ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LME49721MA/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LME49721MA/NOPB产品简介:
ICGOO电子元器件商城为您提供LME49721MA/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LME49721MA/NOPB价格参考¥5.24-¥11.80。Texas InstrumentsLME49721MA/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 音频 放大器 2 电路 满摆幅 8-SOIC。您可以下载LME49721MA/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LME49721MA/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP AUDIO 20MHZ RRO 8SOIC音频放大器 5 Volt R-R Io Op Amp |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 音频 IC,音频放大器,Texas Instruments LME49721MA/NOPB- |
数据手册 | |
产品型号 | LME49721MA/NOPB |
PCN设计/规格 | |
THD+噪声 | 0.00008 % |
产品 | General Purpose Audio Amplifiers |
产品目录页面 | |
产品种类 | 音频放大器 |
供应商器件封装 | 8-SOIC |
其它名称 | LME49721MA |
包装 | 管件 |
压摆率 | 8.5 V/µs |
商标 | Texas Instruments |
增益带宽积 | 20MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | -40°C ~ 85°C |
工作电源电压 | 3 V, 5 V |
工厂包装数量 | 95 |
放大器类型 | 音频 |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 95 |
电压-电源,单/双 (±) | 2.2 V ~ 5.5 V, ±1.1 V ~ 2.75 V |
电压-输入失调 | 300µV |
电流-电源 | 2.15mA |
电流-输入偏置 | 0.04pA |
电流-输出/通道 | 9.7mA |
电源类型 | Single |
电路数 | 1 |
系列 | LME49721 |
输出类型 | 满摆幅 |
配用 | /product-detail/zh/LME49721MABD/LME49721MABD-ND/1681634 |
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 LME49721 High-Performance, High-Fidelity Rail-to-Rail Input/Output Audio Operational Amplifier CheckforSamples:LME49721 FEATURES DESCRIPTION 1 • Rail-to-RailInputandOutput The LME49721 is a low-distortion, low-noise Rail-to- 2 Rail Input/Output operational amplifier optimized and • EasilyDrives10kΩ LoadstoWithin10mVof fully specified for high-performance, high-fidelity EachPowerSupplyVoltage applications. Combining advanced leading-edge • OptimizedforSuperiorAudioSignalFidelity process technology with state-of-the-art circuit • OutputShortCircuitProtection design, the LME49721 Rail-to-Rail Input/Output operational amplifier delivers superior signal amplification for outstanding performance. The APPLICATIONS LME49721 combines a very high slew rate with low • UltraHigh-QualityPortableAudio THD+N to easily satisfy demanding applications. To Amplification ensure that the most challenging loads are driven without compromise, the LME49721 has a high slew • High-FidelityPreamplifiers rate of ±8.5V/μs and an output current capability of • High-FidelityMultimedia ±9.7mA. Further, dynamic range is maximized by an • State-of-the-ArtPhonoPreAmps output stage that drives 10kΩ loads to within 10mV of • High-PerformanceProfessionalAudio eitherpowersupplyvoltage. • High-FidelityEqualizationandCrossover The LME49721 has a wide supply range of 2.2V to Networks 5.5V. Over this supply range the LME49721’s input circuitry maintains excellent common-mode and • High-PerformanceLineDrivers power supply rejection, as well as maintaining its low • High-PerformanceLineReceivers input bias current. The LME49721 is unity gain • High-FidelityActiveFilters stable. • DACI–VConverter • ADCFront-EndSignalConditioning KEY SPECIFICATIONS • PowerSupplyVoltageRange:2.2Vto5.5V • QuiescentCurrent:2.15mA(typ) • THD+N(A =2,V =4V ,f =1kHz) V OUT p-p IN – R =2kΩ:0.00008%(typ) L – R =600Ω:0.0001%(typ) L • InputNoiseDensity:4nV/√Hz(typ),@1kHz • SlewRate:±8.5V/μs(typ) • GainBandwidthProduct:20MHz(typ) • OpenLoopGain(R =600Ω):118dB(typ) L • InputBiasCurrent:40fA(typ) • InputOffsetVoltage:0.3mV(typ) • PSRR:103dB(typ) 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2007–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL CONNECTION AND PINOUT +5V OUTPUTA 1 8 VDD VDD INVERTING INPUT A 2 7 OUTPUTB - -+ +- VIN + NON-INVERTING INPUT A 3 6 INVERTING INPUT B VSS 4 5 NON-INVERTING INPUT B VSS Figure1.BufferAmplifier Figure2.8-PinSOIC(DPackage) Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. ABSOLUTE MAXIMUM RATINGS(1)(2)(3) PowerSupplyVoltage(V =V+-V-) 6V S StorageTemperature −65°Cto150°C InputVoltage (V-) - 0.7Vto(V+) + 0.7V OutputShortCircuit(4) Continuous PowerDissipation InternallyLimited ESDRating(5) 2000V ESDRating(6) 200V JunctionTemperature 150°C ThermalResistance,θ (SOIC) 165°C/W JA TemperatureRange,T ≤T ≤T –40°C≤T ≤85°C MIN A MAX A SupplyVoltageRange 2.2V≤V ≤5.5V S (1) “AbsoluteMaximumRatings”indicatelimitsbeyondwhichdamagetothedevicemayoccur,includinginoperabilityanddegradationof devicereliabilityand/orperformance.Functionaloperationofthedeviceand/ornon-degradationattheAbsoluteMaximumRatingsor otherconditionsbeyondthoseindicatedintheRecommendedOperatingConditionsisnotimplied.TheRecommendedOperating Conditionsindicateconditionsatwhichthedeviceisfunctionalandthedeviceshouldnotbeoperatedbeyondsuchconditions.All voltagesaremeasuredwithrespecttothegroundpin,unlessotherwisespecified (2) TheElectricalCharacteristicstablelistsensuredspecificationsunderthelistedRecommendedOperatingConditionsexceptas otherwisemodifiedorspecifiedbytheElectricalCharacteristicsConditionsand/orNotes.Typicalspecificationsareestimationsonlyand arenotensured. (3) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (4) ThemaximumpowerdissipationmustbederatedatelevatedtemperaturesandisdictatedbyT ,θ ,andtheambienttemperature, JMAX JA T .ThemaximumallowablepowerdissipationisP =(T -T )/θ orthenumbergiveninAbsoluteMaximumRatings, A DMAX JMAX A JA whicheverislower. (5) Humanbodymodel,applicablestd.JESD22-A114C. (6) Machinemodel,applicablestd.JESD22-A115-A. 2 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 ELECTRICAL CHARACTERISTICS FOR THE LME49721 ThefollowingspecificationsapplyforthecircuitshowninFigure1.V =5V,R =10kΩ,R =10Ω,f =1kHz,andT = S L SOURCE IN A 25°C,unlessotherwisespecified. LME49721 Units Symbol Parameter Conditions Typical(1) Limit(2) (Limits) A =+1,V =2V , V OUT p-p THD+N TotalHarmonicDistortion+Noise R =2kΩ 0.0002 L R =600Ω 0.0002 0.001 %(max) L A =+1,V =2V , IMD IntermodulationDistortion V OUT p-p 0.0004 % Two-tone,60Hz&7kHz4:1 GBWP GainBandwidthProduct 20 15 MHz(min) SR SlewRate A =+1 8.5 V/μs(min) V V =1V ,–3dB OUT P-P FPBW FullPowerBandwidth referencedtooutputmagnitude 2.2 MHz atf=1kHz A =1,4Vstep t Settlingtime V 800 ns s 0.1%errorrange f =20Hzto20kHz, μV EquivalentInputNoiseVoltage BW .707 1.13 P-P A-weighted (max) e n f=1kHz nV/√Hz EquivalentInputNoiseDensity 4 6 A-weighted (max) I CurrentNoiseDensity f=10kHz 4.0 fA/√Hz n V OffsetVoltage 0.3 1.5 mV(max) OS AverageInputOffsetVoltageDriftvs ΔV /ΔTemp 40°C≤T ≤85°C 1.1 μV/°C OS Temperature A AverageInputOffsetVoltageShiftvs PSRR 103 85 dB(min) PowerSupplyVoltage ISO Channel-to-ChannelIsolation f =1kHz 117 dB CH-CH IN I InputBiasCurrent V =V /2 40 fA B CM S InputBiasCurrentDriftvs ΔI /ΔTemp –40°C≤T ≤85°C 48 fA/°C OS Temperature A I InputOffsetCurrent V =V /2 60 fA OS CM S (V+)–0.1 V Common-ModeInputVoltageRange V(min) IN-CM (V-)+0.1 CMRR Common-ModeRejection V -100mV<V <V +100mV 93 70 dB(min) SS CM DD 1/fCornerFrequency 2000 Hz V -200mV<V <V +200mV SS OUT DD R =600Ω 118 100 dB(min) L A OpenLoopVoltageGain VOL R =2kΩ 122 dB(min) L R =10kΩ 130 115 dB(min) L V –30mV V –80mV V(min) DD DD R =600Ω L V +30mV V +80mV V(min) SS SS V OutputVoltageSwing OUTMIN V –10mV V –20mV V(min) DD DD R =10kΩ,V =5.0V L S V +10mV V +20mV V(min) SS SS I OutputCurrent R =250Ω,V =5.0V 9.7 9.3 mA(min) OUT L S I ShortCircuitCurrent 100 mA OUT-SC f =10kHz IN R OutputImpedance Closed-Loop 0.01 Ω OUT Open-Loop 46 I QuiescentCurrentperAmplifier I =0mA 2.15 3.25 mA(max) S OUT (1) TypicalvaluesrepresentmostlikelyparametricnormsatT =+25ºC,andattheRecommendedOperationConditionsatthetimeof A productcharacterizationandarenotensured. (2) Datasheetmin/maxspecificationlimitsareensuredbytestorstatisticalanalysis. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS Graphsweretakenindualsupplyconfiguration. THD+NvsFrequency THD+NvsFrequency V =±2.5V,V =4V V =±2.5V,V =4V S OUT P-P S OUT P-P R =2kΩ,A =2,BW=22kHz R =2kΩ,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( 0.001 N ( 0.001 + + D D H H T T 0.0001 0.0001 0.00001 0.00001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure3. Figure4. THD+NvsFrequency THD+NvsFrequency V =±2.5V,V =4V V =±2.5V,V =4V S OUT P-P S OUT P-P R =10kΩ,A =2,BW=22kHz R =10kΩ,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( 0.001 N ( 0.001 + + D D H H T T 0.0001 0.0001 0.00001 0.00001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure5. Figure6. THD+NvsFrequency THD+NvsFrequency V =±2.5V,V =4V V =±2.5V,V =4V S OUT P-P S OUT P-P R =600Ω,A =2,BW=22kHz R =600Ω,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( 0.001 N ( 0.001 + + D D H H T T 0.0001 0.0001 0.00001 0.00001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure7. Figure8. 4 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. THD+NvsFrequency THD+NvsFrequency V =±2.75V,V =4V V =±2.75V,V =4V S OUT P-P S OUT P-P R =2kΩ,A =2,BW=22kHz R =2kΩ,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( N ( + + D D H H T T 0.001 0.001 0.0001 0.0001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure9. Figure10. THD+NvsFrequency THD+NvsFrequency V =±2.75V,V =4V V =±2.75V,V =4V S OUT P-P S OUT P-P R =10kΩ,A =2,BW=22kHz R =10kΩ,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( N ( + + D D H H T T 0.001 0.001 0.0001 0.0001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure11. Figure12. THD+NvsFrequency THD+NvsFrequency V =±2.75V,V =4V V =±2.75V,V =4V S OUT P-P S OUT P-P R =600Ω,A =2,BW=22kHz R =600Ω,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) +N ( 0.001 +N ( 0.001 D D H H T T 0.0001 0.0001 0.00001 0.00001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure13. Figure14. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. THD+NvsOutputVoltage THD+NvsOutputVoltage V =±1.1V V =±1.1V S S R =2kΩ,A =2 R =10kΩ,A =2 L V L V 0.10 0.10 0.01 0.01 %) %) N ( N ( + + D D H H T T 0.001 0.001 0.0001 0.0001 100m 200m 1 100m 200m 1 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure15. Figure16. THD+NvsOutputVoltage THD+NvsOutputVoltage V =±1.1V V =±1.5V S S R =600Ω,A =2 R =2kΩ,A =2 L V L V 0.10 0.1 0.01 0.01 %) %) N ( N ( 0.001 + + D D H H T T 0.001 0.0001 0.0001 0.00001 100m 200m 1 100m 200m 1 2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure17. Figure18. THD+NvsOutputVoltage THD+NvsOutputVoltage V =±1.5V V =±1.5V S S R =10kΩ,A =2 R =600Ω,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) +N ( 0.001 +N ( 0.001 D D H H T T 0.0001 0.0001 0.00001 0.00001 100M 200M 1 2 100m 200m 1 2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure19. Figure20. 6 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. THD+NvsOutputVoltage THD+NvsOutputVoltage V =±2.5V V =±2.5V S S R =2kΩ,A =2 R =10kΩ,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( 0.001 N ( 0.001 + + D D H H T T 0.0001 0.0001 0.00001 0.00001 100m 200m 1 2 100m 200m 1 2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure21. Figure22. THD+NvsOutputVoltage THD+NvsOutputVoltage V =±2.5V V =±2.75V S S R =600Ω,A =2 R =2kΩ,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) +N ( 0.001 +N ( 0.001 D D H H T T 0.0001 0.0001 0.00001 0.00001 100m 200m 1 2 100m 200m 1 2 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure23. Figure24. THD+NvsOutputVoltage THD+NvsOutputVoltage V =±2.75V V =±2.75V S S R =10kΩ,A =2 R =600Ω,A =2 L V L V 0.1 0.1 0.01 0.01 %) %) N ( 0.001 N ( 0.001 + + D D H H T T 0.0001 0.0001 0.00001 0.00001 100m 200m 1 2 3 100m 200m 1 2 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure25. Figure26. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. CrosstalkvsFrequency CrosstalkvsFrequency V =±1.1V V =±1.1V S S V =2V V =2V OUT p-p OUT p-p R =2kΩ R =10kΩ L L +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 B) -50 B) -50 d d K ( -60 K ( -60 AL -70 AL -70 ST -80 ST -80 OS -90 OS -90 R -100 R -100 C C -110 -110 -120 -120 -130 -130 -140 -140 -150 -150 20 100200 1k 2k 10k20k 20 100200 1k 2k 10k20k FREQUENCY (Hz) FREQUENCY (Hz) Figure27. Figure28. CrosstalkvsFrequency CrosstalkvsFrequency V =±1.1V V =±1.5V, S S V =2V V =2V OUT p-p OUT p-p R =600Ω R =2kΩ L L +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 B) -50 B) -50 d d K ( -60 K ( -60 AL -70 AL -70 ST -80 ST -80 OS -90 OS -90 R -100 R -100 C C -110 -110 -120 -120 -130 -130 -140 -140 -150 -150 20 100200 1k 2k 10k20k 20 100200 1k 2k 10k20k FREQUENCY (Hz) FREQUENCY (Hz) Figure29. Figure30. CrosstalkvsFrequency CrosstalkvsFrequency V =±1.5V V =±1.5V S S V =2V V =2V OUT p-p OUT p-p R =10kΩ R =600Ω L L +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 B) -50 B) -50 d d K ( -60 K ( -60 AL -70 AL -70 ST -80 ST -80 OS -90 OS -90 R -100 R -100 C C -110 -110 -120 -120 -130 -130 -140 -140 -150 -150 20 100200 1k 2k 10k20k 20 100200 1k 2k 10k20k FREQUENCY (Hz) FREQUENCY (Hz) Figure31. Figure32. 8 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. CrosstalkvsFrequency CrosstalkvsFrequency V =±2.5V V =±2.5V S S V =4V V =4V OUT p-p OUT p-p R =2kΩ R =10kΩ L L +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 B) -50 B) -50 d d K ( -60 K ( -60 AL -70 AL -70 ST -80 ST -80 OS -90 OS -90 R -100 R -100 C C -110 -110 -120 -120 -130 -130 -140 -140 -150 -150 20 100200 1k 2k 10k20k 20 100 200 1k 2k 10k20k FREQUENCY (Hz) FREQUENCY (Hz) Figure33. Figure34. CrosstalkvsFrequency CrosstalkvsFrequency V =±2.5V V =±2.75V S S V =4V V =4V OUT p-p OUT p-p R =600Ω R =2kΩ L L +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 B) -50 B) -50 d d K ( -60 K ( -60 AL -70 AL -70 ST -80 ST -80 OS -90 OS -90 R -100 R -100 C C -110 -110 -120 -120 -130 -130 -140 -140 -150 -150 20 100200 1k 2k 10k20k 20 100200 1k 2k 10k20k FREQUENCY (Hz) FREQUENCY (Hz) Figure35. Figure36. CrosstalkvsFrequency CrosstalkvsFrequency V =±2.75V V =±2.75V S S V =4V V =4V OUT p-p OUT p-p R =10kΩ R =600Ω L L +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 B) -50 B) -50 d d K ( -60 K ( -60 AL -70 AL -70 ST -80 ST -80 OS -90 OS -90 R -100 R -100 C C -110 -110 -120 -120 -130 -130 -140 -140 -150 -150 20 100200 1k 2k 10k20k 20 100200 1k 2k 10k20k FREQUENCY (Hz) FREQUENCY (Hz) Figure37. Figure38. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. PSRRvsFrequency PSRRvsFrequency V =±1.1V V =±1.1V S S V =200mV V =200mV RIPPLE P-P RIPPLE P-P R =2kΩ R =10kΩ L L 0 0 -20 -20 -40 -40 R (dB) -60 R (dB) -60 SR -80 SR -80 P P -100 -100 -120 -120 -140 -140 10 100 1000 10000 100000 10 100 1000 10000 100000 FREQUENCY (Hz) FREQUENCY (Hz) Figure39. Figure40. PSRRvsFrequency PSRRvsFrequency V =±1.1V V =±1.5V S S V =200mV V =200mV RIPPLE P-P RIPPLE P-P R =600Ω R =2kΩ L L 0 0 -20 -20 -40 -40 dB) -60 dB) -60 R ( R ( SR -80 SR -80 P P -100 -100 -120 -120 -140 -140 10 100 1000 10000 100000 10 100 1000 10000 100000 FREQUENCY (Hz) FREQUENCY (Hz) Figure41. Figure42. PSRRvsFrequency PSRRvsFrequency V =±1.5V V =±1.5V S S V =200mV V =200mV RIPPLE P-P RIPPLE P-P R =10kΩ R =600Ω L L 0 0 -20 -20 -40 -40 dB) -60 dB) -60 R ( R ( R R S -80 S -80 P P -100 -100 -120 -120 -140 -140 10 100 1000 10000 100000 10 100 1000 10000 100000 FREQUENCY (Hz) FREQUENCY (Hz) Figure43. Figure44. 10 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. PSRRvsFrequency PSRRvsFrequency V =±2.5V V =±2.5V S S V =200mV V =200mV RIPPLE P-P RIPPLE P-P R =2kΩ R =10kΩ L L 0 0 -20 -20 -40 -40 dB) -60 dB) -60 R ( R ( SR -80 SR -80 P P -100 -100 -120 -120 -140 -140 10 100 1000 10000 100000 10 100 1000 10000 100000 FREQUENCY (Hz) FREQUENCY (Hz) Figure45. Figure46. PSRRvsFrequency PSRRvsFrequency V =±2.5V V =±2.75V S S V =200mV V =200mV RIPPLE P-P RIPPLE P-P R =600Ω R =2kΩ L L 0 0 -20 -20 -40 -40 dB) -60 dB) -60 R ( R ( SR -80 SR -80 P P -100 -100 -120 -120 -140 -140 10 100 1000 10000 100000 10 100 1000 10000 100000 FREQUENCY (Hz) FREQUENCY (Hz) Figure47. Figure48. PSRRvsFrequency PSRRvsFrequency V =±2.75V V =±2.75V S S V =200mV V =200mV RIPPLE P-P RIPPLE P-P R =10kΩ R =600Ω L L 0 0 -20 -20 -40 -40 dB) -60 dB) -60 R ( R ( SR -80 SR -80 P P -100 -100 -120 -120 -140 -140 10 100 1000 10000 100000 10 100 1000 10000 100000 FREQUENCY (Hz) FREQUENCY (Hz) Figure49. Figure50. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. CMRRvsFrequency CMRRvsFrequency V =±1.5V V =±1.5V S S R =2kΩ R =10kΩ L L +0 +0 -20 -20 -40 -40 B) B) d d R ( -60 R ( -60 R R M M C C -80 -80 -100 -100 -120 -120 20 200 2k 20k 200k 20 200 2k 20k 200k FREQUENCY (Hz) FREQUENCY (Hz) Figure51. Figure52. CMRRvsFrequency CMRRvsFrequency V =±1.5V V =±2.5V S S R =600Ω R =2kΩ L L +0 +0 -20 -20 -40 -40 B) B) d d R ( -60 R ( -60 R R M M C C -80 -80 -100 -100 -120 -120 20 200 2k 20k 200k 20 200 2k 20k 200k FREQUENCY (Hz) FREQUENCY (Hz) Figure53. Figure54. CMRRvsFrequency CMRRvsFrequency V =±2.5V V =±2.5V S S R =10kΩ R =600Ω L L +0 +0 -20 -20 -40 -40 B) B) d d R ( -60 R ( -60 R R M M C C -80 -80 -100 -100 -120 -120 20 200 2k 20k 200k 20 200 2k 20k 200k FREQUENCY (Hz) FREQUENCY (Hz) Figure55. Figure56. 12 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. CMRRvsFrequency CMRRvsFrequency V =±2.75V V =±2.75V S S R =2kΩ R =10kΩ L L +0 +0 -20 -20 -40 -40 B) B) d d R ( -60 R ( -60 R R M M C C -80 -80 -100 -100 -120 -120 20 200 2k 20k 200k 20 200 2k 20k 200k FREQUENCY (Hz) FREQUENCY (Hz) Figure57. Figure58. CMRRvsFrequency V =±2.75V OutputVoltageSwingNegvsPowerSupply S R =600Ω R =2kΩ L L +0 0.0 -20 V) -0.5 G ( N -40 WI -1.0 B) S MRR (d -60 LTAGE -1.5 C O -80 T V -2.0 U P -100 UT -2.5 O -120 -3.0 20 200 2k 20k 200k 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 FREQUENCY (Hz) SUPPLY VOLTAGE (V-) Figure59. Figure60. OutputVoltageSwingNegvsPowerSupply OutputVoltageSwingNegvsPowerSupply R =10kΩ R =600Ω L L 0.0 0.0 V) -0.5 V) -0.5 G ( G ( N N WI -1.0 WI -1.0 S S E E G G A -1.5 A -1.5 T T OL OL T V -2.0 T V -2.0 U U P P T T U -2.5 U -2.5 O O -3.0 -3.0 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 SUPPLY VOLTAGE (V-) SUPPLY VOLTAGE (V-) Figure61. Figure62. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS (continued) Graphsweretakenindualsupplyconfiguration. OutputVoltageSwingPosvsPowerSupply OutputVoltageSwingPosvsPowerSupply R =2kΩ R =10kΩ L L 3.0 3.0 V) 2.5 V) 2.5 G ( G ( N N WI 2.0 WI 2.0 S S E E G G A 1.5 A 1.5 T T L L O O V V T 1.0 T 1.0 U U P P T T OU 0.5 OU 0.5 0.0 0.0 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Figure63. Figure64. OutputVoltageSwingPosvsPowerSupply SupplyCurrentperamplifiervsPowerSupply R =600Ω R =2kΩ,DualSupply L L 3.5 3.0 3.0 V) 2.5 NG ( mA) 2.5 WI 2.0 T ( OLTAGE S 1.5 Y CURREN 12..50 V L TPUT 1.0 SUPP 1.0 U 0.5 0.5 O 0.0 0.0 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 1.10 1.25 1.50 1.75 2.00 2.25 2.50 2.75 SUPPLY VOLTAGE (V) POWER SUPPLY (V) Figure65. Figure66. SupplyCurrentperamplifiervsPowerSupply SupplyCurrentperamplifiervsPowerSupply R =10kΩ,DualSupply R =600Ω,DualSupply L L 3.5 8.0 3.0 7.0 A) A) 6.0 m 2.5 m T ( T ( 5.0 N N E 2.0 E R R R R 4.0 U U C 1.5 C Y Y 3.0 L L UPP 1.0 UPP 2.0 S S 0.5 1.0 0.0 0.0 1.10 1.25 1.50 1.75 2.00 2.25 2.50 2.75 1.10 1.25 1.50 1.75 2.00 2.25 2.50 2.75 POWER SUPPLY (V) POWER SUPPLY (V) Figure67. Figure68. 14 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 APPLICATION INFORMATION DISTORTION MEASUREMENTS The vanishingly low residual distortion produced by LME49721 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution. however, is quite simple: an additional resistor.Addingthisresistorextendstheresolutionofthedistortionmeasurementequipment. The LME49721's low residual is an input referred internal error. As shown in Figure 69, adding the 10Ω resistor connected between a the amplifier's inverting and non-inverting inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101. To ensure minimum effects on distortionmeasurements,keepthevalueofR1lowasshowninFigure69. This technique is verified by duplicating the measurements with high closed-loop gain and/or making the measurements at high frequencies. Doing so, produces distortion components that are within equipments capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connectedtoanAudioPrecisionSystemTwoCascade. R1 R2 1 k: 1 k: - R3 LME49721 10: + Distortion Signal Gain = 1 + (R2/R3) Generator Output Analyzer Input Audio Precision System Two Cascade Figure69. THD+NandIMDDistortionTestCircuitwithA =2 V OPERATING RATINGS AND BASIC DESIGN GUIDELINES TheLME49721hasasupplyvoltagerangefrom+2.2Vto+5.5Vsinglesupplyor±1.1to±2.75Vdualsupply. Bypassed capacitors for the supplies should be placed as close to the amplifier as possible. This will help minimize any inductance between the power supply and the supply pins. In addition to a 10μF capacitor, a 0.1μF capacitorisalsorecommendedinCMOSamplifiers. The amplifier's inputs lead lengths should also be as short as possible. If the op amp does not have a bypass capacitor,itmayoscillate. BASIC AMPLIFIER CONFIGURATIONS The LME49721 may be operated with either a single supply or dual supplies. Figure 70 shows the typical connection for a single supply inverting amplifier. The output voltage for a single supply amplifier will be centered around the common-mode voltage Vcm. Note: the voltage applied to the Vcm insures the output stays above ground. Typically, the Vcm should be equal to V /2. This is done by putting a resistor divider ckt at this node, DD seeFigure70. Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com VIN R1 R2 VDD VDD - VOUT R3 VCM + R4 Figure70. Single-SupplyInvertingOpAmp Figure 71 shows the typical connection for a dual supply inverting amplifier. The output voltage is centered on zero. VIN R1 R2 VDD - VOUT + VSS Figure71. Dual-SupplyInvertingOpAmp Figure 72 shows the typical connection for the Buffer Amplifier or also called a Voltage Follower. A Buffer Amplifier can be used to solve impedance matching problems, to reduce power consumption in the source, or to drive heavy loads. The input impedance of the op amp is very high. Therefore, the input of the op amp does not load down the source. The output impedance on the other hand is very low. It allows the load to either supply or absorbenergytoacircuitwhileasecondaryvoltagesourcedissipatesenergyfromacircuit.TheBufferisaunity stable amplifier, 1V/V. Although the feedback loop is tied from the output of the amplifier to the inverting input, the gain is still positive. Note: if a positive feedback is used, the amplifier will most likely drive to either rail at the output. VDD - VOUT VIN + Figure72. Buffer 16 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 TYPICAL APPLICATIONS A =34.5 V F=1kHz E =0.38μV n AWeighted Figure73. ANABPreamp Figure74. NABPreampVoltageGainvsFrequency V =V1–V2 O Figure75. BalancedtoSingle-EndedConverter Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com V =V1+V2−V3−V4 O Figure76. Adder/Subtracter Figure77. SineWaveOscillator Illustrationisf =1kHz 0 Figure78. Second-OrderHigh-PassFilter (Butterworth) 18 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 Illustrationisf =1kHz 0 Figure79. Second-OrderLow-PassFilter (Butterworth) Illustrationisf =1kHz,Q=10,A =1 0 BP Figure80. StateVariableFilter Figure81. AC/DCConverter Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com Figure82. 2-ChannelPanningCircuit(PanPot) Figure83. LineDriver 20 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 Illustrationis: f =32Hz,f =320Hz L LB f =11kHz,f =1.1kHz H HB Figure84. ToneControl A =35dB v E =0.33μV n S/N=90dB f=1kHz AWeighted AWeighted,V =10mV IN @f=1kHz Figure85. RIAAPreamp Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com Illustrationis: V0=101(V2−V1) Figure86. BalancedInputMicAmp 22 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
LME49721 www.ti.com SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 A. SeeTable1. Figure87. 10-BandGraphicEqualizer Table1.C ,C ,R ,andR ValuesforFigure87(1) 1 2 1 2 fo(Hz) C C R R 1 2 1 2 32 0.12μF 4.7μF 75kΩ 500Ω 64 0.056μF 3.3μF 68kΩ 510Ω 125 0.033μF 1.5μF 62kΩ 510Ω 250 0.015μF 0.82μF 68kΩ 470Ω 500 8200pF 0.39μF 62kΩ 470Ω 1k 3900pF 0.22μF 68kΩ 470Ω 2k 2000pF 0.1μF 68kΩ 470Ω 4k 1100pF 0.056μF 62kΩ 470Ω 8k 510pF 0.022μF 68kΩ 510Ω 16k 330pF 0.012μF 51kΩ 510Ω (1) Atvolumeofchange=±12dB Q=1.7 Copyright©2007–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LME49721
LME49721 SNAS371C–SEPTEMBER2007–REVISEDAPRIL2013 www.ti.com REVISION HISTORY Rev Date Description 1.0 09/26/07 Initialrelease. 1.1 10/01/07 InputmoreinfoundertheBufferAmplifier. 1.2 04/21/10 AddedtheOrderingInformationtable. C 04/04/13 ChangedlayoutofNationalDataSheettoTIformat. 24 SubmitDocumentationFeedback Copyright©2007–2013,TexasInstrumentsIncorporated ProductFolderLinks:LME49721
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LME49721MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 L49721 & no Sb/Br) MA LME49721MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 L49721 & no Sb/Br) MA (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 4-May-2017 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LME49721MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 4-May-2017 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LME49721MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0 PackMaterials-Page2
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated