图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LMC6084IMX/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LMC6084IMX/NOPB产品简介:

ICGOO电子元器件商城为您提供LMC6084IMX/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LMC6084IMX/NOPB价格参考。Texas InstrumentsLMC6084IMX/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 满摆幅 14-SOIC。您可以下载LMC6084IMX/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LMC6084IMX/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)

描述

IC OPAMP GP 1.3MHZ RRO 14SOIC

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

LMC6084IMX/NOPB

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

供应商器件封装

14-SOICN

其它名称

296-35441-6

包装

Digi-Reel®

压摆率

1.5 V/µs

增益带宽积

1.3MHz

安装类型

表面贴装

封装/外壳

14-SOIC(0.154",3.90mm 宽)

工作温度

-40°C ~ 85°C

放大器类型

通用

标准包装

1

电压-电源,单/双 (±)

4.5 V ~ 15.5 V, ±2.25 V ~ 7.75 V

电压-输入失调

150µV

电流-电源

2.2mA

电流-输入偏置

0.01pA

电流-输出/通道

34mA

电路数

4

输出类型

满摆幅

推荐商品

型号:TL3472IP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:HCPL-7510-300

品牌:Broadcom Limited

产品名称:集成电路(IC)

获取报价

型号:TL034ID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC6101ACMS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TLC4502ACDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MCP6231-E/MS

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:AD8692ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OPA4130UA/2K5

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LMC6084IMX/NOPB 相关产品

TLV2442AQPWRG4Q1

品牌:Texas Instruments

价格:

ALD2711APAL

品牌:Advanced Linear Devices Inc.

价格:

LMV821DBVRG4

品牌:Texas Instruments

价格:

AD8671ARZ-REEL7

品牌:Analog Devices Inc.

价格:

OPA379AIDCKR

品牌:Texas Instruments

价格:

OP200GSZ

品牌:Analog Devices Inc.

价格:

MCP6L91T-E/OT

品牌:Microchip Technology

价格:

LMV862MMX/NOPB

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 LMC6084 Precision CMOS Quad Operational Amplifier CheckforSamples:LMC6084 FEATURES DESCRIPTION 1 (TypicalUnlessOtherwiseStated) The LMC6084 is a precision quad low offset voltage 2 operational amplifier, capable of single supply • LowOffsetVoltage:150μV operation. Performance characteristics include ultra • Operatesfrom4.5Vto15VSingleSupply low input bias current, high voltage gain, rail-to-rail • UltraLowInputBiasCurrent:10fA output swing, and an input common mode voltage range that includes ground. These features, plus its • OutputSwingtowithin20mVofSupplyRail, low offset voltage, make the LMC6084 ideally suited 100kLoad forprecisioncircuitapplications. • InputCommon-ModeRangeIncludesV− Other applications using the LMC6084 include • HighVoltageGain:130dB precision full-wave rectifiers, integrators, references, • ImprovedLatchupImmunity andsample-and-holdcircuits. This device is built with National's advanced Double- APPLICATIONS PolySilicon-GateCMOSprocess. • InstrumentationAmplifier For designs with more critical power demands, see • PhotodiodeandInfraredDetectorPreamplifier the LMC6064 precision quad micropower operational • TransducerAmplifiers amplifier. • MedicalInstrumentation For a single or dual operational amplifier with similar • D/AConverter features,seetheLMC6081orLMC6082respectively. • ChargeAmplifierforPiezoelectricTransducers PATENTPENDING Connection Diagram Figure1.14-PinPDIP/SOIC Figure2.InputBiasCurrent TopView vsTemperature Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2000–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com Absolute Maximum Ratings(1)(2) DifferentialInputVoltage ±SupplyVoltage VoltageatInput/OutputPin (V+)+0.3V,(V−)−0.3V SupplyVoltage(V+−V−) 16V OutputShortCircuittoV+ See(3) OutputShortCircuittoV− See(4) LeadTemperature(Soldering,10Sec.) 260°C StorageTemp.Range −65°Cto+150°C JunctionTemperature 150°C ESDTolerance(5) 2kV CurrentatInputPin ±10mA CurrentatOutputPin ±30mA CurrentatPowerSupplyPin 40mA PowerDissipation See(6) (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butdonotguaranteespecificperformancelimits.Forguaranteedspecificationsandtest conditions,seetheElectricalCharacteristics.Theguaranteedspecificationsapplyonlyforthetestconditionslisted. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTISalesOffice/Distributorsforavailabilityandspecifications. (3) DonotconnectoutputtoV+,whenV+isgreaterthan13Vorreliabilitywillbeadverselyaffected. (4) Appliestobothsingle-supplyandsplit-supplyoperation.Continuousshortcircuitoperationatelevatedambienttemperaturecanresultin exceedingthemaximumallowedjunctiontemperatureof150°C.Outputcurrentsinexcessof±30mAoverlongtermmayadversely affectreliability. (5) Humanbodymodel,1.5kΩinserieswith100pF. (6) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(Max) JA A temperatureisP =(T −T )/θ . D J(Max) A JA Operating Ratings(1) TemperatureRange LMC6084AM −55°C≤T ≤+125°C J LMC6084AI,LMC6084I −40°C≤T ≤+85°C J SupplyVoltage 4.5V≤V+≤15.5V ThermalResistance(θ )(2) 14-PinPDIP 81°C/W JA 14-PinSOIC 126°C/W PowerDissipation See(3) (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butdonotguaranteespecificperformancelimits.Forguaranteedspecificationsandtest conditions,seetheElectricalCharacteristics.Theguaranteedspecificationsapplyonlyforthetestconditionslisted. (2) AllnumbersapplyforpackagessoldereddirectlyintoaPCboard. (3) Foroperatingatelevatedtemperaturesthedevicemustbederatedbasedonthethermalresistanceθ withP =(T −T )/θ .All JA D J A JA numbersapplyforpackagessoldereddirectlyintoaPCboard. DC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforT =25°C.Boldfacelimitsapplyatthetemperatureextremes.V+=5V, J V−=0V,V =1.5V,V =2.5VandR >1Munlessotherwisespecified. CM O L LMC6084AM LMC6084AI LMC6084I Symbol Parameter Conditions Typ(1) Units Limit(2) Limit(2) Limit(2) V InputOffsetVoltage 150 350 350 800 μV OS 1000 800 1300 Max TCV InputOffsetVoltage 1.0 μV/°C OS AverageDrift I InputBiasCurrent 0.010 pA B 100 4 4 Max I InputOffsetCurrent 0.005 pA OS 100 2 2 Max (1) Typicalvaluesrepresentthemostlikelyparametricnorm. (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. 2 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 DC Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsguaranteedforT =25°C.Boldfacelimitsapplyatthetemperatureextremes.V+=5V, J V−=0V,V =1.5V,V =2.5VandR >1Munlessotherwisespecified. CM O L LMC6084AM LMC6084AI LMC6084I Symbol Parameter Conditions Typ(1) Units Limit(2) Limit(2) Limit(2) R InputResistance >10 TeraΩ IN CMRR CommonMode 0V≤V ≤12.0V 85 75 75 66 dB CM RejectionRatio V+=15V 72 72 63 Min +PSRR PositivePowerSupply 5V≤V+≤15V 85 75 75 66 dB RejectionRatio V =2.5V 72 72 63 Min O −PSRR NegativePowerSupply 0V≤V−≤−10V 94 84 84 74 dB RejectionRatio 81 81 71 Min V InputCommon-Mode V+=5Vand15V −0.4 −0.1 −0.1 −0.1 V CM VoltageRange forCMRR≥60dB 0 0 0 Max V+−1.9 V+−2.3 V+−2.3 V+−2.3 V V+−2.6 V+−2.5 V+−2.5 Min A LargeSignal R =2kΩ(3) Sourcing 1400 400 400 300 V/mV V L VoltageGain 300 300 200 Min Sinking 350 180 180 90 V/mV 70 100 60 Min R =600Ω(3) Sourcing 1200 400 400 200 V/mV L 150 150 80 Min Sinking 150 100 100 70 V/mV 35 50 35 Min V OutputSwing V+=5V 4.87 4.80 4.80 4.75 V O R =2kΩto2.5V 4.70 4.73 4.67 Min L 0.10 0.13 0.13 0.20 V 0.19 0.17 0.24 Max V+=5V 4.61 4.50 4.50 4.40 V R =600Ωto2.5V 4.24 4.31 4.21 Min L 0.30 0.40 0.40 0.50 V 0.63 0.50 0.63 Max V+=15V 14.63 14.50 14.50 14.37 V R =2kΩto7.5V 14.30 14.34 14.25 Min L 0.26 0.35 0.35 0.44 V 0.48 0.45 0.56 Max V+=15V 13.90 13.35 13.35 12.92 V R =600Ωto7.5V 12.80 12.86 12.44 Min L 0.79 1.16 1.16 1.33 V 1.42 1.32 1.58 Max I OutputCurrent Sourcing,V =0V 22 16 16 13 mA O O V+=5V 8 10 8 Min Sinking,V =5V 21 16 16 13 mA O 11 13 10 Min I OutputCurrent Sourcing,V =0V 30 28 28 23 mA O O V+=15V 18 22 18 Min Sinking,V =13V(4) 34 28 28 23 mA O 19 22 18 Min (3) V+=15V,V =7.5VandR connectedto7.5V.ForSourcingtests,7.5V≤V ≤11.5V.ForSinkingtests,2.5V≤V ≤7.5V. CM L O O (4) DonotconnectoutputtoV+,whenV+isgreaterthan13Vorreliabilitywillbeadverselyaffected. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LMC6084

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com DC Electrical Characteristics (continued) Unlessotherwisespecified,alllimitsguaranteedforT =25°C.Boldfacelimitsapplyatthetemperatureextremes.V+=5V, J V−=0V,V =1.5V,V =2.5VandR >1Munlessotherwisespecified. CM O L LMC6084AM LMC6084AI LMC6084I Symbol Parameter Conditions Typ(1) Units Limit(2) Limit(2) Limit(2) I SupplyCurrent AllFourAmplifiers 1.8 3.0 3.0 3.0 mA S V+=+5V,V =1.5V 3.6 3.6 3.6 Max O AllFourAmplifiers 2.2 3.4 3.4 3.4 mA V+=+15V,V =7.5V 4.0 4.0 4.0 Max O AC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforT =25°C,Boldfacelimitsapplyatthetemperatureextremes.V+=5V, J V−=0V,V =1.5V,V =2.5VandR >1Munlessotherwisespecified. CM O L LMC6084AM LMC6084AI LMC6084I Symbol Parameter Conditions Typ(1) Units Limit(2) Limit(2) Limit(2) SR SlewRate See(3) 1.5 0.8 0.8 0.8 V/μs 0.5 0.6 0.6 Min GBW Gain-BandwidthProduct 1.3 MHz φ PhaseMargin 50 Deg m Amp-to-AmpIsolation See(4) 140 dB e Input-ReferredVoltageNoise F=1kHz 22 nV/√Hz n i Input-ReferredCurrentNoise F=1kHz 0.0002 pA/√Hz n T.H.D. TotalHarmonicDistortion F=10kHz,A =−10 V R =2kΩ,V =8V 0.01 % L O PP ±5VSupply (1) Typicalvaluesrepresentthemostlikelyparametricnorm. (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) V+=15V.ConnectedasVoltageFollowerwith10Vstepinput.Numberspecifiedistheslowerofthepositiveandnegativeslewrates. (4) InputreferredV+=15VandR =100kΩconnectedto7.5V.Eachampexcitedinturmwith1kHztoproduceV =12V . L O PP 4 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 Typical Performance Characteristics DistributionofLMC6084 DistributionofLMC6084 InputOffsetVoltage InputOffsetVoltage (T =+25°C) (T =−55°C) A A Figure3. Figure4. DistributionofLMC6084 InputOffsetVoltage InputBiasCurrent (T =+125°C) vsTemperature A Figure5. Figure6. SupplyCurrent InputVoltage vsSupplyVoltage vsOutputVoltage Figure7. Figure8. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LMC6084

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) CommonMode RejectionRatio PowerSupplyRejectionRatio vsFrequency vsFrequency Figure9. Figure10. InputVoltageNoise OutputCharacteristics vsFrequency SourcingCurrent Figure11. Figure12. OutputCharacteristics GainandPhaseResponse SinkingCurrent vsTemperature(−55°Cto+125°C) Figure13. Figure14. 6 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 Typical Performance Characteristics (continued) GainandPhaseResponse GainandPhaseResponse vs vs CapacitiveLoadwithR =600Ω CapacitiveLoadwithR =500kΩ L L Figure15. Figure16. OpenLoop InvertingSmallSignal FrequencyResponse PulseResponse Figure17. Figure18. InvertingLargeSignal Non-InvertingSmall PulseResponse SignalPulseResponse Figure19. Figure20. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LMC6084

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) Non-InvertingLarge CrosstalkRejection SignalPulseResponse vsFrequency Figure21. Figure22. Stability Stability vs vs CapacitiveLoad,R =600Ω CapacitiveLoadR =1MΩ L L Figure23. Figure24. 8 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 APPLICATIONS HINTS AMPLIFIER TOPOLOGY The LMC6084 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6084 both easier to designwith,andprovidehigherspeedthanproductstypicallyfoundinthisultra-lowpowerclass. COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6084. Although the LMC6084 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phasemargins. When high input impedances are demanded, guarding of the LMC6084 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High ImpedanceWork) The effect of input capacitance can be compensated for by adding a capacitor, C, around the feedback resistors f (asinFigure25)suchthat: (1) or (2) R C ≤R C (3) 1 IN 2 f Since it is often difficult to know the exact value of C , C can be experimentally adjusted so that the desired IN f pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating forinputcapacitance. Figure25. CancellingtheEffectofInputCapacitance CAPACITIVE LOAD TOLERANCE All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistiveloadinparallelwiththecapacitiveload(seetypicalcurves). Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created bythecombinationoftheop-amp'soutputimpedanceandthecapacitiveload.Thispoleinducesphaselagatthe unity-gain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. Withafewexternalcomponents,opampscaneasilyindirectlydrivecapacitiveloads,asshowninFigure26. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LMC6084

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com Figure26. LMC6084NoninvertingGainof10Amplifier,CompensatedtoHandleCapacitiveLoads In the circuit of Figure 26, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overallfeedbackloop. Capacitive load driving capability is enhanced by using a pull up resistor to V+ Figure 27. Typically a pull up resistor conducting 500 μA or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). Figure27. CompensatingforLargeCapacitiveLoadswithaPullUpResistor PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6084, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination,thesurfaceleakagewillbeappreciable. To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6084's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 28. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 1012Ω, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6084's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011Ω would cause only 0.05 pA of leakage current. See Figure 29 for typical connections of guard ringsforstandardop-ampconfigurations. 10 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 Figure28. ExampleofGuardRinginP.C.BoardLayout InvertingAmplifier Non-InvertingAmplifier Follower Figure29. TypicalConnectionsofGuardRings The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but theadvantagesaresometimeswellworththeeffortofusingpoint-to-pointup-in-the-airwiring.SeeFigure30. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LMC6084

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6084 is designed to withstand 100 mA surge current on the I/O pins. Some resistive method shouldbeusedtoisolateanycapacitancefromsupplyingexcesscurrenttotheI/Opins.Inaddition,likeanSCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchupsusceptibility. (InputpinsareliftedoutofPCboardandsoldereddirectlytocomponents.AllotherpinsconnectedtoPCboard). Figure30. AirWiring Typical Single-Supply Applications (V+=5.0V ) DC The extremely high input impedance, and low power consumption, of the LMC6084 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 31 shows an instrumentation amplifier that features high differential and common mode input resistance (>1014Ω), 0.01% gain accuracy at A = 1000, excellent CMRR with 1 kΩ imbalance in bridge source resistance. V Input current is less than 100 fA and offset drift is less than 2.5 μV/°C. R provides a simple means of adjusting 2 gain over a wide range without degrading CMRR. R is an initial trim used to maximize CMRR without using 7 superprecisionmatchedresistors.ForgoodCMRRovertemperature,lowdriftresistorsshouldbeused. IfR =R ,R =R ,andR =R ;then 1 5 3 6 4 7 12 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

LMC6084 www.ti.com SNOS657D–AUGUST2000–REVISEDMARCH2013 ∴A ≈100forcircuitshown(R =9.822k). V 2 Figure31. InstrumentationAmplifier Figure32. Low-LeakageSampleandHold Figure33. 1HzSquareWaveOscillator Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LMC6084

LMC6084 SNOS657D–AUGUST2000–REVISEDMARCH2013 www.ti.com REVISION HISTORY ChangesfromRevisionC(March2013)toRevisionD Page • ChangedlayoutofNationalDataSheettoTIformat.......................................................................................................... 13 14 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LMC6084

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LMC6084AIM/NOPB ACTIVE SOIC D 14 55 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC6084 & no Sb/Br) AIM LMC6084AIMX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC6084 & no Sb/Br) AIM LMC6084IM/NOPB ACTIVE SOIC D 14 55 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC6084IM & no Sb/Br) LMC6084IMX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LMC6084IM & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 5-Dec-2014 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LMC6084AIMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMC6084IMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 5-Dec-2014 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LMC6084AIMX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMC6084IMX/NOPB SOIC D 14 2500 367.0 367.0 35.0 PackMaterials-Page2

None

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated