图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM6144BIN/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM6144BIN/NOPB产品简介:

ICGOO电子元器件商城为您提供LM6144BIN/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM6144BIN/NOPB价格参考¥27.60-¥51.27。Texas InstrumentsLM6144BIN/NOPB封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 满摆幅 14-DIP。您可以下载LM6144BIN/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM6144BIN/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 18MHZ RRO 14DIP运算放大器 - 运放 Quad Hi Spd/Low Pwr RRIO Amp

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,Texas Instruments LM6144BIN/NOPB-

数据手册

点击此处下载产品Datasheet

产品型号

LM6144BIN/NOPB

PCN设计/规格

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

14-DIP

共模抑制比—最小值

107 dB

关闭

No Shutdown

其它名称

*LM6144BIN/NOPB
LM6144BINNOPB

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM6144BIN/NOPB

包装

管件

压摆率

25 V/µs

商标

Texas Instruments

增益带宽生成

17 MHz

增益带宽积

18MHz

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

14-DIP(0.300",7.62mm)

封装/箱体

PDIP-14

工作温度

-40°C ~ 85°C

工作电源电压

1.8 V to 24 V

工厂包装数量

25

放大器类型

通用

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

25

电压-电源,单/双 (±)

1.8 V ~ 24 V, ±0.9 V ~ 12 V

电压-输入失调

1.3mV

电流-电源

750µA

电流-输入偏置

174nA

电流-输出/通道

22mA

电源电流

0.65 mA

电路数

4

系列

LM6144

转换速度

25 V/us

输入偏压电流—最大

300 nA

输入补偿电压

2.5 mV

输出电流

24 mA

输出类型

满摆幅

通道数量

2 Channel

推荐商品

型号:MC1458P

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MC33201VDR2G

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LMV932IDGKR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8022ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD744TH/883B

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:TL032CDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:OPA330AIDBVRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT6003IS5#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM6144BIN/NOPB 相关产品

TLC251CPSR

品牌:Texas Instruments

价格:

ISL28213FBZ

品牌:Renesas Electronics America Inc.

价格:

LMH6640MFX

品牌:Texas Instruments

价格:

AD8641AKSZ-REEL

品牌:Analog Devices Inc.

价格:

LMV301MG/NOPB

品牌:Texas Instruments

价格:¥2.60-¥6.42

PA341DF

品牌:Apex Microtechnology

价格:

LMV321LICT

品牌:STMicroelectronics

价格:

LMP7731MA/NOPB

品牌:Texas Instruments

价格:¥5.52-¥11.20

PDF Datasheet 数据手册内容提取

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 LM6142/LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers CheckforSamples:LM6142,LM6144 FEATURES DESCRIPTION 1 AtV =5V.TypUnlessNoted. Using patent pending new circuit topologies, the 2 S LM6142/LM6144 provides new levels of performance • Rail-to-railInputCMVR−0.25Vto5.25V in applications where low voltage supplies or power • Rail-to-RailOutputSwing0.005Vto4.995V limitations previously made compromise necessary. • WideGain-Bandwidth:17MHzat50kHz(typ) Operating on supplies of 1.8V to over 24V, the LM6142/LM6144 is an excellent choice for battery • SlewRate: operated systems, portable instrumentation and – SmallSignal,5V/μs others. – LargeSignal,30V/μs The greater than rail-to-rail input voltage range • LowSupplyCurrent650μA/Amplifier eliminates concern over exceeding the common- • WideSupplyRange1.8Vto24V mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the • CMRR107dB output. This is particularly important when operating • Gain108dBwithRL=10k onlowsupplyvoltages. • PSRR87dB High gain-bandwidth with 650μA/Amplifier supply current opens new battery powered applications APPLICATIONS where previous higher power consumption reduced • BatteryOperatedInstrumentation battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally • DepthSounders/FishFinders removesthiscommonproblem. • BarcodeScanners • WirelessCommunications • Rail-to-Railin-outInstrumentationAmps Connection Diagrams Figure1.8-PinCDIP Figure2.8-PinPDIP/SOIC TopView TopView Figure3.14-PinPDIP/SOIC TopView 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2000–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Absolute Maximum Ratings(1)(2) ESDTolerance(3) 2500V DifferentialInputVoltage 15V VoltageatInput/OutputPin (V+)+0.3V,(V−)−0.3V SupplyVoltage(V+−V−) 35V CurrentatInputPin ±10mA CurrentatOutputPin(4) ±25mA CurrentatPowerSupplyPin 50mA LeadTemperature(soldering,10sec) 260°C StorageTemp.Range −65°Cto+150°C JunctionTemperature(5) 150°C (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandthetest conditions,seetheElectricalCharacteristics. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (3) Humanbodymodel,1.5kΩinserieswith100pF. (4) Appliestobothsingle-supplyandsplit-supplyoperation.Continuousshortcircuitoperationatelevatedambienttemperaturecanresultin exceedingthemaximumallowedjunctiontemperatureof150°C. (5) ThemaximumpowerdissipationisafunctionofT ,θ ,andT .Themaximumallowablepowerdissipationatanyambient J(MAX) JA A temperatureisP =(T −T )/θ .AllnumbersapplyforpackagessoldereddirectlyintoaPCboard. D J(MAX) A JA Operating Ratings(1) SupplyVoltage 1.8V≤V+≤24V TemperatureRangeLM6142,LM6144 −40°C≤T ≤+85°C A ThermalResistance(θ ) PPackage,8-PinPDIP 115°C/W JA DPackage,8-PinSOIC 193°C/W NFFPackage,14-PinPDIP 81°C/W DPackage,14-PinSOIC 126°C/W (1) AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsfor whichthedeviceisintendedtobefunctional,butspecificperformanceisnotguaranteed.Forguaranteedspecificationsandthetest conditions,seetheElectricalCharacteristics. 5.0V DC Electrical Characteristics(1) Unlessotherwisespecified,alllimitsguaranteedforT =25°C,V+=5.0V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) V InputOffsetVoltage 0.3 1.0 2.5 mV OS 2.2 3.3 max TCV InputOffsetVoltage 3 μV/°C OS AverageDrift I InputBiasCurrent 170 250 300 nA B max 0V≤V ≤5V 180 280 CM 526 526 (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T .Noguaranteeofparametricperformanceisindicatedintheelectricaltablesunder J A conditionsoftheinternalselfheatingwhereT >T . J A (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Alllimitsareguaranteedbytestingorstatisticalanalysis. 2 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 5.0V DC Electrical Characteristics(1) (continued) Unlessotherwisespecified,alllimitsguaranteedforT =25°C,V+=5.0V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) I InputOffsetCurrent 3 30 30 nA OS 80 80 max R InputResistance,C 126 MΩ IN M CMRR CommonMode 0V≤V ≤4V 107 84 84 CM RejectionRatio 78 78 0V≤VCM≤5V 82 66 66 dB 79 64 64 min PSRR PowerSupply 5V≤V+≤24V 87 80 80 RejectionRatio 78 78 V InputCommon-Mode −0.25 0 0 V CM VoltageRange 5.25 5.0 5.0 A LargeSignal R =10k 270 100 80 V/mV V L VoltageGain 70 33 25 min V OutputSwing R =100k 0.005 0.01 0.01 V O L 0.013 0.013 max 4.995 4.98 4.98 V 4.93 4.93 min R =10k 0.02 Vmax L 4.97 Vmin R =2k 0.06 0.1 0.1 V L 0.133 0.133 max 4.90 4.86 4.86 V 4.80 4.80 min I OutputShort Sourcing 13 10 8 mA SC CircuitCurrent 4.9 4 min LM6142 35 35 mA max Sinking 24 10 10 mA 5.3 5.3 min 35 35 mA max I OutputShort Sourcing 8 6 6 mA SC CircuitCurrent 3 3 min LM6144 35 35 mA max Sinking 22 8 8 mA 4 4 min 35 35 mA max I SupplyCurrent PerAmplifier 650 800 800 μA S 880 880 max Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com 5.0V AC Electrical Characteristics(1) UnlessOtherwiseSpecified,AllLimitsGuaranteedforT =25°C,V+=5.0V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextremes. Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) SR SlewRate 8V @V+12V 25 15 13 V/μs PP R >1kΩ 13 11 min S GBW Gain-BandwidthProduct f=50kHz 17 10 10 MHz 6 6 min φ PhaseMargin 38 Deg m Amp-to-AmpIsolation 130 dB e Input-Referred f=1kHz nV n 16 VoltageNoise √Hz i Input-Referred f=1kHz pA n 0.22 CurrentNoise √Hz T.H.D. TotalHarmonicDistortion f=10kHz,R =10kΩ, 0.003 % L (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T .Noguaranteeofparametricperformanceisindicatedintheelectricaltablesunder J A conditionsoftheinternalselfheatingwhereT >T . J A (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Alllimitsareguaranteedbytestingorstatisticalanalysis. 2.7V DC Electrical Characteristics(1) UnlessOtherwiseSpecified,AllLimitsGuaranteedforT =25°C,V+=2.7V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextreme Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) V InputOffsetVoltage 0.4 1.8 2.5 mV OS 4.3 5 max I InputBiasCurrent 150 250 300 nA B 526 526 max I InputOffsetCurrent 4 30 30 nA OS 80 80 max R InputResistance 128 MΩ IN CMRR CommonMode 0V≤V ≤1.8V 90 dB CM RejectionRatio min 0V≤V ≤2.7V 76 CM PSRR PowerSupply 3V≤V+≤5V 79 RejectionRatio V InputCommon-Mode −0.25 0 0 Vmin CM VoltageRange 2.95 2.7 2.7 Vmax A LargeSignal R =10k 55 V/mV V L VoltageGain min V OutputSwing R =100kΩ 0.019 0.08 0.08 V O L 0.112 0.112 max 2.67 2.66 2.66 V 2.25 2.25 min (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T .Noguaranteeofparametricperformanceisindicatedintheelectricaltablesunder J A conditionsoftheinternalselfheatingwhereT >T . J A (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Alllimitsareguaranteedbytestingorstatisticalanalysis. 4 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 2.7V DC Electrical Characteristics(1) (continued) UnlessOtherwiseSpecified,AllLimitsGuaranteedforT =25°C,V+=2.7V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextreme Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) I SupplyCurrent PerAmplifier 510 800 800 μA S 880 880 max 2.7V AC Electrical Characteristics(1) UnlessOtherwiseSpecified,AllLimitsGuaranteedforT =25°C,V+=2.7V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextreme Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) GBW Gain-BandwidthProduct f=50kHz 9 MHz φ PhaseMargin 36 Deg m G GainMargin 6 dB m (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T .Noguaranteeofparametricperformanceisindicatedintheelectricaltablesunder J A conditionsoftheinternalselfheatingwhereT >T . J A (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Alllimitsareguaranteedbytestingorstatisticalanalysis. 24V Electrical Characteristics(1) UnlessOtherwiseSpecified,AllLimitsGuaranteedforT =25°C,V+=24V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextreme Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) V InputOffsetVoltage 1.3 2 3.8 mV OS 4.8 4.8 max I InputBiasCurrent 174 nA B max I InputOffsetCurrent 5 nA OS max R InputResistance 288 MΩ IN CMRR CommonMode 0V≤V ≤23V 114 dB CM RejectionRatio min 0V≤V ≤24V 100 CM PSRR PowerSupply 0V≤V ≤24V 87 CM RejectionRatio V InputCommon-Mode −0.25 0 0 Vmin CM VoltageRange 24.25 24 24 Vmax A LargeSignal R =10k 500 V/mV V L VoltageGain min V OutputSwing R =10kΩ 0.07 0.15 0.15 V O L 0.185 0.185 max 23.85 23.81 23.81 V 23.62 23.62 min (1) ElectricalTablevaluesapplyonlyforfactorytestingconditionsatthetemperatureindicated.Factorytestingconditionsresultinvery limitedself-heatingofthedevicesuchthatT =T .Noguaranteeofparametricperformanceisindicatedintheelectricaltablesunder J A conditionsoftheinternalselfheatingwhereT >T . J A (2) Typicalvaluesrepresentthemostlikelyparametricnorm. (3) Alllimitsareguaranteedbytestingorstatisticalanalysis. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com 24V Electrical Characteristics(1) (continued) UnlessOtherwiseSpecified,AllLimitsGuaranteedforT =25°C,V+=24V,V−=0V,V =V =V+/2andR >1MΩtoV+/2. A CM O L Boldfacelimitsapplyatthetemperatureextreme Symbol Parameter Conditions Typ(2) LM6144AI LM6144BI Units LM6142AI LM6142BI Limit(3) Limit(3) I SupplyCurrent PerAmplifier 750 1100 1100 μA S 1150 1150 max GBW Gain-BandwidthProduct f=50kHz 18 MHz 6 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 Typical Performance Characteristics T =25°C,R =10kΩUnlessOtherwiseSpecified A L SupplyCurrentvs.SupplyVoltage OffsetVoltagevs.SupplyVoltage Figure4. Figure5. BiasCurrentvs.SupplyVoltage OffsetVoltagevs.V CM Figure6. Figure7. OffsetVoltagevs.V OffsetVoltagevs.V CM CM Figure8. Figure9. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) T =25°C,R =10kΩUnlessOtherwiseSpecified A L BiasCurrentvs.V BiasCurrentvs.V CM CM Figure10. Figure11. BiasCurrentvs.V Open-LoopTransferFunction CM Figure12. Figure13. Open-LoopTransferFunction Open-LoopTransferFunction Figure14. Figure15. 8 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 Typical Performance Characteristics (continued) T =25°C,R =10kΩUnlessOtherwiseSpecified A L OutputVoltagevs.SourceCurrent OutputVoltagevs.SourceCurrent Figure16. Figure17. OutputVoltagevs.SourceCurrent OutputVoltagevs.SinkCurrent Figure18. Figure19. OutputVoltagevs.SinkCurrent OutputVoltagevs.SinkCurrent Figure20. Figure21. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) T =25°C,R =10kΩUnlessOtherwiseSpecified A L GainandPhasevs.Load GainandPhasevs.Load Figure22. Figure23. Distortion+Noisevs.Frequency GBWvs.Supply Figure24. Figure25. OpenLoopGainvs.Load,3VSupply OpenLoopGainvs.Load,5VSupply Figure26. Figure27. 10 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 Typical Performance Characteristics (continued) T =25°C,R =10kΩUnlessOtherwiseSpecified A L OpenLoopGainvs.Load,24VSupply UnityGainFrequencyvs.V S Figure28. Figure29. CMRRvs.Frequency Crosstalkvs.Frequency Figure30. Figure31. PSRRvs.Frequency NoiseVoltagevs.Frequency Figure32. Figure33. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com Typical Performance Characteristics (continued) T =25°C,R =10kΩUnlessOtherwiseSpecified A L NoiseCurrentvs.Frequency NFvs.R Source Figure34. Figure35. 12 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 LM6142/LM6144 APPLICATION IDEAS TheLM6142bringsanewlevelofeaseofusetoopampsystemdesign. With greater than rail-to-rail input voltage range concern over exceeding the common-mode voltage range is eliminated. Rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly importantwhenoperatingonlowsupplyvoltages. The high gain-bandwidth with low supply current opens new battery powered applications, where high power consumption,previouslyreducedbatterylifetounacceptablelevels. Totakeadvantageofthesefeatures,someideasshouldbekeptinmind. ENHANCED SLEW RATE Unlikemostbipolaropamps,theuniquephasereversalprevention/speed-upcircuitintheinputstagecausesthe slewratetobeverymuchafunctionoftheinputsignalamplitude. Figure 36 shows how excess input signal, is routed around the input collector-base junctions, directly to the currentmirrors. The LM6142/LM6144 input stage converts the input voltage change to a current change. This current change drivesthecurrentmirrorsthroughthecollectorsofQ1–Q2,Q3–Q4whentheinputlevelsarenormal. Figure36. If the input signal exceeds the slew rate of the input stage, the differential input voltage rises above two diode drops.Thisexcesssignalbypassesthenormalinputtransistors,(Q1–Q4),andisroutedincorrectphasethrough thetwoadditionaltransistors,(Q5,Q6),directlyintothecurrentmirrors. Thisreroutingofexcesssignalallowstheslew-ratetoincreasebyafactorof10to1ormore.(SeeFigure37.) As the overdrive increases, the op amp reacts better than a conventional op amp. Large fast pulses will raise the slew-ratetoaround30Vto60V/μs. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com Figure37. SlewRatevs.Δ V IN V =±5V S This effect is most noticeable at higher supply voltages and lower gains where incoming signals are likely to be large. Thisnewinputcircuitalsoeliminatesthephasereversalseeninmanyopampswhentheyareoverdriven. Thisspeed-upactionaddsstabilitytothesystemwhendrivinglargecapacitiveloads. DRIVING CAPACITIVE LOADS Capacitive loads decrease the phase margin of all op amps. This is caused by the output resistance of the amplifier and the load capacitance forming an R-C phase lag network. This can lead to overshoot, ringing and oscillation.Slewratelimitingcanalsocauseadditionallag.Mostopampswithafixedmaximumslew-ratewilllag furtherandfurtherbehindwhendrivingcapacitiveloadseventhoughthedifferentialinputvoltageraises.Withthe LM6142, the lag causes the slew rate to raise. The increased slew-rate keeps the output following the input much better. This effectively reduces phase lag. After the output has caught up with the input, the differential inputvoltagedropsdownandtheamplifiersettlesrapidly. These features allow the LM6142 to drive capacitive loads as large as 1000pF at unity gain and not oscillate. The scope photos (Figure 38 and Figure 39) above show the LM6142 driving a l000pF load. In Figure 38, the upper trace is with no capacitive load and the lower trace is with a 1000pF load. Here we are operating on ±12V supplies with a 20 V pulse. Excellent response is obtained with a C of l0pF. In Figure 39, the supplies have PP f been reduced to ±2.5V, the pulse is 4 V and C is 39pF. The best value for the compensation capacitor is best PP f established after the board layout is finished because the value is dependent on board stray capacity, the value ofthefeedbackresistor,theclosedloopgainand,tosomeextent,thesupplyvoltage. Another effect that is common to all op amps is the phase shift caused by the feedback resistor and the input capacitance. This phase shift also reduces phase margin. This effect is taken care of at the same time as the effectofthecapacitiveloadwhenthecapacitorisplacedacrossthefeedbackresistor. ThecircuitshowninFigure40wasusedforthesescopephotos. Figure38. 14 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 Figure39. Figure40. Typical Applications FISHFINDER/DEPTHSOUNDER. The LM6142/LM6144 is an excellent choice for battery operated fish finders. The low supply current, high gain- bandwidthandfullrailtorailoutputswingoftheLM6142providesanidealcombinationforuseinthisandsimilar applications. ANALOGTODIGITALCONVERTERBUFFER The high capacitive load driving ability, rail-to-rail input and output range with the excellent CMR of 82 dB, make theLM6142/LM6144agoodchoiceforbufferingtheinputsofAtoDconverters. 3OPAMPINSTRUMENTATIONAMPWITHRAIL-TO-RAILINPUTANDOUTPUT UsingtheLM6144,a3opampinstrumentationamplifierwithrail-to-railinputsandrailtorailoutputcanbemade. Thesefeaturesmaketheseinstrumentationamplifiersidealforsinglesupplysystems. Some manufacturers use a precision voltage divider array of 5 resistors to divide the common-mode voltage to get an input range of rail-to-rail or greater. The problem with this method is that it also divides the signal, so to even get unity gain, the amplifier must be run at high closed loop gains. This raises the noise and drift by the internal gain factor and lowers the input impedance. Any mismatch in these precision resistors reduces the CMR aswell.UsingtheLM6144,alloftheseproblemsareeliminated. In this example, amplifiers A and B act as buffers to the differential stage (Figure 41). These buffers assure that the input impedance is over 100MΩ and they eliminate the requirement for precision matched resistors in the input stage. They also assure that the difference amp is driven from a voltage source. This is necessary to maintaintheCMRsetbythematchingofR1–R2withR3–R4. Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 SNOS726D–JUNE2000–REVISEDMARCH2013 www.ti.com Figure41. The gain is set by the ratio of R2/R1 and R3 should equal R1 and R4 equal R2. Making R4 slightly smaller than R2 and adding a trim pot equal to twice the difference between R2 and R4 will allow the CMR to be adjusted for optimum. With both rail to rail input and output ranges, the inputs and outputs are only limited by the supply voltages. Remember that even with rail-to-rail output, the output can not swing past the supplies so the combined common modevoltageplusthesignalshouldnotbegreaterthanthesuppliesorlimitingwilloccur. SPICEMACROMODEL A SPICE macromodel of this and many other Texas Instruments op amps is available http://www.ti.com/ww/en/analog/webench/index.shtml?DCMP=hpa_sva_webench&HQS=webench-bb. 16 SubmitDocumentationFeedback Copyright©2000–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM6142 LM6144

LM6142, LM6144 www.ti.com SNOS726D–JUNE2000–REVISEDMARCH2013 REVISION HISTORY ChangesfromRevisionC(March2013)toRevisionD Page • ChangedlayoutofNationalDataSheettoTIformat.......................................................................................................... 16 Copyright©2000–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM6142 LM6144

PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM6142AIM NRND SOIC D 8 95 TBD Call TI Call TI -40 to 85 LM614 2AIM LM6142AIM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM614 & no Sb/Br) 2AIM LM6142AIMX NRND SOIC D 8 2500 TBD Call TI Call TI -40 to 85 LM614 2AIM LM6142AIMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM614 & no Sb/Br) 2AIM LM6142BIM NRND SOIC D 8 95 TBD Call TI Call TI -40 to 85 LM614 2BIM LM6142BIM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM614 & no Sb/Br) 2BIM LM6142BIMX NRND SOIC D 8 2500 TBD Call TI Call TI -40 to 85 LM614 2BIM LM6142BIMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM614 & no Sb/Br) 2BIM LM6142BIN/NOPB ACTIVE PDIP P 8 40 Green (RoHS Call TI | SN Level-1-NA-UNLIM -40 to 85 LM6142 & no Sb/Br) BIN LM6144AIM NRND SOIC D 14 55 TBD Call TI Call TI -40 to 85 LM6144 AIM LM6144AIM/NOPB ACTIVE SOIC D 14 55 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM6144 & no Sb/Br) AIM LM6144AIMX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM6144 & no Sb/Br) AIM LM6144BIM NRND SOIC D 14 55 TBD Call TI Call TI -40 to 85 LM6144 BIM LM6144BIM/NOPB ACTIVE SOIC D 14 55 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM6144 & no Sb/Br) BIM LM6144BIMX NRND SOIC D 14 2500 TBD Call TI Call TI -40 to 85 LM6144 BIM LM6144BIMX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 LM6144 & no Sb/Br) BIM LM6144BIN/NOPB ACTIVE PDIP NFF 14 25 Green (RoHS SN Level-1-NA-UNLIM -40 to 85 LM6144BIN & no Sb/Br) Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2020 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM6142AIMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM6142AIMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM6142BIMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM6142BIMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM6144AIMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM6144BIMX SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM6144BIMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM6142AIMX SOIC D 8 2500 367.0 367.0 35.0 LM6142AIMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LM6142BIMX SOIC D 8 2500 367.0 367.0 35.0 LM6142BIMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LM6144AIMX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LM6144BIMX SOIC D 14 2500 367.0 367.0 35.0 LM6144BIMX/NOPB SOIC D 14 2500 367.0 367.0 35.0 PackMaterials-Page2

None

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

MECHANICAL DATA N0014A N14A (Rev G) www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated