industrial temperaturerangeto ±2.5%. As seen in Typical Performance Characteristics, the LMH664X output current capability (∼75 mA) is enhanced compared to AD805X. This enhancement increases the output load range, adding to the LMH664X’s versatility. SinceLMH664Xiscapableofhighoutputcurrent,devicejunctiontemperatureshouldnottoexceedtheAbsolute MaximumRatings. Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information This device family was designed to avoid output phase reversal. With input overdrive, the output is kept near supplyrail(orasclosedtoitasmandatedbytheclosedloopgainsettingandtheinputvoltage).SeeFigure56. However, if the input voltage range of −0.5 V to 1 V from V+ is exceeded by more than a diode drop, the internal ESDprotectiondiodeswillstarttoconduct.Thecurrentinthediodesshouldbekeptatorbelow10mA. Outputoverdriverecoverytimeislessthan100nsascanbeseeninFigure57. 9.2 Typical Application Cf 5pF Vbias PEhqoutiovdalieondte Rf Circuit 1k: Rbias VCC = 10C01nF 2NQ39104 -1mAPP +5V - Photodiode Cd10 Rd x 1.R8k2: Vout R5 Id 200-pF ×100k: 510: + R11 D1 910 R10 1N4148 : 1k: R3 1k: +5V Figure55. SingleSupplyPhotodiodeI-VConverter 9.2.1 DesignRequirements The circuit shown in Figure 55 is used to amplify the current from a photodiode into a voltage output. In this circuit, the emphasis is on achieving high bandwidth and the transimpedance gain setting is kept relatively low. Because of its high slew rate limit and high speed, the LMH664X family lends itself well to such an application. This circuit achieves approximately 1V/mA of transimpedance gain and capable of handling up to 1mApp from the photodiode. Q1, in a common base configuration, isolates the high capacitance of the photodiode (Cd) from the Op Amp input in order to maximize speed. Input is AC coupled through C1 to ease biasing and allow single supply operation. With 5-V single supply, the device input/output is shifted to near half supply using a voltage divider from VCC. Note that Q1 collector does not have any voltage swing and the Miller effect is minimized. D1, tied to Q1 base, is for temperature compensation of Q1’s bias point. Q1 collector current was set to be large enough to handle the peak-to-peak photodiode excitation and not too large to shift the U1 output too far from mid-supply. 22 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 Typical Application (continued) 9.2.1.1 InputandOutputTopology All input / output pins are protected against excessive voltages by ESD diodes connected to V+ and V- rails (see Figure 54). These diodes start conducting when the input / output pin voltage approaches 1V beyond V+ or V- be to protect against over voltage. These diodes are normally reverse biased. Further protection of the inputs is provided by the two resistors (R in Figure 54), in conjunction with the string of anti-parallel diodes connected between both bases of the input stage. The combination of these resistors and diodes reduces excessive differential input voltages approaching 2V . This occurs most commonly when the device is used as a be comparator (or with little or no feedback) and the device inputs no longer follow each other. In such a case, the diodesmayconduct.Asaconsequence,inputcurrentincreasesandthedifferentialinputvoltageisclamped.Itis important to make sure that the subsequent current flow through the device input pins does not violate the Absolute Maximum Ratings of the device. To limit the current through this protection circuit, extra series resistors can be placed. Together with the built-in series resistors of several hundred ohms, these external resistors can limit the input current to a safe number (that is, less than 10mA). Be aware that these input series resistors may impacttheswitchingspeedofthedeviceandcouldslowdownthedevice. 9.2.1.2 SingleSupply,LowPowerPhotodiodeAmplifier The circuit shown in Figure 55 is used to amplify the current from a photodiode into a voltage output. In this circuit, the emphasis is on achieving high bandwidth and the transimpedance gain setting is kept relatively low. Becauseofitshighslewratelimitandhighspeed,theLMH664Xfamilylendsitselfwelltosuchanapplication. Thiscircuitachievesapproximately1V/mAoftransimpedancegainandcapableofhandlingupto1mA fromthe pp photodiode. Q1, in a common base configuration, isolates the high capacitance of the photodiode (C ) from the d Op Amp input in order to maximize speed. Input is AC coupled through C1 to ease biasing and allow single supply operation. With 5V single supply, the device input/output is shifted to near half supply using a voltage divider from V . Note that Q1 collector does not have any voltage swing and the Miller effect is minimized. D1, CC tied to Q1 base, is for temperature compensation of Q1’s bias point. Q1 collector current was set to be large enough to handle the peak-to-peak photodiode excitation and not too large to shift the U1 output too far from mid-supply. No matter how low an R is selected, there is a need for C in order to stabilize the circuit. The reason for this is f f that the Op Amp input capacitance and Q1 equivalent collector capacitance together (C ) will cause additional IN phase shift to the signal fed back to the inverting node. C will function as a zero in the feedback path counter- f acting the effect of the C and acting to stabilized the circuit. By proper selection of C such that the Op Amp IN f open loop gain is equal to the inverse of the feedback factor at that frequency, the response is optimized with a theoretical45° phasemargin. CF =(cid:2) SQRT (CIN)/(2S(cid:3)˜(cid:3)GBWP ˜(cid:3)RF) where • GBWPistheGainBandwidthProductoftheOpAmp (1) Optimizedassuch,theI-Vconverterwillhaveatheoreticalpole,f ,at: p f = SQRT GBWP/(2SR ˜(cid:3)C ) P F IN (2) With Op Amp input capacitance of 3pF and an estimate for Q1 output capacitance of about 3pF as well, C = 6 IN pF. From the typical performance plots, LMH6642/6643 family GBWP is approximately 57 MHz. Therefore, with R =1k,fromEquation1andEquation2: f C =∼4.1pFandf =39MHz (3) f p For this example, optimum C was empirically determined to be around 5 pF. This time domain response is f shown in Figure 58 below showing about 9 ns rise/fall times, corresponding to about 39 MHz for f . The overall p supplycurrentfromthe+5Vsupplyisaround5mAwithnoload. Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com Typical Application (continued) 9.2.2 DetailedDesignProcedure No matter how low an Rf is selected, there is a need for C in order to stabilize the circuit. The reason for this is f that the Op Amp input capacitance and Q1 equivalent collector capacitance together (C ) will cause additional IN phase shift to the signal fed back to the inverting node. C will function as a zero in the feedback path f counteracting the effect of the C and acting to stabilized the circuit. By proper selection of C such that the Op IN f Amp open loop gain is equal to the inverse of the feedback factor at that frequency, the response is optimized with a theoretical 45° phase margin where GBWP is the Gain Bandwidth Product of the Op Amp, Optimized as such, the I-V converter will have a theoretical pole, fp, at: (2) With Op Amp input capacitance of 3pF and an estimate for Q1 output capacitance of about 3pF as well, C = 6 pF. From the typical performance plots, IN LMH6642/6643 family GBWP is approximately 57 MHz. Therefore, with Rf = 1k, from Equation 2 and Equation3:C =∼4.1pFandfp=39MHz. f SingleSupplyPhotodiodeI-VConverterForthisexample,optimumC wasempiricallydeterminedtobearound5 f pF. This time domain response is shown in Figure 58 showing about 9 ns rise/fall times, corresponding to about 39MHzforfp.Theoverallsupplycurrentfromthe+5Vsupplyisaround5mAwithnoload. 9.2.3 ApplicationCurves VIN (1 V/DIV) Input Output + V )P P V (T U O V - VS = ±2.5V V VS=±5V, VIN=5VPP AV = +1 AV=+5, RF=RL=2k VOUT (2 V/DIV) 1V/DIV 200 ns/DIV 2 V/DIV 100 ns/DIV Figure56.InputandOutputShownwithCMVRExceeded Figure57.OverloadRecoveryWaveform 200 mV/DIV 20 ns/DIV Figure58.ConverterStepResponse(1V ,20ns/DIV) PP 10 Power Supply Recommendations The LMH664x device family can operate off a single supply or with dual supplies. The input CM capability of the parts (CMVR) extends all the way down to the V- rail to simplify single supply applications. Supplies should be decoupled with low inductance, often ceramic, capacitors to ground less than 0.5 inches from the device pins. The use of ground plane is recommended, and as in most high speed devices, it is advisable to remove ground planeclosetodevicesensitivepinssuchastheinputs. 24 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 www.ti.com SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 11 Layout 11.1 Layout Guidelines Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and possible circuit oscillations (see Application Note OA-15, "Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers", SNOA367, for more information). Texas Instruments suggests the following evaluation boardsasaguideforhighfrequencylayoutandasanaidindevicetestingandcharacterization: Table1.PrintedCircuitBoardLayoutAndComponentValues DEVICE PACKAGE EVALUATIONBOARDPN LMH6642MF 5-PinSOT-23 LMH730216 LMH6642MA 8-PinSOIC LMH730227 LMH6643MA 8-PinSOIC LMH730036 LMH6643MM 8-PinVSSOP LMH730123 LMH6644MA 14-PinSOIC LMH730231 LMH6644MT 14-PinTSSOP LMH730131 Another important parameter in working with high speed/high performance amplifiers, is the component values selection. Choosing external resistors that are large in value will effect the closed loop behavior of the stage because of the interaction of these resistors with parasitic capacitances. These capacitors could be inherent to thedeviceoraby-productoftheboardlayoutandcomponentplacement.Eitherway,keepingtheresistorvalues lower, will diminish this interaction to a large extent. On the other hand, choosing very low value resistors could loaddownnodesandwillcontributetohigheroverallpowerdissipation. 11.2 Layout Example Figure59.LMH6642/LMH6643/LMH6644Layer1 Figure60.LMH6642/LMH6643/LMH6644Layer2 Copyright©2001–2014,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:LMH6642 LMH6643 LMH6644
LMH6642,LMH6643,LMH6644 SNOS966Q–MAY2001–REVISEDSEPTEMBER2014 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table2.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LMH6642 Clickhere Clickhere Clickhere Clickhere Clickhere LMH6643 Clickhere Clickhere Clickhere Clickhere Clickhere LMH6644 Clickhere Clickhere Clickhere Clickhere Clickhere 12.2 Trademarks Alltrademarksarethepropertyoftheirrespectiveowners. 12.3 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.4 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 26 SubmitDocumentationFeedback Copyright©2001–2014,TexasInstrumentsIncorporated ProductFolderLinks:LMH6642 LMH6643 LMH6644
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMH6642MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 42MA LMH6642MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 42MA LMH6642MF NRND SOT-23 DBV 5 1000 TBD Call TI Call TI -40 to 85 A64A LMH6642MF/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 A64A & no Sb/Br) LMH6642MFX/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 A64A & no Sb/Br) LMH6643MA NRND SOIC D 8 95 TBD Call TI Call TI -40 to 85 LMH66 43MA LMH6643MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 43MA LMH6643MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 43MA LMH6643MM NRND VSSOP DGK 8 1000 TBD Call TI Call TI -40 to 85 A65A LMH6643MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 A65A & no Sb/Br) LMH6643MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 A65A & no Sb/Br) LMH6644MA/NOPB ACTIVE SOIC D 14 55 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH6644MA & no Sb/Br) LMH6644MAX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMH6644MA & no Sb/Br) LMH6644MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 44MT LMH6644MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 85 LMH66 & no Sb/Br) 44MT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMH6642MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMH6642MF SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMH6642MF/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMH6642MFX/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LMH6643MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMH6643MM VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMH6643MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMH6643MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMH6644MAX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMH6644MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 LMH6644MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMH6642MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMH6642MF SOT-23 DBV 5 1000 210.0 185.0 35.0 LMH6642MF/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LMH6642MFX/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LMH6643MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMH6643MM VSSOP DGK 8 1000 210.0 185.0 35.0 LMH6643MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LMH6643MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LMH6644MAX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMH6644MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 LMH6644MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0 PackMaterials-Page2
PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com
EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
None
None
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
None
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated