图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM6171BIM/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM6171BIM/NOPB产品简介:

ICGOO电子元器件商城为您提供LM6171BIM/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM6171BIM/NOPB价格参考。Texas InstrumentsLM6171BIM/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电压反馈 放大器 1 电路 8-SOIC。您可以下载LM6171BIM/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM6171BIM/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

160MHz

产品目录

集成电路 (IC)半导体

描述

IC OPAMP VFB 100MHZ 8SOIC运算放大器 - 运放 Hi Spd Low Pwr Low Dist Volt Fdbk Amp

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

http://www.ti.com/litv/snos745c

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments LM6171BIM/NOPBVIP™ III

数据手册

点击此处下载产品Datasheet

产品型号

LM6171BIM/NOPB

RoHS指令信息

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

8-SOIC

共模抑制比—最小值

70 dB

关闭

No Shutdown

其它名称

*LM6171BIM/NOPB
LM6171BIMNOPB

包装

管件

压摆率

3600 V/µs

商标

Texas Instruments

增益带宽生成

100 MHz

增益带宽积

100MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 85°C

工作电源电压

5.5 V to 34 V

工厂包装数量

95

放大器类型

电压反馈

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

95

电压-电源,单/双 (±)

5.5 V ~ 34 V, ±2.75 V ~ 17 V

电压-输入失调

1.5mV

电流-电源

2.5mA

电流-输入偏置

1µA

电流-输出/通道

116mA

电源电流

2.5 mA

电路数

1

系列

LM6171

转换速度

3600 V/us

输入偏压电流—最大

4 uA

输入补偿电压

8 mV

输出电流

116 mA

输出类型

-

通道数量

1 Channel

推荐商品

型号:LMV554MT/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV2472CP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMC662CN

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLV2434AIDG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADA4891-1WARJZ-R7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:ACPL-C870-000E

品牌:Broadcom Limited

产品名称:集成电路(IC)

获取报价

型号:LT1678IS8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:INA143U

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM6171BIM/NOPB 相关产品

LMH6682MM

品牌:Texas Instruments

价格:

LM2902DT

品牌:Rohm Semiconductor

价格:

MAX4477AUA+

品牌:Maxim Integrated

价格:

MCP6052T-E/SN

品牌:Microchip Technology

价格:

TLC2202CPS

品牌:Texas Instruments

价格:

LT1013CPG4

品牌:Texas Instruments

价格:

OPA4684IDR

品牌:Texas Instruments

价格:

EL5370IUZ

品牌:Renesas Electronics America Inc.

价格:

PDF Datasheet 数据手册内容提取

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 LM6171 High Speed Low Power Low Distortion Voltage Feedback Amplifier CheckforSamples:LM6171 FEATURES DESCRIPTION 1 • (TypicalUnlessOtherwiseNoted) The LM6171 is a high speed unity-gain stable voltage 23 feedback amplifier. It offers a high slew rate of • Easy-To-UseVoltageFeedbackTopology 3600V/μs and a unity-gain bandwidth of 100 MHz • VeryHighSlewRate:3600V/μs while consuming only 2.5 mA of supply current. The • WideUnity-Gain-BandwidthProduct:100MHz LM6171 has very impressive AC and DC performance which is a great benefit for high speed • −3dBFrequency@A =+2:62MHz V signalprocessingandvideoapplications. • LowSupplyCurrent:2.5mA The ±15V power supplies allow for large signal • HighCMRR:110dB swings and give greater dynamic range and signal-to- • HighOpenLoopGain:90dB noise ratio. The LM6171 has high output current • Specifiedfor±15Vand ±5VOperation drive, low SFDR and THD, ideal for ADC/DAC systems. The LM6171 is specified for ±5V operation APPLICATIONS forportableapplications. The LM6171 is built on TI's advanced VIP III • MultimediaBroadcastSystems (Vertically Integrated PNP) complementary bipolar • LineDrivers,Switchers process. • VideoAmplifiers • NTSC,PAL®andSECAMSystems • ADC/DACBuffers • HDTVAmplifiers • PulseAmplifiersandPeakDetectors • InstrumentationAmplifier • ActiveFilters CONNECTION DIAGRAM Figure1. TopView 8-PinSOIC/PDIP SeePackageNumberD(SOIC)or SeePackageNumberP(PDIP) Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. PALisaregisteredtrademarkofandusedunderlisencefromAdvancedMicroDevices,Inc.. 2 Allothertrademarksarethepropertyoftheirrespectiveowners. 3 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©1998–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com Absolute Maximum Ratings(1)(2) ESDTolerance(3) 2.5kV SupplyVoltage(V+–V−) 36V DifferentialInputVoltage ±10V Common-ModeVoltageRange V++0.3VtoV−−0.3V InputCurrent ±10mA OutputShortCircuittoGround(4) Continuous StorageTemperatureRange −65°Cto+150°C MaximumJunctionTemperature(5) 150°C SolderingInformation InfraredorConvectionReflow 235°C (20sec.) WaveSolderingLeadTemp 260°C (10sec.) (1) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (2) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandthetest conditions,seetheElectricalCharacteristics. (3) Humanbodymodel,1.5kΩinserieswith100pF. (4) Continuousshortcircuitoperationatelevatedambienttemperaturecanresultinexceedingthemaximumallowedjunctiontemperature of150°C. (5) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(max) JA A temperatureisP =(T − T )/θ .AllnumbersapplyforpackagessoldereddirectlyintoaPCboard. D J(max) A JA Operating Ratings(1) SupplyVoltage 5.5V≤V ≤34V S OperatingTemperatureRange LM6171AI,LM6171BI −40°Cto+85°C ThermalResistance(θ ) PPackage,8-PinPDIP 108°C/W JA DPackage,8-PinSOIC 172°C/W (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandthetest conditions,seetheElectricalCharacteristics. 2 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 ±15V DC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforT =25°C,V+=+15V,V−=−15V,V =0V,andR =1kΩ.Boldface J CM L limitsapplyatthetemperatureextremes Symbol Parameter Conditions Typ LM6171AI LM6171BI Units (1) Limit Limit (2) (2) V InputOffsetVoltage 1.5 3 6 mV OS 5 8 max TCV InputOffsetVoltageAverageDrift 6 μV/°C OS I InputBiasCurrent 1 3 3 μA B 4 4 max I InputOffsetCurrent 0.03 2 2 μA OS 3 3 max R InputResistance CommonMode 40 IN MΩ DifferentialMode 4.9 R OpenLoopOutputResistance 14 Ω O CMRR CommonModeRejectionRatio V =±10V 110 80 75 dB CM 75 70 min PSRR PowerSupplyRejectionRatio V =±15Vto±5V 95 85 80 dB S 80 75 min V InputCommon-ModeVoltageRange CMRR≥60dB ±13.5 V CM A LargeSignalVoltageGain(3) R =1kΩ 90 80 80 dB V L 70 70 min R =100Ω 83 70 70 dB L 60 60 min V OutputSwing R =1kΩ 13.3 12.5 12.5 V O L 12 12 min −13.3 −12.5 −12.5 V −12 −12 max R =100Ω 11.6 9 9 V L 8.5 8.5 min −10.5 −9 −9 V −8.5 −8.5 max ContinuousOutputCurrent(OpenLoop)(4) Sourcing,R =100Ω 116 90 90 mA L 85 85 min Sinking,R =100Ω 105 90 90 mA L 85 85 max ContinuousOutputCurrent(inLinear Sourcing,R =10Ω 100 mA L Region) Sinking,R =10Ω 80 mA L I OutputShortCircuitCurrent Sourcing 135 mA SC Sinking 135 mA I SupplyCurrent 2.5 4 4 mA S 4.5 4.5 max (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Largesignalvoltagegainisthetotaloutputswingdividedbytheinputsignalrequiredtoproducethatswing.ForV =±15V,V = S OUT ±5V.ForV =+5V,V =±1V. S OUT (4) Theopenloopoutputcurrentistheoutputswingwiththe100Ωloadresistordividedbythatresistor. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com ±15V AC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforT =25°C,V+=+15V,V−=−15V,V =0V,andR =1kΩ.Boldface J CM L limitsapplyatthetemperatureextremes Symbol Parameter Conditions Typ LM6171AI LM6171BI Units (1) Limit Limit (2) (2) SR SlewRate(3) A =+2,V =13V 3600 V/μs V IN PP A =+2,V =10V 3000 V IN PP GBW UnityGain-BandwidthProduct 100 MHz −3dBFrequency A =+1 160 MHz V A =+2 62 MHz V φm PhaseMargin 40 deg t SettlingTime(0.1%) A =−1,V =±5VR = s V OUT L 48 ns 500Ω PropagationDelay V =±5V,R =500Ω,A = IN L V 6 ns −2 A DifferentialGain(4) 0.03 % D φ DifferentialPhase(4) 0.5 deg D e Input-ReferredVoltageNoise f=1kHz 12 nV/√Hz n i Input-ReferredCurrentNoise f=1kHz 1 pA/√Hz n (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Slewrateistheaverageoftherisingandfallingslewrates. (4) DifferentialgainandphasearemeasuredwithA =+2,V =1V at3.58MHzandbothinputandoutput75Ωterminated. V IN PP 4 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 ±5V DC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforT =25°C,V+=+5V,V−=−5V,V =0V,andR =1kΩ.Boldfacelimits J CM L applyatthetemperatureextremes Symbol Parameter Conditions Typ LM6171AI LM6171BI Units (1) Limit Limit (2) (2) V InputOffsetVoltage 1.2 3 6 mV OS 5 8 max TCV InputOffsetVoltageAverageDrift 4 μV/°C OS I InputBiasCurrent 1 2.5 2.5 μA B 3.5 3.5 max I InputOffsetCurrent 0.03 1.5 1.5 μA OS 2.2 2.2 max R InputResistance CommonMode 40 MΩ IN DifferentialMode 4.9 R OpenLoopOutputResistance 14 Ω O CMRR CommonModeRejectionRatio V =±2.5V 105 80 75 dB CM 75 70 min PSRR PowerSupplyRejectionRatio V =±15Vto±5V 95 85 80 dB S 80 75 min V InputCommon-ModeVoltage CMRR≥60dB ±3.7 CM V Range A LargeSignalVoltageGain(3) R =1kΩ 84 75 75 dB V L 65 65 min R =100Ω 80 70 70 dB L 60 60 min V OutputSwing R =1kΩ 3.5 3.2 3.2 V O L 3 3 min −3.4 −3.2 −3.2 V −3 −3 max R =100Ω 3.2 2.8 2.8 V L 2.5 2.5 min −3.0 −2.8 −2.8 V −2.5 −2.5 max ContinuousOutputCurrent(Open Sourcing,R =100Ω 32 28 28 mA L Loop)(4) 25 25 min Sinking,R =100Ω 30 28 28 mA L 25 25 max I OutputShortCircuitCurrent Sourcing 130 mA SC Sinking 100 mA I SupplyCurrent 2.3 3 3 mA S 3.5 3.5 max (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Largesignalvoltagegainisthetotaloutputswingdividedbytheinputsignalrequiredtoproducethatswing.ForV =±15V,V = S OUT ±5V.ForV =+5V,V =±1V. S OUT (4) Theopenloopoutputcurrentistheoutputswingwiththe100Ωloadresistordividedbythatresistor. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com ±5V AC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforT =25°C,V+=+5V,V−=−5V,V =0V,andR =1kΩ.Boldfacelimits J CM L applyatthetemperatureextremes Symbol Parameter Conditions Typ LM6171AI LM6171BI Units (1) Limit Limit (2) (2) SR SlewRate(3) A =+2,V =3.5V 750 V/μs V IN PP GBW UnityGain-BandwidthProduct 70 MHz −3dBFrequency A =+1 130 MHz V A =+2 45 V φm PhaseMargin 57 deg t SettlingTime(0.1%) A =−1,V =+1V,R = s V OUT L 60 ns 500Ω PropagationDelay V =±1V,R =500Ω,A = IN L V 8 ns −2 A DifferentialGain(4) 0.04 % D φ DifferentialPhase(4) 0.7 deg D e Input-ReferredVoltageNoise f=1kHz 11 nV/√Hz n i Input-ReferredCurrentNoise f=1kHz 1 pA/√Hz n (1) TypicalValuesrepresentthemostlikelyparametricnorm. (2) Alllimitsareguaranteedbytestingorstatisticalanalysis. (3) Slewrateistheaverageoftherisingandfallingslewrates. (4) DifferentialgainandphasearemeasuredwithA =+2,V =1V at3.58MHzandbothinputandoutput75Ωterminated. V IN PP 6 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Typical Performance Characteristics Unlessotherwisenoted,T =25°C A SupplyCurrent SupplyCurrent vs. vs. SupplyVoltage Temperature Figure2. Figure3. InputOffsetVoltage InputBiasCurrent vs. vs. Temperature Temperature Figure4. Figure5. InputOffsetVoltage ShortCircuitCurrent vs. vs. CommonModeVoltage Temperature(Sourcing) Figure6. Figure7. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A ShortCircuitCurrent OutputVoltage vs. vs. Temperature(Sinking) OutputCurrent Figure8. Figure9. OutputVoltage CMRR vs. vs. OutputCurrent Frequency Figure10. Figure11. PSRR PSRR vs. vs. Frequency Frequency Figure12. Figure13. 8 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A OpenLoopFrequencyResponse OpenLoopFrequencyResponse Figure14. Figure15. GainBandwidthProduct GainBandwidthProduct vs. vs. SupplyVoltage LoadCapacitance Figure16. Figure17. LargeSignalVoltageGain LargeSignalVoltageGain vs. vs. Load Load Figure18. Figure19. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A InputVoltageNoise InputVoltageNoise vs. vs. Frequency Frequency Figure20. Figure21. InputCurrentNoise InputCurrentNoise vs. vs. Frequency Frequency Figure22. Figure23. SlewRate SlewRate vs. vs. SupplyVoltage InputVoltage Figure24. Figure25. 10 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A SlewRate OpenLoopOutputImpedance vs. vs. LoadCapacitance Frequency Figure26. Figure27. OpenLoopOutputImpedance vs. LargeSignalPulseResponse Frequency A =−1,V =±15V V S Figure28. Figure29. LargeSignalPulseResponse LargeSignalPulseResponse A =−1,V =±5V A =+1,V =±15V V S V S Figure30. Figure31. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A LargeSignalPulseResponse LargeSignalPulseResponse A =+1,V =±5V A =+2,V =±15V V S V S Figure32. Figure33. LargeSignalPulseResponse SmallSignalPulseResponse A =+2,V =±5V A =−1,V =±15V V S V S Figure34. Figure35. SmallSignalPulseResponse SmallSignalPulseResponse A =−1,V =±5V A =+1,V =±15V V S V S Figure36. Figure37. 12 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A SmallSignalPulseResponse SmallSignalPulseResponse A =+1,V =±5V A =+2,V =±15V V S V S Figure38. Figure39. ClosedLoopFrequencyResponse vs. SmallSignalPulseResponse SupplyVoltage A =+2,V =±5V (A =+1) V S V Figure40. Figure41. ClosedLoopFrequencyResponse ClosedLoopFrequencyResponse vs. vs. SupplyVoltage CapacitiveLoad (A =+2) (A =+1) V V Figure42. Figure43. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A ClosedLoopFrequencyResponse ClosedLoopFrequencyResponse vs. vs. CapacitiveLoad CapacitiveLoad (A =+1) (A =+2) V V Figure44. Figure45. ClosedLoopFrequencyResponse vs. TotalHarmonicDistortion CapacitiveLoad vs. (A =+2) Frequency V Figure46. Figure47. TotalHarmonicDistortion TotalHarmonicDistortion vs. vs. Frequency Frequency Figure48. Figure49. 14 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Typical Performance Characteristics (continued) Unlessotherwisenoted,T =25°C A TotalHarmonicDistortion UndistortedOutputSwing vs. vs. Frequency Frequency Figure50. Figure51. UndistortedOutputSwing UndistortedOutputSwing vs. vs. Frequency Frequency Figure52. Figure53. UndistortedOutputSwing TotalPowerDissipation vs. vs. Frequency AmbientTemperature Figure54. Figure55. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com LM6171 SIMPLIFIED SCHEMATIC Figure56. 16 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 APPLICATION INFORMATION LM6171 PERFORMANCE DISCUSSION The LM6171 is a high speed, unity-gain stable voltage feedback amplifier. It consumes only 2.5 mA supply currentwhileprovidingagain-bandwidthproductof100MHzandaslewrateof3600V/μs.Italsohasothergreat features such as low differential gain and phase and high output current. The LM6171 is a good choice in high speedcircuits. The LM6171 is a true voltage feedback amplifier. Unlike current feedback amplifiers (CFAs) with a low inverting input impedance and a high non-inverting input impedance, both inputs of voltage feedback amplifiers (VFAs) have high impedance nodes. The low impedance inverting input in CFAs will couple with feedback capacitor and cause oscillation. As a result, CFAs cannot be used in traditional op amp circuits such as photodiode amplifiers, I-to-Vconvertersandintegrators. LM6171 CIRCUIT OPERATION The class AB input stage in LM6171 is fully symmetrical and has a similar slewing characteristic to the current feedback amplifiers. In LM6171 Figure 56, Q1 through Q4 form the equivalent of the current feedback input buffer, R the equivalent of the feedback resistor, and stage A buffers the inverting input. The triple-buffered E outputstageisolatesthegainstagefromtheloadtoprovidelowoutputimpedance. LM6171 SLEW RATE CHARACTERISTIC The slew rate of LM6171 is determined by the current available to charge and discharge an internal high impedance node capacitor. The current is the differential input voltage divided by the total degeneration resistor R . Therefore, the slew rate is proportional to the input voltage level, and the higher slew rates are achievable in E thelowergainconfigurations. When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs. By placing an external series resistor such as 1 kΩ to the input of LM6171, the bandwidth is reduced to help lowertheovershoot. LAYOUT CONSIDERATION PrintedCircuitBoardsandHighSpeedOpAmps There are many things to consider when designing PC boards for high speed op amps. Without proper caution, it is very easy and frustrating to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the signal traces should be short and wide to provide low inductance and low impedance paths. Any unused board space needs to be grounded to reduce stray signal pickup. Critical components should also be grounded at a common point to eliminate voltage drop. Sockets add capacitance to the board and can affect frequency performance. It is better to solder the amplifier directly into the PC board withoutusinganysocket. UsingProbes Active (FET) probes are ideal for taking high frequency measurements because they have wide bandwidth, high input impedance and low input capacitance. However, the probe ground leads provide a long ground loop that will produce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads andprobejacketsandusingscopeprobejacks. ComponentsSelectionAndFeedbackResistor It is important in high speed applications to keep all component leads short because wires are inductive at high frequency. For discrete components, choose carbon composition-type resistors and mica-type capacitors. Surfacemountcomponentsarepreferredoverdiscretecomponentsforminimuminductiveeffect. Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects such as ringing or oscillation in high speed amplifiers. For LM6171, a feedback resistor of 510Ω gives optimal performance. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com COMPENSATION FOR INPUT CAPACITANCE The combination of an amplifier's input capacitance with the gain setting resistors adds a pole that can cause peakingoroscillation.Tosolvethisproblem,afeedbackcapacitorwithavalue C >(R ×C )/R (1) F G IN F canbeusedtocancelthatpole.ForLM6171,afeedbackcapacitorof2pFisrecommended.Figure57illustrates thecompensationcircuit. Figure57. CompensatingforInputCapacitance POWER SUPPLY BYPASSING Bypassing the power supply is necessary to maintain low power supply impedance across frequency. Both positive and negative power supplies should be bypassed individually by placing 0.01 μF ceramic capacitors directlytopowersupplypinsand2.2μFtantalumcapacitorsclosetothepowersupplypins. Figure58. PowerSupplyBypassing TERMINATION In high frequency applications, reflections occur if signals are not properly terminated. Figure 59 shows a properlyterminatedsignalwhileFigure60showsanimproperlyterminatedsignal. 18 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Figure59. ProperlyTerminatedSignal Figure60. ImproperlyTerminatedSignal To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The other end of the cable should be terminated with the same value terminator or resistor. For the commonlyusedcables,RG59has75Ω characteristicimpedance,andRG58has50Ω characteristicimpedance. Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com DRIVING CAPACITIVE LOADS Amplifiers driving capacitive loads can oscillate or have ringing at the output. To eliminate oscillation or reduce ringing,anisolationresistorcanbeplacedasshownbelowinFigure61.Thecombinationoftheisolationresistor andtheloadcapacitorformsapoletoincreasestablilitybyaddingmorephasemargintotheoverallsystem.The desired performance depends on the value of the isolation resistor; the bigger the isolation resistor, the more damped the pulse response becomes. For LM6171, a 50Ω isolation resistor is recommended for initial evaluation.Figure62showstheLM6171drivinga200pFloadwiththe50Ω isolationresistor. Figure61. IsolationResistorUsedtoDriveCapacitiveLoad Figure62. TheLM6171Drivinga200pFLoadwitha50ΩIsolationResistor POWER DISSIPATION Themaximumpowerallowedtodissipateinadeviceisdefinedas: P =(T −T )/θ D J(max) A JA where • P isthepowerdissipationinadevice D • T isthemaximumjunctiontemperature J(max) • T istheambienttemperature A • θ isthethermalresistanceofaparticularpackage (2) JA For example, for the LM6171 in a SOIC-8 package, the maximum power dissipation at 25°C ambient temperatureis730mW. 20 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 Thermal resistance, θ , depends on parameters such as die size, package size and package material. The JA smaller the die size and package, the higher θ becomes. The 8-pin PDIP package has a lower thermal JA resistance (108°C/W) than that of 8-pin SOIC-8 (172°C/W). Therefore, for higher dissipation capability, use an 8- pinPDIPpackage. Thetotalpowerdissipatedinadevicecanbecalculatedas: P =P +P (3) D Q L P is the quiescent power dissipated in a device with no load connected at the output. P is the power dissipated Q L inthedevicewithaloadconnectedattheoutput;itisnotthepowerdissipatedbytheload. Furthermore, P = supplycurrent×totalsupplyvoltagewithnoload Q P = outputcurrent×(voltagedifferencebetweensupplyvoltageandoutputvoltageofthesamesupply) L For example, the total power dissipated by the LM6171 with V = ±15V and output voltage of 10V into 1 kΩ load S resistor(oneendtiedtoground)is P =P +P D Q L =(2.5mA)×(30V)+(10mA) ×(15V− 10V) =75mW+50mW =125mW APPLICATION CIRCUITS Figure63. FastInstrumentationAmplifier Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM6171

LM6171 SNOS745C–MAY1998–REVISEDMARCH2013 www.ti.com Figure64.Multivibrator Figure65.PulseWidthModulator 22 SubmitDocumentationFeedback Copyright©1998–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6171

LM6171 www.ti.com SNOS745C–MAY1998–REVISEDMARCH2013 REVISION HISTORY ChangesfromRevisionB(March2013)toRevisionC Page • ChangedlayoutofNationalDataSheettoTIformat.......................................................................................................... 21 Copyright©1998–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LM6171

PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM6171AIM NRND SOIC D 8 95 TBD Call TI Call TI -40 to 85 LM61 71AIM LM6171AIM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM61 & no Sb/Br) 71AIM LM6171AIMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM61 & no Sb/Br) 71AIM LM6171BIM NRND SOIC D 8 95 TBD Call TI Call TI -40 to 85 LM61 71BIM LM6171BIM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM61 & no Sb/Br) 71BIM LM6171BIMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM61 & no Sb/Br) 71BIM LM6171BIN/NOPB ACTIVE PDIP P 8 40 Green (RoHS Call TI | SN Level-1-NA-UNLIM -40 to 85 LM6171 & no Sb/Br) BIN (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2020 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 24-Aug-2017 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM6171AIMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM6171BIMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 24-Aug-2017 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM6171AIMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LM6171BIMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated