ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > LM5007MMX/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LM5007MMX/NOPB产品简介:
ICGOO电子元器件商城为您提供LM5007MMX/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM5007MMX/NOPB价格参考。Texas InstrumentsLM5007MMX/NOPB封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 降压 开关稳压器 IC 正 2.5V 1 输出 500mA 8-TSSOP,8-MSOP(0.118",3.00mm 宽)。您可以下载LM5007MMX/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM5007MMX/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BUCK ADJ 0.5A 8VSSOP稳压器—开关式稳压器 High Vtg 80V SD Switching Reg |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments LM5007MMX/NOPB- |
数据手册 | |
产品型号 | LM5007MMX/NOPB |
PWM类型 | 混合物 |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30145http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25875 |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | 8-VSSOP |
其它名称 | 296-35287-6 |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM5007MMX/NOPB |
包装 | Digi-Reel® |
参考设计库 | http://www.digikey.com/rdl/4294959904/4294959903/338 |
同步整流器 | 无 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 8-TSSOP,8-MSOP(0.118",3.00mm 宽) |
封装/箱体 | MSOP |
工作温度 | -40°C ~ 125°C |
工作温度范围 | - 40 C to + 125 C |
工厂包装数量 | 3500 |
开关频率 | 50 kHz to 800 kHz |
拓扑结构 | Buck |
最大工作温度 | + 125 C |
最大输入电压 | 75 V |
最小工作温度 | - 40 C |
最小输入电压 | 9 V |
标准包装 | 1 |
电压-输入 | 9 V ~ 75 V |
电压-输出 | 2.5 V ~ 73 V |
电流-输出 | 500mA |
电源电压-最小 | 9 V |
类型 | 降压(降压) |
系列 | LM5007 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
输出数 | 1 |
输出电压 | 2.5 V to 73 V |
输出电流 | 500 mA |
输出端数量 | 1 Output |
输出类型 | 可调式 |
配用 | /product-detail/zh/LM5007EVAL%2FNOPB/LM5007EVAL%2FNOPB-ND/695386/product-detail/zh/LM5007SD-EVAL%2FNOPB/LM5007SD-EVAL%2FNOPB-ND/695387 |
频率-开关 | - |
Product Order Technical Tools & Support & Folder Now Documents Software Community LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 LM5007 75-V, 0.5-A DC/DC Buck Converter With 80-V Integrated Power MOSFET 1 Features 3 Description • VersatileSynchronousBuckDC/DCConverter The LM5007 0.5-A step-down switching converter 1 features all of the functions needed to implement a – OperatingInputVoltageRangeof9Vto75V low-cost and efficient buck regulator. This high- – Integrated80-V,0.7-AN-ChannelBuckSwitch voltage converter has an integrated 80-V, 0.7-A N- – InternalHigh-VoltageV Regulator channel buck switch and operates over an input CC voltage range of 9 V to 75 V. The device is easy to – AdjustableOutputVoltage implement and is provided in 8-pin VSSOP and – HighEfficiencyOperation thermallyenhanced8-pinWSONpackages. • AdaptiveConstantOn-TimeControlArchitecture The converter uses a hysteretic control scheme with – Ultra-FastTransientResponse a PWM on-time inversely proportional to V . This IN – NoControlLoopCompensationRequired feature allows the operating frequency to remain relatively constant with load and input voltage • NearlyConstantSwitchingFrequency variations. The hysteretic control requires no loop – PWMOn-TimeVariesInverselywithInput compensation and provides fast transient response. Voltage An intelligent current limit is implemented with forced • Precision2.5-VReference off-time that is inversely proportional to VOUT. This current limiting scheme ensures short-circuit • LowInputQuiescentCurrent protection while providing reduced load current • InherentProtectionFeaturesforRobustDesign foldback. Other protection features include thermal – IntelligentCurrentLimitProtection shutdown with automatic recovery, V and gate CC drive undervoltage lockout, and maximum duty cycle – VCCandGateDriveUVLOProtection limiter. – ThermalShutdownProtectionWithHysteresis – ExternalShutdownControl DeviceInformation(1) • 8-PinVSSOPandWSONPackages PARTNUMBER PACKAGE BODYSIZE(NOM) • CreateaCustomRegulatorDesignUsing VSSOP(8) 3.00mm×3.00mm LM5007 WEBENCH®PowerDesigner WSON(8) 4.00mm×4.00mm (1) For all available packages, see the orderable addendum at 2 Applications theendofthedatasheet. • Non-IsolatedDC/DCBuckRegulator • SecondaryHigh-VoltagePostRegulator • 48-VAutomotiveSystems TypicalApplicationSchematic 8 2 VIN VIN BST C BST 9 V to 75 V RON LO C 6 1 IN RON SW VOUT Shutdown LM5007 7 D1 RC VCC R FB2 CVCC COUT 3 5 RCL FB RTN R R CL 4 FB1 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................12 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 13 3 Description............................................................. 1 8.1 ApplicationInformation............................................13 4 RevisionHistory..................................................... 2 8.2 TypicalApplication .................................................13 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 17 6 Specifications......................................................... 4 10 Layout................................................................... 18 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................18 6.2 ESDRatings..............................................................4 10.2 LayoutExample....................................................18 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 19 6.4 ThermalInformation..................................................4 11.1 DeviceSupport......................................................19 6.5 ElectricalCharacteristics...........................................5 11.2 DocumentationSupport........................................19 6.6 TypicalCharacteristics..............................................6 11.3 CommunityResources..........................................20 7 DetailedDescription.............................................. 7 11.4 Trademarks...........................................................20 7.1 Overview...................................................................7 11.5 ElectrostaticDischargeCaution............................20 7.2 FunctionalBlockDiagram.........................................7 11.6 Glossary................................................................20 7.3 FeatureDescription...................................................8 12 Mechanical,Packaging,andOrderable Information........................................................... 21 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionG(October2015)toRevisionH Page • ChangedFeatures,editorial................................................................................................................................................... 1 • ChangedTypicalApplicationSchematic,editorial.................................................................................................................. 1 • ChangedOvercurrentProtection,editorial .......................................................................................................................... 10 • ChangedFigure7,editorial.................................................................................................................................................. 13 • ChangedPowerSupplyRecommendations,editorial.......................................................................................................... 17 • ChangedLayoutExampletospecifyrecommendedcomponentplacement....................................................................... 18 • ChangedDeviceSupporttoincludenewcontent................................................................................................................ 19 • ChangedDocumentationSupporttoincludenewcontent................................................................................................... 19 ChangesfromRevisionF(March2013)toRevisionG Page • AddedDeviceInformationtable,ESDRatingstable,ThermalInformationtable,ApplicationInformation,Design Requirements,ApplicationCurves,PowerSupplyRecommendations,Layout,andCommunityResources. .....................1 • AddedTypicalApplicationSchematic ................................................................................................................................... 1 • Updatedpinoutdrawingdescription ...................................................................................................................................... 3 ChangesfromRevisionE(March2013)toRevisionF Page • ChangedlayoutofNationalSemiconductorDataSheettoTIformat.................................................................................. 11 2 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 5 Pin Configuration and Functions DGKPackageandNGTPackage 8-PinVSSOPand8-PinWSON TopView 1 8 SW VIN 2 7 BST VCC 3 6 RCL RON 4 5 RTN FB PinFunctions PIN NO NAME TYPE DESCRIPTION APPLICATIONINFORMATION . 1 SW O Switchingnode. Powerswitchingnode.ConnecttotheLCoutputfilter. 2 BST I Boostbootstrapcapacitorinput. AnexternalcapacitorisrequiredbetweentheBSTandSWpins. A0.01-µFceramiccapacitorisrecommended.Aninternaldiode betweenV andBSTcompletesthebuckgatedrivebias CC network. 3 R I CurrentLimitOFF-timeprogrammingpin AresistorbetweenthispinandRTNdeterminesthevariationof CL t =10-5/(0.59+(V /7.22×10−6×R )) off-timealongwiththeFBpinvoltagepercyclewhileincurrent OFF FB CL limit.Theoff-timeispresetto17µsifFB=0Vanddecreasesas theFBvoltageincreases. 4 RTN — Circuitground. 5 FB I Feedbacksignalfromregulatedoutput. Thispinisconnectedtotheinvertinginputoftheinternal regulationcomparator.Theregulationthresholdis2.5V. 6 R I On-timesetpin AresistorbetweenthispinandV setstheswitchon-timeasa ON IN t =1.42×10-10R /V functionofV .Theminimumrecommendedon-timeis300nsat ON ON IN IN themaximuminputvoltage. 7 V O Outputfromtheinternalhigh-voltagebias Ifanauxiliaryvoltageisavailabletoraisethevoltageonthispin, CC regulator.V isnominallyregulatedto7V. abovetheregulationsetpoint(7V),theinternalseriespass CC regulatorwillshutdown,reducingtheICpowerdissipation.Donot exceed14V.Thisoutputprovidesgatedrivepowerfortheinternal buckswitch.Aninternaldiodeisprovidedbetweenthispinand theBSTpin.Alocal0.1-uFdecouplingcapacitoris recommended.Theseriespassregulatoriscurrentlimitedto10 mA. 8 V I Inputsupplyvoltage. Recommendedoperatingrange:9Vto75V. IN — EP — ExposedPAD,undersideoftheWSON-8 Internallybondedtothediesubstrate.ConnecttoGNDpotential packageoption. forlowthermalimpedance. Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings Overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1). MIN MAX UNIT V toRTN 80 V IN BSTtoRTN 94 V SWtoRTN(steadystate) –1 V BSTtoV 80 V CC BSTtoSW 14 V V toRTN 14 V CC AllotherinputstoRTN –0.3 7 V Leadtemperature(soldering4sec) 260 °C T Storagetemperature –55 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1)(2) ±2000 V Electrostaticdischarge V (ESD) Machinemodel(MM) ±200 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) Thehumanbodymodelisa100-pFcapacitordischargethrougha1.5-kΩresistorintoeachpin.Themachinemodelisa200-pF capacitordischargeddirectlyintoeachpin.ThemachinemodelESDcompliancelevelforPin5is150V.ThehumanbodyESD compliancelevelforPin7and8is1000V. 6.3 Recommended Operating Conditions Overoperatingfree-airtemperaturerange(unlessotherwisenoted). MIN NOM MAX UNIT V Inputvoltage 9 75 V IN T Junctiontemperature −40 125 °C J 6.4 Thermal Information LM5007 THERMALMETRIC(1) DGK(VSSOP) NGT(WSON) UNIT 8PINS 8PINS R Junction-to-ambientthermalresistance 158.3 38.1 °C/W θJA R Junction-to-case(top)thermalresistance 51.3 27.8 °C/W θJC(top) R Junction-to-boardthermalresistance 78.5 15.1 °C/W θJB ψ Junction-to-topcharacterizationparameter 4.9 0.2 °C/W JT ψ Junction-to-boardcharacterizationparameter 77.2 15.3 °C/W JB R Junction-to-case(bottom)thermalresistance N/A 4.5 °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report(SPRA953). 4 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 6.5 Electrical Characteristics AtT =25°C,V =48V(unlessotherwisenoted)(1). J IN PARAMETER TESTCONDITIONS MIN TYP MAX UNIT STARTUPREGULATOR V V RegulatorOutput 6.6 7 7.4 V CC CC I V CurrentLimit(2) 11 mA VCC-CL CC V SUPPLY CC V UndervoltageLockoutVoltage V V CC 6.3 CC-UVLO (V increasing) CC V V UndervoltageHysteresis 206 mV CC-UVLO-HYS CC t V UVLODelay(filter) 3 µs VCC-UV-DELAY CC I I OperatingCurrent Notswitching,V =3V 500 675 µA CC-OPER CC FB I Shutdown/StandbyCurrent V =0V 100 200 µA SHD RON SWITCHCHARACTERISTICS I =0.2A, RDS(on)1 BuckSwitchOn-StateResistance VSW –V =6.3V(3) 0.74 1.34 Ω BST SW V GateDriveUVLO(V –V ) Rising 3.4 4.5 5.5 V GATE-UV BST SW V GateDriveUVLOHysteresis 400 mV GATE-UV-HYS BreakdownVoltage, TJ=25°C 80 V V DS((max) VINtoRTN TJ=–40°Cto125°C 76 V Breakdownvoltage, TJ=25°C 80 V V BST-VCC(max) BSTtoVCC TJ=–40°Cto125°C 76 V CURRENTLIMIT I CurrentLimitThreshold 535 725 900 mA CL t CurrentLimitResponseTime I overdrive=0.1A,timetoswitchoff 225 ns CL-RESP SW t OFF-TimeGenerator(test1) V =0V,R =100kΩ 17 µs CL-OFF1 FB CL t OFF-TimeGenerator(test2) V =2.3V,R =100kΩ 2.65 µs CL-OFF2 FB CL ON-TIMEGENERATOR t TON-1 V =10V,R =200kΩ 2.15 2.77 3.5 µs ON1 IN ON t TON-2 V =75V,R =200kΩ 290 390 490 ns ON2 IN ON V RemoteShutdownThreshold Rising 0.45 0.7 1.1 V SHD V RemoteShutdownHysteresis 40 mV SHD-HYS MINIMUMOFF-TIME t MinimumOff-Timer V =0V 300 ns OFF(min) FB REGULATIONANDOVCOMPARATORS V FBReferenceThreshold Internalreference,trippointforswitchON 2.445 2.5 2.550 V REF V FBOvervoltageThreshold TrippointforswitchOFF 2.875 V OV-REF I FBBiasCurrent 100 nA FB THERMALSHUTDOWN T ThermalShutdownTemperature 165 °C SHD T ThermalShutdownHysteresis 25 °C HYS (1) AllelectricalcharacteristicshavingroomtemperaturelimitsaretestedduringproductionwithT =T =25°C.Allhotandcoldlimitsare A J specifiedbycorrelatingtheelectricalcharacteristicstoprocessandtemperaturevariationsandapplyingstatisticalprocesscontrol. (2) TheV outputisintendedasaselfbiasfortheinternalgatedrivepowerandcontrolcircuits.Devicethermallimitationslimitexternal CC loading. (3) FordevicesintheWSON-8package,theMOSFETR limitsarespecifiedbydesigncharacterizationdataonly. DS(on) Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com 6.6 Typical Characteristics 100 20 18 95 VIN = 15V 600k 16 90 )% 14 400k 200k ( Y 85 )s 12 C P NEICIF 7850 VIN = 30V VIN = 50V ( TFFO 108 FE VIN = 70V 6 70 4 65 2 100k 50k 60 0 0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 1.5 2 2.5 LOAD (A) VFB (V) R =50kΩ–600kΩ CL Figure1.ConverterEfficiencyat10-VOutput Figure2.CurrentLimitTOFFvs.VFB 5 4.5 4 3.5 3 )s u ( N 2.5 300k O T 2 200k 1.5 100k 1 0.5 0 0 10 20 30 40 50 60 70 80 V (V) IN R =100kΩ,200kΩ,300kΩ ON Figure3.T vs.V ON IN 6 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 7 Detailed Description 7.1 Overview The LM5007 regulator is an easy-to-use buck DC/DC converter that operates from 9-V to 75-V supply voltage. The device is intended for step-down conversions from 12-V, 24-V, and 48-V unregulated, semi-regulated and fully-regulated supply rails. With integrated 80-V, 0.7-A buck power MOSFET, the LM5007 delivers up to 500-mA DC load current with exceptional efficiency and low input quiescent current in a very small solution size. The device is easy to use and is provided in VSSOP-8 and thermally-enhanced WSON-8 packages. Designed for simple implementation, a nearly fixed-frequency, constant on-time (COT) operation with discontinuous conduction mode (DCM) at light loads is ideal for low-noise, high current, fast transient load requirements. Control loop compensation is not required, reducing design time and external component count. An intelligent current limit scheme is implemented in the LM5007 with forced off-time after current limit detection, which is inverselyproportionaltoV .Thiscurrentlimitingschemereducesloadcurrentfoldback. OUT The LM5007 incorporates numerous other features for comprehensive system requirements, including VCC undervoltage lockout (UVLO), gate drive UVLO, maximum duty cycle limiter, intelligent current limit off-timer, and thermal shutdown with automatic recovery. These features enable a flexible and easy-to-use platform for a wide rangeofapplications,suchas48-Vtelecomandthe48-Vautomotivepowerbusdesigns.Thepinarrangementis designedforsimpleandoptimizedPCBlayout,requiringonlyafewexternalcomponents. 7.2 Functional Block Diagram 7V SERIES LM5007 REGULATOR VCC VIN SD THERMAL UVLO SHUTDOWN ON TIMER START COMPLETE Ron BST SD / RON OVER-VOLTAGE START UVLO SD VIN COMPARATOR 300nS MIN OFF TIMER + DRIVER 2.875V - COMPLETE LEVEL 2.5V SHIFT SW SET + S Q - FB REGULATION R Q CLR COMPARATOR FB COMPLETE BUCK RCL RCL START +- CSUWRIRTECNHT CURRENT LIMIT 0.725A SENSE OFF TIMER RTN Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com 7.3 Feature Description 7.3.1 HystereticControlCircuitOverview The LM5007 is a buck DC/DC converter that uses a constant on-time (COT) control scheme. The on-time is programmed by an external resistor and varies inversely with line input voltage (V ). The core regulation IN elements of the LM5007 are the feedback comparator and the programmed on-time one-shot. The regulator output voltage is sensed at the feedback pin (FB) and compared to an internal reference voltage (2.5 V). If the FBvoltageisbelowthereferencevoltage,thebuckswitchisturnedonforafixedtimeintervaldeterminedbythe input voltage and a programming resistor (R ). Following the on period, the switch remains off for at least the ON minimum off-time interval of 300 ns. If the FB voltage is still below the reference after the 300-ns off-time, the switch turns on again for another on-time interval. This switching behavior continues until the FB voltage reaches thereferencevoltagelevel. The LM5007 operates in discontinuous conduction mode (DCM) at light load currents and continuous conduction mode(CCM)atheavierloadcurrents.InDCM,currentthroughtheoutputinductorstartsatzeroandrampsupto a peak value during the buck switch on-time and then back to zero during the off-time. The inductor current remains at zero until the next on-time interval begins when FB falls below the internal reference voltage. The operating frequency in DCM is relatively low and varies with load. Thus, the conversion efficiency is maintained at light loads, since the switching losses decrease with the reduction in load current and switching frequency. CalculatetheapproximateswitchingfrequencyinDCMwithEquation1. V 2(cid:152)L F OUT O (cid:152)1020 SW(DCM) R (cid:152)R 2 LOAD ON (1) In CCM, current flows continuously through the inductor and never ramps down to zero. The switching frequency in CCM is greater than that in DCM and remains relatively constant with load and line variations. Calculate the approximateswitchingfrequencyinCCMwithEquation2. V F OUT SW(CCM) 1.42(cid:152)10(cid:16)10(cid:152)R ON (2) The output voltage (V ) can be programmed by two external resistors as shown in Figure 4. Calculate the OUT outputvoltagesetpointusingEquation3. § R • V 2.5V(cid:152)¤1(cid:14) 1 ‚ OUT ' R „ 2 (3) The feedback comparator in hysteretic regulators depend upon the output ripple voltage to switch the power MOSFET on and off at regular intervals. In order for the internal comparator to respond quickly to changes in output voltage, proportional to inductor current, a minimum amount of capacitor Equivalent Series Resistance (ESR) is required. A ripple voltage of 25 mV to 50 mV is recommended at the feedback pin (FB) for stable operation.IncaseswheretheintrinsiccapacitorESRistoosmall,additionalseriesresistancemaybeadded. For applications where lower output voltage ripple is required, the load can be connected directly to the low ESR output capacitor as shown in Figure 4. The series resistor (R) will degrade the load regulation. Another technique for enhancing the ripple voltage at FB is to place a capacitor in parallel with the upper feedback resistor, R1. The additionofthisfeedforwardcapacitorreducestheattenuationoftheripplevoltagefromthefeedbackdivider. 7.3.2 High-VoltageBiasSupplyRegulator The LM5007 contains an internal high-voltage bias supply regulator. The input pin (V ) can be connected IN directly to line voltages from 9 V to 75 V. To avoid supply voltage transients due to long lead inductances on the input pin (V ), it is always recommended to connect a low-ESR ceramic capacitor (≈ 0.1 µF) between V and IN IN RTN,locatedclosetotherespectivepinsoftheLM5007.Thebiasregulatorisinternallycurrentlimitedto10mA. Uponpowerup,theregulatorisenabledandsourcescurrentintoanexternalcapacitorconnectedtotheV pin. CC WhentheV voltagereachestheregulationpointof7V,thecontrolleroutputisenabled. CC An external auxiliary supply voltage can be applied to the V pin. If this auxiliary voltage is greater than 7 V, the CC internalregulatorwillessentiallyshutoff,thusreducinginternalpowerdissipation. 8 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 Feature Description (continued) VIN L SW R1 R FB +- + VOUT COUT R2 REF 2.5V LM5007 Figure4. LowOutputRippleVoltageConfiguration 7V SERIES REGULATOR VCC + 0.1PF SELF-BIAS DIODE BST VIN + 0.01PF SW LM5007 10V 30k + 10k Figure5. Self-BiasedConfigurationwithV FeedingV ThroughaDiode OUT CC 7.3.3 OvervoltageComparator The overvoltage comparator is provided to protect the output from overvoltage conditions due to sudden input line voltage changes or output loading changes. The overvoltage comparator monitors the FB voltage relative to an internal 2.875-V reference, V . If the voltage at FB rises above V , the comparator immediately OV-REF OV-REF terminatesthebuckswitchon-timepulse. Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com Feature Description (continued) 7.3.4 On-TimeGeneratorandShutdown The on-time of the LM5007 is set inversely proportional to the input voltage by an external resistor connected between V and R . The R pin is a low impedance input biased at approximately 1.5 V. Thus, the current IN ON ON through the resistor and into the R pin is approximately proportional to V and used internally to control the ON IN on-timer. This scheme of input voltage feedforward hysteretic operation achieves nearly constant switching frequencyovervaryinglineandloadconditions.Equation4specifiestheon-timeequationfortheLM5007. t 1.42(cid:152)10(cid:16)10(cid:152)RON ON V IN (4) The R pin of the LM5007 also provides a shutdown function that disables the converter and significantly ON decreases quiescent power dissipation. Pulling the voltage at R below a 0.7-V logic threshold activates a low- ON power shutdown mode. The V quiescent current in this shutdown mode is approximately 100 µA internal to the IN LM5007plusthecurrentintheR resistor. ON 7V SERIES REGULATOR VIN VIN ON TIMER RON VIN START RON RON COMPLETE STOP RUN LM5007 Figure6. ShutdownImplementation 7.3.5 OvercurrentProtection The LM5007 contains an intelligent current limit off-timer intended to reduce the foldback characteristic inherent with fixed off-time overcurrent protection (OCP) schemes. If the current in the buck switch exceeds 725 mA, the present cycle on-time is immediately terminated (cycle-by-cycle current limit). Following the termination of the cycle a non-resettable current limit off-timer is initiated. The duration of the off-time is a function of the external resistor (R ) and the FB voltage. When the FB voltage equals zero, the current limit off-time is internally preset CL to17µs.Thisconditionoccursduringashort-circuitconditionwhenamaximumamountofoff-timeisrequired. In case of output overload (not a complete short circuit), the current limit off-time is reduced as a function of the output voltage (measured at the FB pin). Scaling the off-time with smaller overloads reduces the amount of foldback and also reduces the initial start-up time. Calculate the current limit off-time for a given FB voltage and R resistorusingEquation5. CL (cid:16)5 10 t (cid:152) OFF(CL) V 0.59(cid:14) FB 7.22(cid:152)10(cid:16)6(cid:152)R CL (5) 10 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 Feature Description (continued) Select the current limit off-time such that it is less than the MOSFET off-time during normal steady-state switching operation. Applications utilizing low-resistance inductors and/or a low-voltage-drop freewheeling power diodesmayrequirespecialevaluationathighline,short-circuitedconditions.Inthisspecialcasethepreset17-µs off-time (V = 0 V) may be insufficient to provide inductor volt-seconds balance. Additional inductor resistance, FB output resistance or a larger voltage drop diode may be necessary to balance inductor volt-seconds and limit the short-circuitcurrent. 7.3.6 N-ChannelBuckSwitchandDriver The LM5007 integrates an N-channel buck switch and associated floating high voltage gate driver. This gate driver circuit works in conjunction with an external bootstrap capacitor and an internal high voltage diode. The bootstrap capacitor is charged by V through the internal high voltage diode. A 0.01-µF ceramic capacitor CC connectedbetweenBSTandSWisrecommended. During each cycle when the buck switch turns off, the SW voltage is approximately 0 V. When the SW voltage is low, the bootstrap capacitor is charged from V through the internal bootstrap diode. The minimum off-timer, set CC to300ns,ensuresthatthereisaminimumintervaleveryswitchingcycletorechargethebootstrapcapacitor. An external recirculating diode from the SW to RTN is necessary to carry the inductor current after the internal buck switch turns off. This external diode must be an ultra-fast switching or Schottky type to reduce turn-on losses and switch current overshoot. The reverse voltage rating of the recirculating diode must be greater than themaximumlineinputvoltage. 7.3.7 ThermalProtection Internal thermal shutdown circuitry is provided to protect the integrated circuit in the event the maximum junction temperature is exceeded. When thermal protection is activated, typically at 165°C, the converter is forced into a low power reset state, disabling the output driver. This feature is provided to prevent catastrophic failures from accidentaldeviceoverheating. 7.3.8 MinimumLoadCurrent Aminimumloadcurrentof1mAisrequiredtomaintainproperoperation.Iftheloadcurrentfallsbelowthatlevel, the bootstrap capacitor may discharge during the long off-time, and the circuit will either shutdown or cycle on and off at a low frequency. If the load current is expected to drop below 1 mA in the application, choose the feedbackresistorswithsufficientlylowvaluetoprovidetheminimumrequiredloadcurrentatnominalV . OUT 7.3.9 RippleConfiguration TheLM5007usesanadaptiveconstanton-time(COT)controlinwhichtheconductiontimeofthebuckMOSFET is terminated by an on-timer and the off-time is terminated by the feedback voltage (V ) falling below the FB reference voltage (V ). Therefore, for stable operation, the feedback voltage must decrease monotonically and REF in phase with the inductor current during the off-time interval. Furthermore, this change in feedback voltage (V ) FB duringtheoff-timemustbelargerthananynoisecomponentpresentatthefeedbacknode. Table 1 shows three different methods for generating appropriate voltage ripple at the feedback node. Type 1 and Type 2 ripple circuits couple the ripple at the output of the converter to the feedback node (FB). The output voltageripplehastwocomponents: 1. Capacitiveripplecausedbytheinductorcurrentripplecharging/dischargingtheoutputcapacitor. 2. ResistiveripplecausedbytheinductorcurrentrippleflowingthroughtheESRoftheoutputcapacitor. The capacitive ripple is not in phase with the inductor current. As a result, the capacitive ripple does not decrease monotonically during the off-time. The resistive ripple is in phase with the inductor current and decreases monotonically during the off-time. The resistive ripple must exceed the capacitive ripple at the output node (V ) for stable operation. If this condition is not satisfied, unstable switching behavior is observed in COT OUT converterswithmultipleon-timeburstsinclosesuccessionfollowedbyalongoff-time. Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com Feature Description (continued) Type 3 ripple method uses R and C and the switch node (SW) voltage to generate a triangular ramp. This r r triangular ramp is ac coupled using C to the feedback node (FB). Since this circuit does not use the output ac voltage ripple, it is ideally suited for applications where low output voltage ripple is required. See AN-1481 Controlling Output Ripple and Achieving ESR Independence in Constant On-Time (COT) Regulator Designs (SNVA166)formoredetailsforeachripplegenerationmethod. Table1.RippleConfiguration TYPE1 TYPE2 TYPE3 LOWESTCOSTCONFIGURATION REDUCEDRIPPLECONFIGURATION MINIMUMRIPPLECONFIGURATION V V OUT OUT V L1 L1 OUT L1 RFB2 RC Cac RFB2 RC Rr Cr RFB2 COUT To FB To FB Cac GND COUT COUT To FB RFB1 RFB1 RFB1 GND GND C 3.3nF r 5 C t ac (cid:11) (cid:12) C 100nF 25mV V FSW (cid:152) RFB1 RFB2 ac (cid:11) (cid:12) R (cid:152) OUT V (cid:16)V (cid:152)t C ’I V R (cid:152)C IN(min) OUT ON L(min) REF (6) R 25mV r r 25mV C ’I L(min) (7) (8) 7.4 Device Functional Modes 7.4.1 StandbyModewithV IN The LM5007 is intended to operate with input voltages above 9 V. The minimum operating input voltage is determined by the V undervoltage lockout threshold of 6.3 V (typ). If V is too low to support a V voltage CC IN CC greater than the V UVLO threshold, the converter switches to its standby mode with the buck switch in the off CC state. 7.4.2 ShutdownMode The LM5007 is in shutdown mode when the R pin is pulled below 0.7 V (typ). In this mode, the buck MOSFET ON isheldoffandtheV regulatorisdisabled. CC 12 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The LM5007 requires only a few external components to convert from a wide range of supply voltages to a fixed output voltage. To expedite and streamline the process of designing a LM5007-based converter, a comprehensive LM5007 quick-start calculator is available for download to assist the designer with component selection for a given application. WEBENCH® online software is also available to generate complete designs, leveraging iterative design procedures and access to comprehensive component databases. The following sections discuss a design procedure using a typical application example. Figure 7 shows the LM5007 in a configurationsuitableforseveralapplicationusecases.Seethe LM5007EVM formoredetails. 8.2 Typical Application The application schematic of an LM5007-based buck converter is shown in Figure 7. For an output voltage (V ) above the maximum regulation threshold of V (see Electrical Characteristics), the V pin can be OUT CC CC suppliedfromV throughadiodeforhigherefficiencyandlowerpowerdissipationintheIC. OUT C 8 2 BST VIN VIN BST 0.01 µF 12 V to 75 V RON LM5007 L 1 200 N(cid:159)(cid:3) CIN CBYP 6 RON SW 1 VOUT 1 µF 0.1 µF 100 µH Shutdown 10V D1 R C 7 VCC 1 (cid:159) R FB2 C VCC 3.01 N(cid:159)(cid:3) COUT 0.1 µF 3 5 15 µF RCL FB RTN RCL 4 RFB1 100 N(cid:159)(cid:3) 1 N(cid:159) Figure7. 12-Vto75-VInputand10-V,400-mAOutputBuckConverter 8.2.1 DesignRequirements Forthisdesignexample,usetheparameterslistedinTable2astheinputparameters. Table2.DesignParameters DESIGNPARAMETERS VALUE InputVoltage 12Vto75V OutputVoltage 10V MaximumOutputCurrent 400mA NominalSwitchingFrequency 380kHz Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com 8.2.2 DetailedDesignProcedure 8.2.2.1 CustomDesignWithWEBENCH® Tools ClickheretocreateacustomdesignusingtheLM5007devicewithWEBENCH® PowerDesigner. 1. Startbyenteringtheinputvoltage(V ),outputvoltage(V ),andoutputcurrent(I )requirements. IN OUT OUT 2. Optimizethedesignforkeyparameterssuchasefficiency,footprint,andcostusingtheoptimizerdial. 3. ComparethegenerateddesignwithotherpossiblesolutionsfromTexasInstruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricingandcomponentavailability. Inmostcases,theseactionsareavailable: • Runelectricalsimulationstoseeimportantwaveformsandcircuitperformance • Runthermalsimulationstounderstandboardthermalperformance • ExportcustomizedschematicandlayoutintopopularCADformats • PrintPDFreportsforthedesign,andsharethedesignwithcolleagues GetmoreinformationaboutWEBENCHtoolsatwww.ti.com/WEBENCH. 8.2.2.2 CustomDesignWithExcelQuickstartTool Select components based on the converter specifications using the LM5007 quick-start calculator available for downloadfromtheLM5007productfolder. 8.2.2.3 FeedbackResistors,R andR FB1 FB2 V = V x (R /R + 1), and since V = 2.5 V in regulation, the ratio of R to R is 3 : 1. Select OUT FB FB2 FB1 FB FB2 FB1 standard values of R = 1 kΩ and R = 3.01 kΩ. Other values can be chosen as long as the 3 : 1 ratio is FB1 FB2 maintained. 8.2.2.4 SwitchingFrequencySelection,R ON SettheswitchingfrequencybyresistorR usingEquation9. ON V R OUT ON 1.42(cid:152)10(cid:16)10(cid:152)F SW (9) SelectingF =380kHzresultsinR =185kΩ.Chooseastandardvalueof200kΩ forthisdesign. SW ON 8.2.2.5 BuckInductor,L 1 The inductor is selected to provide a current ripple of 40% to 50% of the full-load current. In addition, the peak inductor current at maximum load must be smaller than the minimum current limit threshold provided in Electrical Characteristics.TheinductorcurrentrippleisgivenbyEquation10. V (cid:16)V V ’I IN OUT (cid:152) OUT L L (cid:152)F V 1 SW IN (10) The maximum ripple is observed at the maximum input voltage. Using V = 75 V and ΔI = 50% x I IN L OUT(max) results in L = 114 µH. Select a standard inductor value of 100 µH. The inductor current ripple ranges from 88 1 mA to 228 mA depending on input voltage. The peak inductor and switch current at full load are given by Equation11. ’I I I (cid:14) L L1(peak) OUT(max) 2 (11) At maximum V , the peak inductor current is 514 mA, which is lower than the minimum current limit threshold of IN 535 mA. The selected inductor should be able to operate at the maximum current limit of 900 mA without saturationduringstartupandoverloadconditions. 14 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 8.2.2.6 OutputCapacitor,C OUT Select the output capacitor to minimize the capacitive ripple. The maximum ripple is observed at the maximum inputvoltageandisgivenbyEquation12. ’I C L OUT 8(cid:152)F (cid:152)’V SW COUT where • ΔV isthevoltagerippleacrossthecapacitor, COUT • ΔI isthepeak-to-peakinductorripplecurrent. (12) L Substituting V = 75 V and targeting ΔV = 10 mV gives C = 7.5 µF. Select a standard 15-µF value for IN COUT OUT C withX5RorX7Rdielectricandavoltageratingof16Vorhigher. OUT 8.2.2.7 TypeIRippleCircuit,R C Choose a type I ripple circuit, as described in Ripple Configuration, for this example. For a constant on-time (COT)convertertobestable,theinjectedin-phaseripplemustbelargerthanthecapacitiverippleonC . OUT Using the type I ripple circuit equations with minimum FB pin ripple of 25 mV, calculate the value of series resistorR usingEquation13. C 25mV V R (cid:152) OUT C ’I V L(min) REF (13) Basedonthecalculatedvalueof1.1 Ω,selectastandardvalueof1Ω. 8.2.2.8 InputCapacitor,C IN The input capacitor should be large enough to limit the input voltage ripple that can be calculated using Equation14. I (cid:152)D(cid:152)(cid:11)1(cid:16)D(cid:12) OUT(max) C IN F (cid:152)’V SW CIN (14) The input ripple reaches its maximum at D = 0.5. Targeting a ΔV = 0.5 V at using a duty cycle of D = 0.5 CIN results in C = 0.526 µF. A standard value of 1 µF is selected. The input capacitor should be rated for the IN maximum input voltage under all conditions. A 100-V, X7R type capacitor is selected for this design. The input capacitor should be placed close to the V pin and the anode of the diode (D1) as it supplies high-frequency IN switchingcurrent. Also place a 0.1-µF bypass capacitor (C ) very close to V and RTN pins of the IC to reduce switching power BYP IN loopparasiticinductanceandmitigateSWnodeovershootandringing. 8.2.2.9 CurrentLimit,R CL Resistor R sets the current limit off-timer according to Equation 5. The useable values tend to be in the range CL of 100 kΩ to 1 MΩ. Equation 15 specifies the off-time required for volt-second balance on the inductor in current limit. V (cid:152)225ns t IN(max) OFF(ILIM) V (cid:14)V (cid:14)I (cid:152)R OUT F LIM DCR where • 225nsisthecurrentlimitresponsetime, • V istheforwardvoltagedropofthefreewheelingpowerdiode, F • V istheoutputvoltage, OUT • I isthecurrentlimit, LIM • R istheinductorDCresistance. (15) DCR Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com The programmed current limit off-time should be higher than the off-time needed for volt-second balance on the inductor. For a short at the output (V = 0 V) and V = 0.7 V, an inductor DCR of 390 mΩ or higher is needed OUT F to achieve volt-second balance at the maximum programmed current limit off-time of 17 µs. Using Equation 5, an R ofgreaterthan10kΩcanbeused.Selectaconservativevalueof100kΩ forthisdesign. CL Forstep-by-stepdesignprocedures,circuitschematics,billofmaterials,PCBfiles,simulationandtestresults ofLM5007-poweredimplementations,refertotheTIDesignsreferencedesignlibrary. 8.2.3 ApplicationCurves V =10V V =20V I =250mA V =10V V =75V I =250mA OUT IN OUT OUT IN OUT CH1:SwitchNode CH2:V (AC) CH4:Inductor CH1:SwitchNode CH2:V (AC) CH4:Inductor OUT OUT Current Current Figure8.SwitchingWaveforms,V =20V Figure9.SwitchingWaveforms,V =75V IN IN 16 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 9 Power Supply Recommendations The LM5007 converter is designed to operate from a wide input voltage range from 9 V to 75 V. The characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended Operating Conditions. In addition, the input supply must be capable of delivering the required input current to the fully-loadedregulator.EstimatetheaverageinputcurrentwithEquation16. V (cid:152)I I OUT OUT IN V (cid:152)K IN where • ηistheefficiency (16) If the converter is connected to an input supply through long wires or PCB traces with large impedance, achieving stable performance requires special care. The parasitic inductance and resistance of the input cables may have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the input supply to the regulator and use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage overshoots. A capacitance in the range of 10 µF to 47 µF is usually sufficient to provide input damping and helps toholdtheinputvoltagesteadyduringlargeloadtransients. An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as well as some of the effects mentioned above. The user's guide Simple Success with Conducted EMI for DC-DC Converters (SNVA489)provideshelpfulsuggestionswhendesigninganinputfilterforanyswitchingregulator. Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com 10 Layout 10.1 Layout Guidelines The LM5007 regulation and overvoltage comparators are very fast, and as such respond to short-duration noise pulses.Layoutconsiderationsarethereforecriticalforoptimumperformance: 1. Minimize the area of the high di/dt switching current loop consisting of the VIN and SW pins, freewheeling power diode, and input ceramic capacitor. Keep the input capacitor(s) close to the VIN pin of the LM5007. Place the cathode of the freewheeling diode close to the SW pin and and its anode near the return terminal of the input capacitor as illustrated in Figure 10. Route a short, direct connection to the RTN pin using polygoncopperpoursundertheIC. 2. Place the inductor close to the SW pin of the LM5007. Minimize SW node copper area to reduce radiated noiserelatedtohighdv/dt. 3. Locate C , R , R and C components as physically close as possible to their respective pins, thereby BST CL ON VCC minimizingnoisepickupintheprinted-circuittracks. 4. Locate the VOUT sense trace away from noise sources such as inductors. Place both feedback resistors closetotheFBpintominimizethelengthoftheFBtrace. 5. PlaceasolidGNDplaneonlayer2ofthePCB. If the internal dissipation of the LM5007 converter produces excessive junction temperatures during normal operation,optimaluseofthePCBgroundplanecanhelpconsiderablytodissipateheat.Theexposedpadonthe bottom of the WSON-8 package can be soldered to a ground plane on the PCB, and that plane should extend out from beneath the IC to help dissipate the heat. Additionally, the use of wide PCB traces for power connection can also help conduct heat away from the IC. Judicious positioning of the LM5007 converter within the end product, along with use of any available air flow (forced or natural convection), can help reduce the operating junctiontemperature. 10.2 Layout Example Locate D close to the SW pin and 1 Via to Ground Plane position its anode towards CIN V OUT CA COUT GND Minimize the area of this critical loop L 1 Locate C close to the VIN RA D1 CIN pin andI Nthe anode of D1 Use minimum SW node SW VIN VIN cLo pcploesr ea rtoe ath bey LkMee5p0i0n7g CBST 1 BST VCC CVCC LM5007 Locate C , R , R and R VCC ON FB1 FB2 thLeo cSaWte aCnBdST B cSloTs ep itnos RCL RCL RON RON toV ViaIN close to their respective pins RTN FB RFB2 RFB1 CB Figure10. PCBLayoutExample NOTE It is critical to minimize switching loop parasitic inductance by locating the input capacitor closetotheVINpinoftheLM5007.Also,placethefreewheelingpowerdiodeneartheSW pinwithitsanodeadjacenttotheinputcapacitorasshowninFigure10. 18 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 11.1.2 CustomDesignWithWEBENCH® Tools ClickheretocreateacustomdesignusingtheLM5007devicewiththeWEBENCH® PowerDesigner. 1. Startbyenteringtheinputvoltage(V ),outputvoltage(V ),andoutputcurrent(I )requirements. IN OUT OUT 2. Optimizethedesignforkeyparameterssuchasefficiency,footprint,andcostusingtheoptimizerdial. 3. ComparethegenerateddesignwithotherpossiblesolutionsfromTexasInstruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricingandcomponentavailability. Inmostcases,theseactionsareavailable: • Runelectricalsimulationstoseeimportantwaveformsandcircuitperformance • Runthermalsimulationstounderstandboardthermalperformance • ExportcustomizedschematicandlayoutintopopularCADformats • PrintPDFreportsforthedesign,andsharethedesignwithcolleagues GetmoreinformationaboutWEBENCHtoolsatwww.ti.com/WEBENCH. 11.1.3 DevelopmentSupport Fordevelopmentsupportseethefollowing: • ForTI'sreferencedesignlibrary,visitTIDesigns • ForTI'sWEBENCHDesignEnvironments,visitWEBENCH®DesignCenter 11.2 Documentation Support 11.2.1 RelatedDocumentation Forrelateddocumentationseethefollowing: • LM5007Quick-startCalculator • LM5007EVALEvaluationBoard • LM5007SD-EVALEvaluationBoard • LM5006EVALEvaluationBoard • LM5008EVALEvaluationBoard • LM5008AEVALEvaluationBoard • LM5009EVALEvaluationBoard • LM5010-EVALEvaluationBoard • LM5010AEVALEvaluationBoard • BuckRegulatorTopologiesforWideInput/OutputVoltageDifferentials (SNVA594) • AN-1481 Controlling Output Ripple and Achieving ESR Independence in Constant On-Time (COT) Regulator Designs(SNVA166) • WhitePapers: – Valuing Wide V , Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications IN (SLYY104) – AnOverviewofConductedEMISpecificationsforPowerSupplies (SLYY136) – AnOverviewofRadiatedEMISpecificationsforPowerSupplies (SLYY142) Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM5007
LM5007 SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 www.ti.com Documentation Support (continued) • TIDesigns: – PoEPSEType2(30W)IEEE802.3atFullyAutonomousQuadPortSolution – 8Channel,2-AHigh-SideDriverReferenceDesignforDigitalOutputModules – LowSide0.5A8chDigitalOutputModuleforPLC – HighFidelity175WClass-DAudioAmplifierwithDigitalInputsandProcessingReferenceDesign – BidirectionalDC-DCConverterReferenceDesignfor12-V/48-VAutomotiveSystems 11.2.1.1 PCBLayoutResources • AN-1149LayoutGuidelinesforSwitchingPowerSupplies (SNVA021) • AN-1229SimpleSwitcherPCBLayoutGuidelines(SNVA054) • ConstructingYourPowerSupply– LayoutConsiderations (SLUP230) • LowRadiatedEMILayoutMadeSIMPLEwithLM4360xandLM4600x (SNVA721) • AN-2162SimpleSuccessWithConductedEMIFromDC-DCConverters (SNVA489) • ReduceBuck-ConverterEMIandVoltageStressbyMinimizingInductiveParasitics (SLYT682) • PowerHouseBlogs: – High-DensityPCBLayoutofDC/DCConverters 11.2.1.2 ThermalDesignResources • AN-2020ThermalDesignByInsight,NotHindsight (SNVA419) • AN-1520AGuidetoBoardLayoutforBestThermalResistanceforExposedPadPackages (SNVA183) • SemiconductorandICPackageThermalMetrics(SPRA953) • ThermalDesignMadeSimplewithLM43603andLM43602 (SNVA719) • PowerPAD™ThermallyEnhancedPackage(SLMA002) • PowerPADMadeEasy(SLMA004) • UsingNewThermalMetrics(SBVA025) 11.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.4 Trademarks PowerPAD,E2EaretrademarksofTexasInstruments. WEBENCHisaregisteredtrademarkofTexasInstruments. 11.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 20 SubmitDocumentationFeedback Copyright©2003–2018,TexasInstrumentsIncorporated ProductFolderLinks:LM5007
LM5007 www.ti.com SNVS252H–SEPTEMBER2003–REVISEDNOVEMBER2018 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2003–2018,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM5007
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM5007MM NRND VSSOP DGK 8 1000 TBD Call TI Call TI -40 to 125 S81B LM5007MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 S81B & no Sb/Br) LM5007MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 S81B & no Sb/Br) LM5007SD NRND WSON NGT 8 1000 TBD Call TI Call TI -40 to 125 L00031B LM5007SD/NOPB ACTIVE WSON NGT 8 1000 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 L00031B & no Sb/Br) LM5007SDX/NOPB ACTIVE WSON NGT 8 4500 Green (RoHS NIPDAU | SN Level-1-260C-UNLIM -40 to 125 L00031B & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM5007MM VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM5007MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM5007MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM5007SD WSON NGT 8 1000 178.0 12.4 4.3 4.3 1.3 8.0 12.0 Q1 LM5007SD/NOPB WSON NGT 8 1000 178.0 12.4 4.3 4.3 1.3 8.0 12.0 Q1 LM5007SDX/NOPB WSON NGT 8 4500 330.0 12.4 4.3 4.3 1.3 8.0 12.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM5007MM VSSOP DGK 8 1000 210.0 185.0 35.0 LM5007MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LM5007MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LM5007SD WSON NGT 8 1000 210.0 185.0 35.0 LM5007SD/NOPB WSON NGT 8 1000 210.0 185.0 35.0 LM5007SDX/NOPB WSON NGT 8 4500 367.0 367.0 35.0 PackMaterials-Page2
None
None
MECHANICAL DATA NGT0008A SDC08A (Rev A) www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated