图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LMC6762AIM
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LMC6762AIM产品简介:

ICGOO电子元器件商城为您提供LMC6762AIM由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMC6762AIM价格参考¥12.21-¥24.92。Texas InstrumentsLMC6762AIM封装/规格:线性 - 比较器, 通用 比较器 推挽式,满摆幅 8-SOIC。您可以下载LMC6762AIM参考资料、Datasheet数据手册功能说明书,资料中有LMC6762AIM 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

CMRR,PSRR(典型值)

75dB CMRR,80dB PSRR

描述

IC COMP DUAL MICRPWR CMOS 8-SOIC

产品分类

线性 - 比较器

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

LMC6762AIM

rohs

含铅 / 不符合限制有害物质指令(RoHS)规范要求

产品系列

-

传播延迟(最大值)

10µs

供应商器件封装

8-SOIC

元件数

2

包装

管件

安装类型

表面贴装

封装/外壳

8-SOIC(0.154",3.90mm 宽)

工作温度

-40°C ~ 85°C

标准包装

95

滞后

-

电压-电源,单/双 (±)

2.7 V ~ 15 V, ±1.35 V ~ 7.5 V

电压-输入失调(最大值)

5mV @ 5V

电流-输入偏置(最大值)

0.04pA @ 5V

电流-输出(典型值)

30mA

电流-静态(最大值)

20µA

类型

通用

输出类型

推挽式,满摆幅

推荐商品

型号:TLC3704CPWRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM319AM

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2903DT

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LM2901VQPWRG4Q1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TL331IDBVRQ1

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX907ESA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LM306D

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1720IMS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LMC6762AIM 相关产品

MAX913EPA

品牌:Maxim Integrated

价格:

MAX913CSA+T

品牌:Maxim Integrated

价格:

LM339DT

品牌:STMicroelectronics

价格:¥0.37-¥0.50

LM2901DTBR2

品牌:ON Semiconductor

价格:

MAX9100ESA+T

品牌:Maxim Integrated

价格:

TS861AID

品牌:STMicroelectronics

价格:

MAX9601EUP+

品牌:Maxim Integrated

价格:

AS393AMTR-E1

品牌:Diodes Incorporated

价格:

PDF Datasheet 数据手册内容提取

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output CheckforSamples:LMC6762 FEATURES DESCRIPTION 1 • (TypicalUnlessOtherwiseNoted) The LMC6762 is an ultra low power dual comparator 2 with a maximum supply current of 10 μA/comparator. • LowPowerConsumption(Max):I =10 S It is designed to operate over a wide range of supply μA/comp voltages, from 2.7V to 15V. The LMC6762 has • WideRangeofSupplyVoltages:2.7Vto15V ensured specifications at 2.7V to meet the demands • Rail-To-RailInputCommonModeVoltage of3Vdigitalsystems. Range The LMC6762 has an input common-mode voltage • Rail-To-RailOutputSwing(Within100mVof range which exceeds both supplies. This is a theSupplies,@V+=2.7V,andI =2.5mA) significant advantage in low-voltage applications. The LOAD LMC6762 also features a push-pull output that allows • ShortCircuitProtection:40mA direct connections to logic devices without a pull-up • PropagationDelay(@V+=5V,100mV resistor. Overdrive):4μs A quiescent power consumption of 50 μW/amplifier (@ V+ = 5V) makes the LMC6762 ideal for APPLICATIONS applications in portable phones and hand-held • LaptopComputers electronics. The ultra-low supply current is also independent of power supply voltage. Ensured • MobilePhones operation at 2.7V and a rail-to-rail performance • MeteringSystems makes this device ideal for battery-powered • Hand-HeldElectronics applications. • RCTimers Refer to the LMC6772 datasheet for an open-drain • AlarmandMonitoringCircuits versionofthisdevice. • WindowComparators,Multivibrators Connection Diagram Typical Application 8-PinPDIP/SOIC TopView ZeroCrossingDetector Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©1997–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com Absolute Maximum Ratings(1)(2) ESDTolerance(3) 2KV DifferentialInputVoltage (V+)+0.3Vto(V−)−0.3V VoltageatInput/OutputPin (V+)+0.3Vto(V−)−0.3V SupplyVoltage(V+–V−) 16V CurrentatInputPin ±5mA CurrentatOutputPin(4)(5) ±30mA CurrentatPowerSupplyPin,LMC6762 40mA LeadTemperature(Soldering,10seconds) 260°C StorageTemperatureRange −65°Cto+150°C JunctionTemperature(6) 150°C (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthetest conditions,seetheelectricalcharacteristics. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTISalesOffice/Distributorsforavailabilityandspecifications. (3) Humanbodymodel,1.5kΩinserieswith100pF. (4) DonotshortcircuitoutputtoV+,whenV+isgreaterthan12Vorreliabilitywillbeadverselyaffected. (5) Appliestobothsingle-supplyandsplit-supplyoperation.Continuousshortcircuitoperationatelevatedambienttemperaturecanresultin exceedingthemaximumallowedjunctiontemperatureof150°C.Outputcurrentsinexcessof±30mAoverlongtermmayadversely affectreliability. (6) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(max) JA A temperatureisP =(T –T )/θ .AllnumbersapplyforpackagessoldereddirectlyintoaPCboard. D J(max) A JA Operating Ratings(1) SupplyVoltage 2.7≤V ≤15V S JunctionTemperatureRange LMC6762AI,LMC6762BI −40°C≤T ≤+85°C J ThermalResistance(θ ) P0008EPackage,8-PinPDIP 100°C/W JA D0008APackage,8-PinSOIC 172°C/W (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotensured.Forensuredspecificationsandthetest conditions,seetheelectricalcharacteristics. 2.7V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforT =25°C,V+=2.7V,V−=0V,V =V+/2.Boldfacelimitsapplyatthe J CM temperatureextremes. LMC6762AI LMC6762BI Units Symbol Parameter Conditions Typ(1) Limit(2) Limit(2) V InputOffsetVoltage 3 5 15 mV OS 8 18 max TCV InputOffsetVoltage 2.0 μV/°C OS TemperatureDrift InputOffsetVoltage See(3) 3.3 μV/Month AverageDrift I InputCurrent 0.02 pA B I InputOffsetCurrent 0.01 pA OS CMRR CommonModeRejectionRatio 75 dB PSRR PowerSupplyRejectionRatio ±1.35V<V <±7.5V 80 dB S A VoltageGain (ByDesign) 100 dB V (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) InputOffsetVoltageAverageDriftiscalculatedbydividingtheacceleratedoperatinglifedriftaveragebytheequivalentoperationaltime. TheInputOffsetVoltageAverageDriftrepresentstheinputoffsetvoltagechangeatworst-caseinputconditions. 2 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 2.7V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforT =25°C,V+=2.7V,V−=0V,V =V+/2.Boldfacelimitsapplyatthe J CM temperatureextremes. LMC6762AI LMC6762BI Units Symbol Parameter Conditions Typ(1) Limit(2) Limit(2) V InputCommon-Mode CMRR>55dB 3.0 2.9 2.9 V CM VoltageRange 2.7 2.7 min −0.3 −0.2 −0.2 V 0.0 0.0 max V OutputVoltageHigh I =2.5mA 2.5 2.4 2.4 V OH LOAD 2.3 2.3 min V OutputVoltageLow I =2.5mA 0.2 0.3 0.3 V OL LOAD 0.4 0.4 max I SupplyCurrent ForBothComparators 12 20 20 μA S (OutputLow) 25 25 max 5.0V and 15.0V Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforT =25°C,V+=5.0Vand15.0V,V−=0V,V =V+/2.Boldfacelimitsapply J CM atthetemperatureextremes. LMC6762AI LMC6762BI Symbol Parameter Conditions Typ(1) Units Limit(2) Limit(1) V InputOffsetVoltage 3 5 15 mV OS 8 18 max TCV InputOffsetVoltage V+=5V 2.0 μV/°C OS TemperatureDrift V+=15V 4.0 InputOffsetVoltage V+=5V(3) 3.3 μV/Month AverageDrift V+=15V(3) 4.0 I InputCurrent V=5V 0.04 pA B I InputOffsetCurrent V+=5V 0.02 pA OS CMRR CommonMode V+=5V 75 dB RejectionRatio V+=15V 82 dB PSRR PowerSupplyRejectionRatio ±2.5V<V <±5V 80 dB S A VoltageGain (ByDesign) 100 dB V V InputCommon-Mode V+=5.0V 5.3 5.2 5.2 V CM VoltageRange CMRR>55dB 5.0 5.0 min −0.3 −0.2 −0.2 V 0.0 0.0 max V+=15.0V 15.3 15.2 15.2 V CMRR>55dB 15.0 15.0 min −0.3 −0.2 −0.2 V 0.0 0.0 max V OutputVoltageHigh V+=5V 4.8 4.6 4.6 V OH I =5mA 4.45 4.45 min LOAD V+=15V 14.8 14.6 14.6 V I =5mA 14.45 14.45 min LOAD (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) InputOffsetVoltageAverageDriftiscalculatedbydividingtheacceleratedoperatinglifedriftaveragebytheequivalentoperationaltime. TheInputOffsetVoltageAverageDriftrepresentstheinputoffsetvoltagechangeatworst-caseinputconditions. Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMC6762

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com 5.0V and 15.0V Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsensuredforT =25°C,V+=5.0Vand15.0V,V−=0V,V =V+/2.Boldfacelimitsapply J CM atthetemperatureextremes. LMC6762AI LMC6762BI Symbol Parameter Conditions Typ(1) Units Limit(2) Limit(1) V OutputVoltageLow V+=5V 0.2 0.4 0.4 V OL I =5mA 0.55 0.55 max LOAD V+=15V 0.2 0.4 0.4 V I =5mA 0.55 0.55 max LOAD I SupplyCurrent ForBothComparators 12 20 20 μA S (OutputLow) 25 25 max I ShortCircuitCurrent Sourcing 30 mA SC Sinking,V =12V(4) 45 O (4) DonotshortcircuitoutputtoV+,whenV+isgreaterthan12Vorreliabilitywillbeadverselyaffected. AC Electrical Characteristics Unlessotherwisespecified,alllimitsensuredforT =25°C,V+=5V,V−=0V,V =V =V+/2.Boldfacelimitsapplyatthe J CM O temperatureextreme. Symbol Parameter Conditions Typ(1) LMC6762AI LMC6762BI Units Limit(2) Limit(2) t RiseTime f=10kHz,C =50pF, 0.3 μs RISE L Overdrive=10mV(3)(4) t FallTime f=10kHz,C =50pF, 0.3 μs FALL L Overdrive=10mV(3)(4) t PropagationDelay f=10kHz, Overdrive=10mV 10 μs PHL (HightoLow) C =50pF(3)(4) Overdrive=100mV 4 μs L V+=2.7V, Overdrive=10mV 10 μs f=10kHz, C =50pF(3)(4) Overdrive=100mV 4 μs L t PropagationDelay f=10kHz, Overdrive=10mV 6 μs PLH (LowtoHigh) C =50pF(3)(4) Overdrive=100mV 4 μs L V+=2.7V, Overdrive=10mV 7 μs f=10kHz, C =50pF(3)(4) Overdrive=100mV 4 μs L (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsarespecifiedbytestingorstatisticalanalysis. (3) C includestheprobeandjigcapacitance. L (4) Theriseandfalltimesaremeasuredwitha2Vinputstep.Thepropagationdelaysarealsomeasuredwitha2Vinputstep. 4 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 Typical Performance Characteristics V+=5V,SingleSupply,T =25°Cunlessotherwisespecified A SupplyCurrent SupplyCurrent vs vs Supply Supply Voltage(OutputHigh) Voltage(OutputLow) Figure1. Figure2. InputCurrentvs InputCurrentvs Common-ModeVoltage Common-ModeVoltage Figure3. Figure4. InputCurrentvs InputCurrent Common-ModeVoltage vsTemperature Figure5. Figure6. Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMC6762

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) V+=5V,SingleSupply,T =25°Cunlessotherwisespecified A ΔV ΔV OS OS vs vs ΔV ΔV CM CM Figure7. Figure8. ΔV OS vs OutputVoltagevs ΔV OutputCurrent(Sourcing) CM Figure9. Figure10. OutputVoltagevs OutputVoltagevs OutputCurrent(Sourcing) OutputCurrent(Sourcing) Figure11. Figure12. 6 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 Typical Performance Characteristics (continued) V+=5V,SingleSupply,T =25°Cunlessotherwisespecified A OutputVoltagevs OutputVoltagevs OutputCurrent(Sinking) OutputCurrent(Sinking) Figure13. Figure14. OutputVoltagevs OutputShortCircuitCurrent OutputCurrent(Sinking) vsSupplyVoltage(Sourcing) Figure15. Figure16. OutputShortCircuitCurrent ResponseTimefor vsSupplyVoltage(Sinking) Overdrive(t ) PLH Figure17. Figure18. Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMC6762

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) V+=5V,SingleSupply,T =25°Cunlessotherwisespecified A ResponseTimefor ResponseTimefor Overdrive(t ) Overdrive(t ) PHL PLH Figure19. Figure20. ResponseTimefor ResponseTimefor Overdrive(t ) Overdrive(t ) PHL PLH Figure21. Figure22. ResponseTimefor ResponseTimevs Overdrive(t ) CapacitiveLoad PHL Figure23. Figure24. 8 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 APPLICATION HINTS Input Common-Mode Voltage Range At supply voltages of 2.7V, 5V and 15V, the LMC6762 has an input common-mode voltage range which exceeds both supplies. As in the case of operational amplifiers, CMVR is defined by the V shift of the comparator over OS the common-mode range of the device. A CMRR (ΔV /ΔV ) of 75 dB (typical) implies a shift of < 1 mV over OS CM theentirecommon-moderangeofthedevice.TheabsolutemaximuminputvoltageatV+=5Vis200mVbeyond eithersupplyrailatroomtemperature. Figure25. AnInputSignalExceedstheLMC6762PowerSupplyVoltages withNoOutputPhaseInversion A wide input voltage range means that the comparator can be used to sense signals close to ground and also to thepowersupplies.Thisisanextremelyusefulfeatureinpowersupplymonitoringcircuits. An input common-mode voltage range that exceeds the supplies, 20 fA input currents (typical), and a high input impedance makes the LMC6762 ideal for sensor applications. The LMC6762 can directly interface to sensors without the use of amplifiers or bias circuits. In circuits with sensors which produce outputs in the tens to hundreds of millivolts, the LMC6762 can compare the sensor signal with an appropriately small reference voltage.Thisreferencevoltagecanbeclosetogroundorthepositivesupplyrail. Low Voltage Operation Comparators are the common devices by which analog signals interface with digital circuits. The LMC6762 has been designed to operate at supply voltages of 2.7V without sacrificing performance to meet the demands of 3V digitalsystems. At supply voltages of 2.7V, the common-mode voltage range extends 200 mV (ensured) below the negative supply. This feature, in addition to the comparator being able to sense signals near the positive rail, is extremely usefulinlowvoltageapplications. Figure26. EvenatLow-SupplyVoltageof2.7V, anInputSignalwhichExceedstheSupplyVoltagesProducesNoPhaseInversionattheOutput At V+ = 2.7V, propagation delays are t = 4 μs and t = 4 μs with overdrives of 100 mV. Please refer to the PLH PHL performancecurvesformoreextensivecharacterization. Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMC6762

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com Shoot-Through Current The shoot-through current is defined as the current surge, above the quiescent supply current, between the positive and negative supplies of a device. The current surge occurs when the output of the device switches states. This transient switching current results in glitches in the supply voltage. Usually, glitches in the supply lines are compensated by bypass capacitors. When the switching currents are minimal, the values of the bypass capacitorscanbereducedconsiderably. Figure27. LMC6762CircuitforMeasurementoftheShoot-ThroughCurrent Figure28. MeasurementoftheShoot-ThroughCurrent From Figure 27 and Figure 28 the shoot-through current for the LMC6762 can be approximated to be 0.2 mA (200 mV/1 kΩ). The duration of the transient is measured as 1 μs. The values needed for the local bypass capacitorscanbecalculatedasfollows: AreaofΔ = ½(1 μs× 200 μA) =100pC If the local bypass capacitor has to provide this charge of 100 pC, the minimum value of the local capacitor to prevent local degradation of V can be calculated. Suppose that the maximum voltage droop that the system CC cantolerateis100mV, ΔQ =C*(ΔV) →C =(ΔQ/ΔV) =100pC/100mV =0.001μF The low internal feedthrough current of the LMC6762 thus requires lower values for the local bypass capacitors. In applications where precision is not critical, this is a significant advantage, as lower values of capacitors result insavingsofboardspace,andcost. 10 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 It is worth noting here that the delta shift of the power supply voltage due to the transient currents causes a threshold shift of the comparator. This threshold shift is reduced by the high PSRR of the comparator. However, the value of the PSRR applicable in this instance is the transient PSRR and not the DC PSRR. The transient PSRRissignificantlylowerthantheDCPSRR. Generally, it is a good goal to reduce the delta voltage on the power supply to a value equal to or less than the hysteresis of the comparator. For example, if the comparator has 50 mV of hysteresis, it would be reasonable to increasethevalueofthelocalbypasscapacitorto0.01μFtoreducethevoltagedeltato10mV. Output Short Circuit Current The LMC6762 has short circuit protection of 40 mA. However, it is not designed to withstand continuous short circuits, transient voltage or current spikes, or shorts to any voltage beyond the supplies. A resistor is series with the output should reduce the effect of shorts. For outputs which send signals off PC boards additional protection devices,suchasdiodestothesupplyrails,andvaristorsmaybeused. Hysteresis If the input signal is very noisy, the comparator output might trip several times as the input signal repeatedly passesthroughthethreshold.Thisproblemcanbeaddressedbymakinguseofhysteresisasshownbelow. Figure29. CancelingtheEffectofInputCapacitance The capacitor added across the feedback resistor increases the switching speed and provides more short term hysteresis.Thiscanresultingreaternoiseimmunityforthecircuit. Spice Macromodel ASpiceMacromodelisavailablefortheLMC6762.Themodelincludesasimulationof: • Inputcommon-modevoltagerange • Quiescentanddynamicsupplycurrent • Inputoverdrivecharacteristics andmanymorecharacteristicsaslistedonthemacromodeldisk. A SPICE macromodel of this and many other op amps is available at no charge from the WEBENCH Design CenterTeamathttp://www.ti.com/ww/en/analog/webench/ Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMC6762

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com Typical Applications One-ShotMultivibrator Figure30. One-ShotMultivibrator A monostable multivibrator has one stable state in which it can remain indefinitely. It can be triggered externally toanotherquasi-stablestate.Amonostablemultivibratorcanthusbeusedtogenerateapulseofdesiredwidth. The desired pulse width is set by adjusting the values of C and R . The resistor divider of R and R can be 2 4 1 2 used to determine the magnitude of the input trigger pulse. The LMC6762 will change state when V < V . Diode 1 2 D provides a rapid discharge path for capacitor C to reset at the end of the pulse. The diode also prevents the 2 2 non-invertinginputfrombeingdrivenbelowground. Bi-StableMultivibrator Figure31. Bi-StableMultivibrator A bi-stable multivibrator has two stable states. The reference voltage is set up by the voltage divider of R and 2 R . A pulse applied to the SET terminal will switch the output of the comparator high. The resistor divider of R , 3 1 R , and R now clamps the non-inverting input to a voltage greater than the reference voltage. A pulse applied to 4 5 RESETwillnowtoggletheoutputlow. ZeroCrossingDetector Figure32. ZeroCrossingDetector 12 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 AvoltagedividerofR andR establishesareferencevoltageV atthenon-invertinginput.Bymakingtheseries 4 5 1 resistance of R and R equal to R , the comparator will switch when V = 0. Diode D insures that V never 1 2 5 IN 1 3 drops below −0.7V. The voltage divider of R and R then prevents V from going below ground. A small amount 2 3 2 ofhysteresisissetuptoensurerapidoutputvoltagetransitions. Oscillator Figure33. SquareWaveGenerator Figure 33 shows the application of the LMC6762 in a square wave generator circuit. The total hysteresis of the loop is set by R , R and R . R and R provide separate charge and discharge paths for the capacitor C. The 1 2 3 4 5 charge path is set through R and D . So, the pulse width t is determined by the RC time constant of R and C. 4 1 1 4 Similarly, the discharge path for the capacitor is set by R and D . Thus, the time t between the pulses can be 5 2 2 changed by varying R , and the pulse width can be altered by R . The frequency of the output can be changed 5 4 byvaryingbothR andR . 4 5 Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMC6762

LMC6762 SNOS739D–JULY1997–REVISEDMARCH2013 www.ti.com Figure34. TimeDelayGenerator The circuit shown above provides output signals at a prescribed time interval from a time reference and automatically resets the output when the input returns to ground. Consider the case of V = 0. The output of IN comparator 4 is also at ground. This implies that the outputs of comparators 1, 2, and 3 are also at ground. When an input signal is applied, the output of comparator 4 swings high and C charges exponentially through R. Thisisindicatedabove. The output voltages of comparators 1, 2, and 3 switch to the high state when V rises above the reference C1 voltage V , V and V . A small amount of hysteresis has been provided to insure fast switching when the RC A B C timeconstantischosentogivelongdelaytimes. 14 SubmitDocumentationFeedback Copyright©1997–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6762

LMC6762 www.ti.com SNOS739D–JULY1997–REVISEDMARCH2013 REVISION HISTORY ChangesfromRevisionC(March2013)toRevisionD Page • ChangedlayoutofNationalDataSheettoTIformat.......................................................................................................... 14 Copyright©1997–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LMC6762

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMC6762AIM ACTIVE SOIC D 8 95 TBD Call TI Call TI -40 to 85 LMC67 62AIM LMC6762AIM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC67 & no Sb/Br) 62AIM LMC6762AIMX ACTIVE SOIC D 8 2500 TBD Call TI Call TI -40 to 85 LMC67 62AIM LMC6762AIMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC67 & no Sb/Br) 62AIM LMC6762BIM ACTIVE SOIC D 8 95 TBD Call TI Call TI -40 to 85 LMC67 62BIM LMC6762BIM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC67 & no Sb/Br) 62BIM LMC6762BIMX ACTIVE SOIC D 8 2500 TBD Call TI Call TI -40 to 85 LMC67 62BIM LMC6762BIMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC67 & no Sb/Br) 62BIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 25-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMC6762AIMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMC6762AIMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMC6762BIMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LMC6762BIMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 25-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMC6762AIMX SOIC D 8 2500 367.0 367.0 35.0 LMC6762AIMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LMC6762BIMX SOIC D 8 2500 367.0 367.0 35.0 LMC6762BIMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated