ICGOO在线商城 > 传感器,变送器 > 温度传感器 - 模拟和数字输出 > LM50CIM3
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LM50CIM3产品简介:
ICGOO电子元器件商城为您提供LM50CIM3由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM50CIM3价格参考¥3.21-¥3.53。Texas InstrumentsLM50CIM3封装/规格:温度传感器 - 模拟和数字输出, Temperature Sensor Analog, Local -40°C ~ 125°C 10mV/°C SOT-23-3。您可以下载LM50CIM3参考资料、Datasheet数据手册功能说明书,资料中有LM50CIM3 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | IC SENSOR TEMPERATURE SOT23-3板上安装温度传感器 SGL-Supply Centgrade Temp Sensor |
产品分类 | 温度传感器,变送器温度传感器 |
品牌 | Texas Instruments |
产品手册 | http://www.ti.com/litv/snis118e |
产品图片 | |
rohs | 否含铅 / 不符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 板上安装温度传感器,Texas Instruments LM50CIM3- |
数据手册 | |
产品型号 | LM50CIM3 |
产品种类 | 板上安装温度传感器 |
供应商器件封装 | SOT-23-3 |
关闭 | No Shutdown |
其它名称 | LM50CIM3TR |
准确性 | +/- 2 C |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM50CIM3 |
包装 | 带卷 (TR) |
商标 | Texas Instruments |
增益 | + 10 mV / C |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | TO-236-3,SC-59,SOT-23-3 |
封装/箱体 | SOT-23-3 |
工厂包装数量 | 1000 |
感应温度 | -40°C ~ 125°C |
数字输出-位数 | None |
数字输出-总线接口 | - |
最大工作温度 | + 125 C |
最小工作温度 | - 40 C |
标准包装 | 1,000 |
电压-电源 | 4.5 V ~ 10 V |
电源电压-最大 | 10 V |
电源电压-最小 | 4.5 V |
电源电流 | 130 uA |
精度 | ±3°C |
系列 | LM50 |
设备功能 | Sensor |
输出类型 | Analog |
配置 | Local |
Product Order Technical Tools & Support & Reference Folder Now Documents Software Community Design LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 LM50 and LM50-Q1 SOT-23 Single-Supply Centigrade Temperature Sensor 1 Features 3 Description • LM50-Q1isAEC-Q100Grade1Qualifiedandis The LM50 and LM50-Q1 devices are precision 1 integrated-circuit temperature sensors that can sense ManufacturedonanAutomotiveGradeFlow a –40°C to 125°C temperature range using a single • CalibratedDirectlyinDegreesCelsius positive supply. The output voltage of the device is (Centigrade) linearly proportional to temperature (10 mV/°C) and • Linear+10mV/°CScaleFactor has a DC offset of 500 mV. The offset allows reading negative temperatures without the need for a • ±2°CAccuracySpecifiedat25°C negativesupply. • SpecifiedforFull –40° to125°CRange The ideal output voltage of the LM50 or LM50-Q1 • SuitableforRemoteApplications ranges from 100 mV to 1.75 V for a –40°C to 125°C • LowCostDuetoWafer-LevelTrimming temperature range. The LM50 and LM50-Q1 do not • OperatesFrom4.5Vto10V require any external calibration or trimming to provide • LessThan130-µACurrentDrain accuracies of ±3°C at room temperature and ±4°C over the full –40°C to 125°C temperature range. • LowSelf-Heating:LessThan0.2°CinStillA Trimming and calibration of the LM50 and LM50-Q1 • NonlinearityLessThan0.8°COverTemp at the wafer level assure low cost and high accuracy. • ULRecognizedComponent The linear output, 500 mV offset, and factory calibration of the LM50 and LM50-Q1 simplify the 2 Applications circuitry requirements in a single supply environment where reading negative temperatures is necessary. • Automotive Because the quiescent current of the LM50 and • Computers LM50-Q1 is less than 130 µA, self-heating is limited toaverylow0.2°Cinstillair. • DiskDrives • BatteryManagement DeviceInformation(1) • FAXMachines PARTNUMBER PACKAGE BODYSIZE(NOM) • Printers LM50,LM50-Q1 SOT-23(3) 2.92mm×1.30mm • PortableMedicalInstruments (1) For all available packages, see the orderable addendum at • HVAC theendofthedatasheet. • PowerSupplyModules SPACER SimplifiedSchematic Full-RangeCentigradeTemperatureSensor (–40°Cto125°C) +V S (4.5 V to 10 V) 2.00 1.75 1.50 LMLM505-0Q1 Output age (V) 1.25 1.750 olt 1.00 0 . 7 5 0 V put 0.75 ut O 0.50 0 . 1 0 0 Copyright © 2016, Texas Instruments Incorporated V = (+10 mV/°C × T °C) + 500 mV 0.25 O 0.00 –50 –25 0 25 50 75 100 125 150 DUT Temperature ((cid:131)C) C001 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com Table of Contents 1 Features.................................................................. 1 8 ApplicationandImplementation.......................... 9 2 Applications........................................................... 1 8.1 ApplicationInformation..............................................9 3 Description............................................................. 1 8.2 TypicalApplication....................................................9 4 RevisionHistory..................................................... 2 8.3 SystemExamples...................................................11 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 12 6 Specifications......................................................... 3 10 Layout................................................................... 12 6.1 AbsoluteMaximumRatings......................................3 10.1 LayoutGuidelines.................................................12 6.2 ESDRatings..............................................................3 10.2 LayoutExample....................................................12 6.3 RecommendedOperatingConditions.......................4 10.3 ThermalConsiderations........................................13 6.4 ThermalInformation..................................................4 11 DeviceandDocumentationSupport................. 14 6.5 ElectricalCharacteristics:LM50B.............................4 11.1 RelatedLinks........................................................14 6.6 ElectricalCharacteristics:LM50CandLM50-Q1......5 11.2 ReceivingNotificationofDocumentationUpdates14 6.7 TypicalCharacteristics..............................................6 11.3 CommunityResources..........................................14 7 DetailedDescription.............................................. 8 11.4 Trademarks...........................................................14 7.1 Overview...................................................................8 11.5 ElectrostaticDischargeCaution............................14 7.2 FunctionalBlockDiagram.........................................8 11.6 Glossary................................................................14 7.3 FeatureDescription...................................................8 12 Mechanical,Packaging,andOrderable Information........................................................... 14 7.4 DeviceFunctionalModes..........................................8 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionF(December2016)toRevisionG Page • ChangedLMT90toLM50inV descriptionofEquation1.................................................................................................... 8 O ChangesfromRevisionE(September2013)toRevisionF Page • AddedDeviceInformationtable,PinConfigurationandFunctionssection,ESDRatingstable,DetailedDescription section,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,Device andDocumentationSupportsection,andMechanical,Packaging,andOrderableInformationsection............................... 1 • AddedThermalInformationtable........................................................................................................................................... 4 • ChangedJunction-to-ambient,R ,valueinThermalInformationtableFrom:450°C/WTo:291.9°C/W............................ 4 θJA • DeletedtheTemperatureToDigitalConverter(ParallelTRI-STATEOutputsforStandardDataBustoµPInterface) (125°CFullScale)figure...................................................................................................................................................... 11 ChangesfromRevisionC(February2013)toRevisionE Page • AddedLM50-Q1optionthroughoutdocument....................................................................................................................... 1 2 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 www.ti.com SNIS118G–JULY1999–REVISEDJANUARY2017 5 Pin Configuration and Functions DBZPackage 3-PinSOT-23 TopView +VS 1 3 GND VO 2 PinFunctions PIN TYPE DESCRIPTION NO. NAME 1 +VS Power Positivepowersupplypin. 2 VOUT Output Temperaturesensoranalogoutput. 3 GND Ground Devicegroundpin,connectedtopowersupplynegativeterminal. 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Supplyvoltage –0.2 12 V Outputvoltage –1 +V +0.6 V S Outputcurrent 10 mA Maximumjunctiontemperature,T 150 °C J Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions().Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 6.2 ESD Ratings VALUE UNIT LM50 Humanbodymodel(HBM)(1) ±2000 V Electrostaticdischarge Charged-devicemodel(CDM) ±750 V (ESD) Machinemodel(1) ±250 LM50-Q1 Human-bodymodel(HBM),perAECQ100-002(2) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perAECQ100-011 ±750 (1) Thehumanbodymodelisa100-pFcapacitordischargedthrougha1.5-kΩresistorintoeachpin.Machinemodelisa200-pFcapacitor dischargeddirectlyintoeachpin. (2) AECQ100-002indicatesthatHBMstressingshallbeinaccordancewiththeANSI/ESDA/JEDECJS-001specification. Copyright©1999–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com 6.3 Recommended Operating Conditions(1) MIN MAX UNIT +V Supplyvoltage 4.5 10 V S T , LM50C,LM50-Q1 –40 125 MIN Specifiedtemperature °C TMAX LM50B –25 100 Operatingtemperature –40 150 °C (1) SolderingprocessmustcomplywiththeReflowTemperatureProfilespecifications.Reflowtemperatureprofilesaredifferentforlead- freeandnon-lead-freepackages.Refertowww.ti.com/packaging. 6.4 Thermal Information LM50,LM50-Q1 THERMALMETRIC(1) DBZ(SOT-23) UNIT 3PINS R Junction-to-ambientthermalresistance 291.9 °C/W θJA R Junction-to-case(top)thermalresistance 114.3 °C/W θJC(top) R Junction-to-boardthermalresistance 62.3 °C/W θJB φ Junction-to-topcharacterizationparameter 7.4 °C/W JT φ Junction-to-boardcharacterizationparameter 61 °C/W JB (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 6.5 Electrical Characteristics: LM50B +V =5V(DC)andI =0.5µA,inthecircuitofFigure12,T =T =25°C(unlessotherwisenoted)(1) S LOAD A J PARAMETER TESTCONDITIONS MIN TYP MAX UNIT T =25°C –2 2 °C A Accuracy(2) T =T –3 3 °C A MAX T =T –3.5 3 °C A MIN Nonlinearity(3) T =T =T toT –0.8 0.8 °C A J MIN MAX Sensorgain(averageslope) T =T =T toT 9.7 10.3 mV/°C A J MIN MAX Outputresistance T =T =T toT 2000 4000 Ω A J MIN MAX Lineregulation(4) +V =4.5Vto10V,T =T =T toT –1.2 1.2 mV/V S A J MIN MAX Quiescentcurrent(5) +V =4.5Vto10V,T =T =T toT 180 µA S A J MIN MAX Changeofquiescentcurrent +V =4.5Vto10V,T =T =T toT 2 µA S A J MIN MAX Temperaturecoefficientofquiescentcurrent T =T =T toT 1 µA/°C A J MIN MAX Longtermstability(6) T =125°C,for1000hours ±0.08 °C J (1) LimitsarespecifiedtoTI'sAOQL(AverageOutgoingQualityLevel). (2) Accuracyisdefinedastheerrorbetweentheoutputvoltageand10mv/°Cmultipliedbythedevice'scasetemperatureplus500mV,at specifiedconditionsofvoltage,current,andtemperature(expressedin°C). (3) Nonlinearityisdefinedasthedeviationoftheoutput-voltage-versus-temperaturecurvefromthebest-fitstraightline,overthedevice's ratedtemperaturerange. (4) Regulationismeasuredatconstantjunctiontemperature,usingpulsetestingwithalowdutycycle.Changesinoutputduetoheating effectscanbecomputedbymultiplyingtheinternaldissipationbythethermalresistance. (5) QuiescentcurrentisdefinedinthecircuitofFigure12. (6) Forbestlong-termstability,anyprecisioncircuitwillgivebestresultsiftheunitisagedatawarmtemperature,and/ortemperature cycledforatleast46hoursbeforelong-termlifetestbegins.Thisisespeciallytruewhenasmall(Surface-Mount)partiswave-soldered; allowtimeforstressrelaxationtooccur.Themajorityofthedriftoccursinthefirst1000hoursatelevatedtemperatures.Thedriftafter 1000hoursdoesnotcontinueatthefirst1000hourrate. 4 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 www.ti.com SNIS118G–JULY1999–REVISEDJANUARY2017 6.6 Electrical Characteristics: LM50C and LM50-Q1 +V =5V(DC)andI =0.5µA,inthecircuitofFigure12.T =T =25°C,unlessotherwisenoted.(1) S LOAD A J PARAMETER TESTCONDITIONS MIN TYP MAX UNIT T =25°C –3 3 °C A Accuracy(2) T =T –4 4 °C A MAX T =T –4 4 °C A MIN Nonlinearity(3) T =T =T toT –0.8 0.8 °C A J MIN MAX Sensorgain(averageslope) T =T =T toT 9.7 10.3 mV/°C A J MIN MAX Outputresistance T =T =T toT 2000 4000 Ω A J MIN MAX Lineregulation(4) +V =4.5Vto10V,T =T =T toT –1.2 1.2 mV/V S A J MIN MAX Quiescentcurrent(5) +V =4.5Vto10V,T =T =T toT 180 µA S A J MIN MAX Changeofquiescentcurrent +V =4.5Vto10V,T =T =T toT 2 µA S A J MIN MAX Temperaturecoefficientofquiescentcurrent T =T =T toT 2 µA/°C A J MIN MAX Longtermstability(6) T =125°C,for1000hours ±0.08 °C J (1) LimitsarespecifiedtoTI'sAOQL(AverageOutgoingQualityLevel). (2) Accuracyisdefinedastheerrorbetweentheoutputvoltageand10mv/°Cmultipliedbythedevice'scasetemperatureplus500mV,at specifiedconditionsofvoltage,current,andtemperature(expressedin°C). (3) Nonlinearityisdefinedasthedeviationoftheoutput-voltage-versus-temperaturecurvefromthebest-fitstraightline,overthedevice's ratedtemperaturerange. (4) Regulationismeasuredatconstantjunctiontemperature,usingpulsetestingwithalowdutycycle.Changesinoutputduetoheating effectscanbecomputedbymultiplyingtheinternaldissipationbythethermalresistance. (5) QuiescentcurrentisdefinedinthecircuitofFigure12. (6) Forbestlong-termstability,anyprecisioncircuitwillgivebestresultsiftheunitisagedatawarmtemperature,and/ortemperature cycledforatleast46hoursbeforelong-termlifetestbegins.Thisisespeciallytruewhenasmall(Surface-Mount)partiswave-soldered; allowtimeforstressrelaxationtooccur.Themajorityofthedriftoccursinthefirst1000hoursatelevatedtemperatures.Thedriftafter 1000hoursdoesnotcontinueatthefirst1000hourrate. Copyright©1999–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com 6.7 Typical Characteristics TogeneratethesecurvesthedevicewasmountedtoaprintedcircuitboardasshowninFigure20. Figure1.Junction-to-AmbientThermalResistance Figure2.ThermalTimeConstant seeFigure20 Figure3.ThermalResponseinStillAirWithHeatSink Figure4.ThermalResponseinStirredOilBath WithHeatSink Figure5.Start-UpVoltagevsTemperature Figure6.ThermalResponseinStillAirWithoutaHeatSink 6 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 www.ti.com SNIS118G–JULY1999–REVISEDJANUARY2017 Typical Characteristics (continued) TogeneratethesecurvesthedevicewasmountedtoaprintedcircuitboardasshowninFigure20. seeFigure12 Figure7.QuiescentCurrentvsTemperature Figure8.AccuracyvsTemperature Figure9.NoiseVoltage Figure10.SupplyVoltagevsSupplyCurrent Figure11.Start-UpResponse Copyright©1999–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com 7 Detailed Description 7.1 Overview The LM50 and LM50-Q1 devices are precision integrated-circuit temperature sensors that can sense a –40°C to 125°C temperature range using a single positive supply. The output voltage of the LM50 and LM50-Q1 has a positive temperature slope of 10 mV/°C. A 500-mV offset is included enabling negative temperature sensing whenbiasedbyasinglesupply. The temperature-sensing element is comprised of a delta-V architecture. The temperature-sensing element is BE then buffered by an amplifier and provided to the VOUT pin. The amplifier has a simple class A output stage with typical2-kΩoutputimpedanceasshownintheFunctionalBlockDiagram. 7.2 Functional Block Diagram *R2≈2kwithatypical1300-ppm/°Cdrift. 7.3 Feature Description 7.3.1 LM50andLM50-Q1TransferFunction The LM50 and LM50-Q1 follow a simple linear transfer function to achieve the accuracy as listed in the Electrical Characteristics:LM50BtableandtheElectricalCharacteristics:LM50CandLM50-Q1 table. UseEquation1tocalculatethevalueofV . O V =10mV/°C×T°C+500mV O where • Tisthetemperaturein°C • V istheLM50outputvoltage (1) O 7.4 Device Functional Modes Theonlyfunctionalmodeofthedevicehasananalogoutputdirectlyproportionaltotemperature. 8 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 www.ti.com SNIS118G–JULY1999–REVISEDJANUARY2017 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The LM50 and LM50-Q1 have a wide supply range and a 10 mV/°C output slope with a 500-mV DC offset. Therefore, it can be easily applied in many temperature-sensing applications where a single supply is required forpositiveandnegativetemperatures. 8.2 Typical Application 8.2.1 Full-RangeCentigradeTemperatureSensor +V S (4.5 V to 10 V) LM50 Output LM50-Q1 Copyright © 2016, Texas Instruments Incorporated Figure12. Full-RangeCentigradeTemperatureSensorDiagram(–40°Cto125°C) 8.2.1.1 DesignRequirements Forthisdesignexample,usetheparameterslistedinTable1astheinputparameters. Table1.DesignParameters PARAMETER VALUE Powersupplyvoltage ±3°C(maximum) Outputimpedance ±4°C(maximum) Accuracyat25°C 10mV/°C Accuracyover–40°Cto125°C 4.5Vto10V Temperatureslope 4kΩ(maximum) 8.2.1.2 DetailedDesignProcedure The LM50 and LM50-Q1 are simple temperature sensors that provides an analog output. Therefore design requirementsrelatedtolayoutaremoreimportantthanotherrequirements.SeeLayout formoreinformation. 8.2.1.2.1 CapacitiveLoads The LM50 and LM50-Q1 handle capacitive loading very well. Without any special precautions, the LM50 and LM50-Q1 can drive any capacitive load. The device has a nominal 2-kΩ output impedance (shown in Functional Block Diagram). The temperature coefficient of the output resistors is around 1300 ppm/°C. Taking into account this temperature coefficient and the initial tolerance of the resistors the output impedance of the device will not exceed 4 kΩ. In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. TI recommends adding a 0.1-µF capacitor between +VS and GND to bypass the power supply voltage, Copyright©1999–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com as shown in Figure 14. It may also be necessary to add a capacitor from VOUT to ground. A 1-µF output capacitorwiththe4-kΩoutputimpedancewillforma40-Hzlow-passfilter.Sincethethermaltimeconstantofthe LM50andLM50-Q1ismuchslowerthanthe25-mstimeconstantformedbytheRC,theoverallresponsetimeof the device will not be significantly affected. For much larger capacitors this additional time lag will increase the overallresponsetimeoftheLM50andLM50-Q1. Heavy Capacitive Load, Wiring, Etc. LM50/ To A High- LM50-Q1 OUT Impedance Load Copyright © 2016, Texas Instruments Incorporated Figure13. LM50andLM50-Q1NoDecouplingRequired forCapacitiveLoad Heavy Capacitive Load, Wiring, Etc. OUT LM50/ LM50-Q1 0.1 µF Bypass Optional 1 µF Copyright © 2016, Texas Instruments Incorporated Figure14. LM50CandLM50-Q1withFilterforNoisyEnvironment 8.2.1.3 ApplicationCurve 2.00 1.75 1.50 V) 1.750 e ( 1.25 g a olt 1.00 0 . 7 5 0 V put 0.75 ut O 0.50 0 . 1 0 0 V = (+10 mV/°C × T °C) + 500 mV 0.25 O 0.00 –50 –25 0 25 50 75 100 125 150 DUT Temperature ((cid:131)C) C001 Figure15. OutputTransferFunction 10 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 www.ti.com SNIS118G–JULY1999–REVISEDJANUARY2017 8.3 System Examples Figure 16 to Figure 18 show application circuit examples using the LM50 or LM50-Q1 devices. Customers must fully validate and test any circuit before implementing a design based on an example in this section. Unless otherwisenoted,thedesignproceduresinFull-RangeCentigradeTemperatureSensor areapplicable. V+ R3 5 V + 3.9 k R4 R1 OUT IN 4.1 V VT + LMLM505-0Q/1 REF ADC08031 SDeartiaa lOutput U1 VOUT 1.750 V LM4040 U3 0.1 µF R2 - LM7101 GND 100 k + FB LM4041- CLOCK ADJ + LM50/ 1 µF ENABLE V+ LM50-Q1 VTemp 10 k - U2 GND Copyright © 2016, Texas Instruments Incorporated Copyright © 2016, Texas Instruments Incorporated 125°Cfullscale Figure16. CentigradeThermostatorFan Figure17. TemperatureToDigitalConverter Controller (SerialOutput) 6 V 6.8 K 1 K f OUT 4N28 8 + 100 K 7 5 LM50/ LM50-Q1 6 LM131 3 GND 1 2 4 12 K 0.01 µF 100 K 1 µF FULL 0.01 µF SCALE ADJ 5 k 47 Copyright © 2016, Texas Instruments Incorporated –40°Cto125°C;100Hzto1750Hz Figure18. LM50orLM50-Q1WithVoltage-To-FrequencyConverterandIsolatedOutput Copyright©1999–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com 9 Power Supply Recommendations In an extremely noisy environment, it may be necessary to add some filtering to minimize noise pickup. TI recommends that a 0.1-µF capacitor be added from +VS to GND to bypass the power supply voltage, as shown inFigure14. 10 Layout 10.1 Layout Guidelines The LM50 and LM50-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. The device can be glued or cemented to a surface and its temperature will be within about 0.2°C of the surface temperature. This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM50 or LM50-Q1diewouldbeatanintermediatetemperaturebetweenthesurfacetemperatureandtheairtemperature. To ensure good thermal conductivity the backside of the LM50 and LM50-Q1 die is directly attached to the GND pin. The lands and traces to the device will, of course, be part of the printed-circuit board, which is the object whose temperature is being measured. These printed-circuit board lands and traces will not cause the LM50 or LM50-Q1'stemperaturetodeviatefromthedesiredtemperature. Alternatively, the LM50 and LM50-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped intoabathorscrewedintoathreadedholeinatank.AswithanyIC,theLM50andLM50-Q1andaccompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the device or itsconnections. 10.2 Layout Example +VS 1 3 GND VO 2 Via to ground plane Via to power plane Figure19. PCBLayout 12 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 www.ti.com SNIS118G–JULY1999–REVISEDJANUARY2017 Layout Example (continued) 1/2in.,squareprinted-circuitboardwith2-ozfoilorsimilar Figure20. Printed-CircuitBoardUsedforHeatSinktoGenerateThermalResponseCurves 10.3 Thermal Considerations Table2summarizesthethermalresistanceoftheLM50andLM50-Q1fordifferentconditions. Table2.TemperatureRiseofLM50andLM50-Q1DuetoSelf-Heating R (°C/W) θJA Stillair 450 Noheatsink(1) Movingair — SOT-23 Stillair 260 Smallheatfin(2) Movingair 180 (1) Partsolderedto30gaugewire. (2) Heatsinkusedis1/2-in.,squareprinted-circuitboardwith2-ozfoil;partattachedasshowninFigure20. Copyright©1999–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM50 LM50-Q1
LM50,LM50-Q1 SNIS118G–JULY1999–REVISEDJANUARY2017 www.ti.com 11 Device and Documentation Support 11.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstoordernow. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER ORDERNOW DOCUMENTS SOFTWARE COMMUNITY Clickhere Clickhere Clickhere Clickhere Clickhere LM50-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 11.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.4 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. 11.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 14 SubmitDocumentationFeedback Copyright©1999–2017,TexasInstrumentsIncorporated ProductFolderLinks:LM50 LM50-Q1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM50BIM3 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 150 T5B LM50BIM3/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 T5B & no Sb/Br) LM50BIM3X/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 T5B & no Sb/Br) LM50CIM3 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 125 T5C LM50CIM3/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 T5C & no Sb/Br) LM50CIM3X NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI -40 to 150 T5C LM50CIM3X/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 T5C & no Sb/Br) LM50QIM3/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 T5Q & no Sb/Br) LM50QIM3X/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 T5Q & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM50, LM50-Q1 : •Catalog: LM50 •Automotive: LM50-Q1 NOTE: Qualified Version Definitions: •Catalog - TI's standard catalog product •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM50BIM3 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50BIM3/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50BIM3X/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50CIM3 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50CIM3/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50CIM3X SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50CIM3X/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50QIM3/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM50QIM3X/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM50BIM3 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM50BIM3/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM50BIM3X/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM50CIM3 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM50CIM3/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM50CIM3X SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM50CIM3X/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM50QIM3/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM50QIM3X/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 PackMaterials-Page2
4203227/C
PACKAGE OUTLINE DBZ0003A SOT-23 - 1.12 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR 2.64 C 2.10 1.12 MAX 1.4 1.2 B A 0.1 C PIN 1 INDEX AREA 1 0.95 3.04 1.9 2.80 3 2 0.5 3X 0.3 0.10 0.2 C A B (0.95) TYP 0.01 0.25 GAGE PLANE 0.20 TYP 0.08 0.6 TYP 0 -8 TYP 0.2 SEATING PLANE 4214838/C 04/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC registration TO-236, except minimum foot length. www.ti.com
EXAMPLE BOARD LAYOUT DBZ0003A SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR PKG 3X (1.3) 1 3X (0.6) SYMM 3 2X (0.95) 2 (R0.05) TYP (2.1) LAND PATTERN EXAMPLE SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK 0.07 MAX 0.07 MIN ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214838/C 04/2017 NOTES: (continued) 4. Publication IPC-7351 may have alternate designs. 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBZ0003A SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR PKG 3X (1.3) 1 3X (0.6) SYMM 3 2X(0.95) 2 (R0.05) TYP (2.1) SOLDER PASTE EXAMPLE BASED ON 0.125 THICK STENCIL SCALE:15X 4214838/C 04/2017 NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 7. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated