ICGOO在线商城 > LM48860TL/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LM48860TL/NOPB产品简介:
ICGOO电子元器件商城为您提供LM48860TL/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 提供LM48860TL/NOPB价格参考¥4.46-¥10.04以及Texas InstrumentsLM48860TL/NOPB封装/规格参数等产品信息。 你可以下载LM48860TL/NOPB参考资料、Datasheet数据手册功能说明书, 资料中有LM48860TL/NOPB详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC AMP AUDIO PWR .05W AB 12DSBGA音频放大器 Ground-Referenced, Ultra Low Noise, Fixed Gain Stereo Headphone Amplifier 12-DSBGA -40 to 84 |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | http://www.ti.com/lit/gpn/lm48860 |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 音频 IC,音频放大器,Texas Instruments LM48860TL/NOPBBoomer® |
数据手册 | |
产品型号 | LM48860TL/NOPB |
PCN组件/产地 | |
THD+噪声 | 0.025 % |
不同负载时的最大输出功率x通道数 | 50mW x 2 @ 32 欧姆 |
产品 | Audio Amplifiers |
产品目录页面 | |
产品种类 | 音频放大器 |
供应商器件封装 | 12-DSBGA |
其它名称 | LM48860TL/NOPBDKR |
包装 | Digi-Reel® |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 12-WFBGA, DSBGA |
封装/箱体 | DSBGA-12 |
工作温度 | -40°C ~ 85°C (TA) |
工作电源电压 | 2 V to 5.5 V |
工厂包装数量 | 250 |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 1 |
特性 | 消除爆音,关机,热保护 |
电压-电源 | 2 V ~ 5.5 V |
电源电压-最大 | 5.5 V |
电源电压-最小 | 2 V |
电源电流 | 4.2 mA |
电源类型 | Single |
类 | Class-AB |
类型 | AB 类 |
系列 | LM48860 |
输出功率 | 50 mW |
输出类型 | 耳机,2-通道(立体声) |
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 LM48860 Ground-Referenced, Ultra Low Noise, Fixed Gain Stereo Headphone Amplifier CheckforSamples:LM48860 FEATURES DESCRIPTION 1 • FixedLogicLevelswithSupplyVoltage The LM48860 is a ground referenced, fixed-gain 2 audiopoweramplifiercapableofdelivering40mWper • GroundReferencedOutputs channel of continuous average power into a 16Ω • HighPSRR single-ended load with less than 1% THD+N from a • AvailableinSpace-SavingDSBGAPackage 3Vpowersupply. • UltraLowCurrentShutdownMode The LM48860 features a new circuit technology that • ImprovedPop&ClickCircuitryEliminates utilizes a charge pump to generate a negative reference voltage. This allows the outputs to be NoisesDuringTurn-OnandTurn-Off biased about ground, thereby eliminating output- Transitions coupling capacitors typically used with normal single- • NoOutputCouplingCapacitors,Snubber endedloads. Networks,BootstrapCapacitors,orGain- Boomer audio power amplifiers were designed SettingResistorsRequired specificallytoprovidehighqualityoutputpowerwitha • ShutdownEitherChannelIndependently minimal amount of external components. The LM48860 does not require output coupling capacitors APPLICATIONS or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications • MobilePhones where minimal power consumption is a primary • MP3Players requirement. • PDAs The LM48860 features a low-power consumption • PortableElectronicDevices shutdown mode selectable for either channel • NotebookPCs separately. This is accomplished by driving either the SD_RC (Shutdown Right Channel) or SD_LC KEY SPECIFICATIONS (Shutdown Left Channel) (or both) pins with logic low, depending on which channel is desired shutdown. • PSRRat217Hz(V =3.0V):80dB(typ) DD Additionally, the LM48860 features an internal • StereoPowerOutputatV =3V,R =16Ω, thermalshutdownprotectionmechanism. DD L THD+N=1%:40mW(typ) The LM48860 contains advanced pop & click circuitry • ShutdownCurrent0.1μA(typ) that eliminates noises which would otherwise occur • InternalFixedGain:1.5V/V(typ) duringturn-onandturn-offtransitions. • OperatingVoltage:2.0Vto5.5V TheLM48860hasaninternalfixedgainof1.5V/V. 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsof TexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. Alltrademarksarethepropertyoftheirrespectiveowners. 2 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2008–2013,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com Typical Application VDD + C5 4.7 PF C6 0.1 PF ceramic VDD 1 PF 20 k: 30 k: + - C1 RIN Ri + ROUT VIN1 Headphone Jack SD_LC Shutdown Click/Pop SD_RC Control Suppression CCP+ C4 Charge 2.2 PF Pump 1 PF CCP- + LOUT 20 k: + - VIN2 C2 LINVSS(CP) RSiGND 30 k: SGND C3 2.2 PF Figure1. TypicalAudioAmplifierApplicationCircuit Connection Diagram 1 2 3 A RIN SGND LIN B ROUT SD_LC LOUT C VSS(CP) SD_RC VDD D CCP- PGND CCP+ Figure2. DSBGA-TopView SeeYZR0012Package 2 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 PINDESCRIPTIONS Pin Name Function A1 RIN RightChannelInput A2 SGND SignalGround A3 LIN LeftChannelInput B1 ROUT RightChannelOutput B2 SD_LC ActiveLowShutdown,LeftChannel B3 LOUT LeftChannelOutput C1 V ChargePumpVoltageOutput SS(CP) C2 SD_RC Active-LowShutdown,RightChannel C3 V SupplyVoltage DD D1 CCP- NegativeTerminal-ChargePumpFlyingCapacitor D2 PGND PowerGround D3 CCP+ PositiveTerminal-ChargePumpFlyingCapacitor Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. Absolute Maximum Ratings(1)(2) SupplyVoltage 6.0V StorageTemperature −65°Cto+150°C InputVoltage -0.3VtoV DD PowerDissipation(3) InternallyLimited ESDRating(4) 2000V ESDRating(5) 200V JunctionTemperature 150°C ThermalResistance θ (typ)DSBGA 59.3°C/W JA (1) TheElectricalCharacteristicstableslistensurespecificationsunderthelistedRecommendedOperatingConditionsexceptasotherwise modifiedorspecifiedbytheElectricalCharacteristicsConditionsand/orNotes.Typicalspecificationsareestimationsonlyandarenot specified. (2) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTISalesOffice/Distributorsforavailabilityandspecifications. (3) ThemaximumpowerdissipationmustbederatedatelevatedtemperaturesandisdictatedbyT ,θ ,andtheambienttemperature, JMAX JA T .ThemaximumallowablepowerdissipationisP =(T -T )/θ orthenumbergiveninAbsoluteMaximumRatings, A DMAX JMAX A JA whicheverislower.FortheLM48860,seepowerderatingcurvesforadditionalinformation. (4) Humanbodymodel,applicablestd.JESD22-A114C. (5) Machinemodel,applicablestd.JESD22-A115-A. Operating Ratings TemperatureRange T ≤T ≤T −40°C≤T ≤85°C MIN A MAX A SupplyVoltage(V ) 2.0V≤V ≤5.5V DD DD Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com Electrical Characteristics V = 3V (1)(2) DD ThefollowingspecificationsapplyforV =3Vand16Ωloadunlessotherwisespecified.LimitsapplytoT =25°C. DD A LM48860 Units Symbol Parameter Conditions Typical(3) Limit(4) (Limits) V =3.0V, DD V =0V,inputsterminated 4 5.5 mA(max) IN QuiescentPowerSupplyCurrent bothchannelsenabled I DD FullPowerMode V =5.0V, DD V =0V,inputsterminated 4.2 mA IN bothchannelsenabled SD_LC=SD_RC=GND 0.1 1 µA(max) ISD ShutdownCurrent SD_LC=SD_RC=GND, 0.1 1 µA(max) V =5.0V DD V OutputOffsetVoltage R =32Ω,V =0V 0.7 5.5 mV(max) OS L IN A VoltageGain –1.5 V/V V ΔA Channel-to-channelGain 1 % V Matching 15 kΩ(min) R InputResistance 20 IN 25 kΩ(max) THD+N=1%(max);f=1kHz, 40 35 mW(min) R =16Ω,(twochannelsinphase) L P OutputPower O THD+N=1%(max);f=1kHz, 50 40 mW(min) R =32Ω,(twochannelsinphase) L P =20mW,f=1kHz,R =16Ω O L 0.025 % (twochannelsinphase) THD+N TotalHarmonicDistortion+Noise P =25mW,f=1kHz,R =32Ω O L 0.014 % (twochannelsinphase) V =200mV ,InputReferred RIPPLE PP PowerSupplyRejectionRatio f=217Hz 80 73 dB(min) PSRR FullPowerMode f=1kHz 75 dB f=20kHz 60 dB R =32Ω,P =50mW, L OUT SNR Signal-to-NoiseRatio f=1kHz,BW=20Hzto22kHz, 105 dB A-weighted V ShutdownInputVoltageHigh V =2.0Vto5.5V 1.2 V(min) IH DD V ShutdownInputVoltageLow V =2.0Vto5.5V 0.45 V(max) IL DD R =16Ω,P =1.6mW, X Crosstalk L O 75 dB TALK f=1kHz ∈ OutputNoise A-weightedfilter,V =0V 8 μV OS IN V =GND SD InputTerminated Z OutputImpedance OUT Inputnotterminated 30 20 kΩ(min) SD_LC=SD_RC=GND 30 kΩ I InputLeakage ±0.1 nA L (1) “AbsoluteMaximumRatings”indicatelimitsbeyondwhichdamagetothedevicemayoccur,includinginoperabilityanddegradationof devicereliabilityand/orperformance.Functionaloperationofthedeviceand/ornon-degradationattheAbsoluteMaximumRatingsor otherconditionsbeyondthoseindicatedintheRecommendedOperatingConditionsisnotimplied.TheRecommendedOperating Conditionsindicateconditionsatwhichthedeviceisfunctionalandthedeviceshouldnotbeoperatedbeyondsuchconditions.All voltagesaremeasuredwithrespecttothegroundpin,unlessotherwisespecified. (2) TheElectricalCharacteristicstableslistensurespecificationsunderthelistedRecommendedOperatingConditionsexceptasotherwise modifiedorspecifiedbytheElectricalCharacteristicsConditionsand/orNotes.Typicalspecificationsareestimationsonlyandarenot specified. (3) TypicalvaluesrepresentmostlikelyparametricnormsatT =+25ºC,andattheRecommendedOperationConditionsatthetimeof A productcharacterizationandarenotspecified. (4) Datasheetmin/maxspecificationlimitsareensuredbytestorstatisticalanalysis. 4 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 External Components Description (Figure1) Components FunctionalDescription InputcouplingcapacitorwhichblockstheDCvoltageattheamplifier’sinputterminals.Alsocreatesahighpass-pass 1. C filterwithR atf =1/(2RC ).RefertothesectionProperSelectionofExternalComponents,foranexplanationofhow 1 i C i 1 todeterminethevalueofC . 1 InputcouplingcapacitorwhichblockstheDCvoltageattheamplifier’sinputterminals.Alsocreatesahighpass-pass 2. C filterwithR atf =1/(2RC ).RefertothePowerSupplyBypassingsectionforanexplanationofhowtodeterminethe 2 i C i 2 valueofC . 2 3. C Outputcapacitor.LowESRceramiccapacitor(≤100mΩ) 3 4. C Flyingcapacitor.LowESRceramiccapacitor(≤100mΩ) 4 Tantalumcapacitor.Supplybypasscapacitorwhichprovidespowersupplyfiltering.RefertothePowerSupply 5. C 5 Bypassingsectionforinformationconcerningproperplacementandselectionofthesupplybypasscapacitor. Ceramiccapacitor.Supplybypasscapacitorwhichprovidespowersupplyfiltering.RefertothePowerSupply 6. C 6 Bypassingsectionforinformationconcerningproperplacementandselectionofthesupplybypasscapacitor. Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com Typical Performance Characteristics THD+NvsOutputPower THD+NvsOutputPower V =3V,R =16Ω V =3V,R =16Ω,f=1kHz DD L DD L f=1kHz,22kHzBW,onechannelenabled 22kHzBW,twochannelsinphase 10 10 1 1 %) %) N ( N ( + + D D H H T T 0.1 0.1 0.01 0.01 10 20 40 60 100 200 10 20 30 40 50607080 100 OUTPUT POWER (mW) OUTPUT POWER (mW) Figure3. Figure4. THD+NvsOutputPower THD+NvsOutputPower V =3V,R =32Ω V =3V,R =32Ω,f=1kHz DD L DD L f=1kHz,22kHzBW,onechannelenabled 22kHzBW,twochannelsinphase 10 10 1 1 %) %) N ( N ( + + D D H H T T 0.1 0.1 0.01 0.01 10 20 30 40 50607080 100 10 20 30 40 50607080 100 OUTPUT POWER (mW) OUTPUT POWER (mW) Figure5. Figure6. THD+NvsOutputPower THD+NvsOutputPower V =3.6V,R =16Ω V =3.6V,R =16Ω,f=1kHz DD L DD L f=1kHz,22kHzBW,onechannelenabled 22kHzBW,twochannelsinphase 10 10 1 1 %) %) N ( N ( + + D D H H T T 0.1 0.1 0.01 0.01 10 20 30 40 50607080 100 10 20 30 40 50607080100 OUTPUT POWER (mW) OUTPUT POWER (mW) Figure7. Figure8. 6 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 Typical Performance Characteristics (continued) THD+NvsOutputPower THD+NvsOutputPower V =3.6V,R =32Ω V =3.6V,R =32Ω,f=1kHz DD L DD L f=1kHz,22kHzBW,onechannelenabled 22kHzBW,twochannelsinphase 10 10 1 1 %) %) N ( N ( + + D D H H T T 0.1 0.1 0.01 0.01 10 20 30 40 50607080100 10 20 30 40 50607080100 OUTPUT POWER (mW) OUTPUT POWER (mW) Figure9. Figure10. THD+NvsOutputPower THD+NvsOutputPower V =4.2V,R =16Ω V =4.2V,R =16Ω,f=1kHz DD L DD L f=1kHz,22kHzBW,onechannelenabled 22kHzBW,twochannelsinphase 10 10 1 1 %) %) N ( N ( + + D D H H T T 0.1 0.1 0.01 0.01 10 20 40 60 100 200 10 20 40 60 100 200 OUTPUT POWER (mW) OUTPUT POWER (mW) Figure11. Figure12. THD+NvsOutputPower THD+NvsOutputPower V =4.2V,R =32Ω V =4.2V,R =32Ω,f=1kHz DD L DD L f=1kHz,22kHzBW,onechannelenabled 22kHzBW,twochannelsinphase 10 10 1 1 %) %) N ( N ( D+ D+ H H T T 0.1 0.1 0.01 0.01 10 20 30 40 50607080100 10 20 30 40 50607080 100 OUTPUT POWER (mW) OUTPUT POWER (mW) Figure13. Figure14. Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com Typical Performance Characteristics (continued) THD+NvsFrequency THD+NvsFrequency V =3V,R =16Ω V =3V,R =32Ω DD L DD L P =20mW,22kHzBW P =20mW,22kHzBW O O 10 10 1 1 %) %) N ( 0.1 N ( 0.1 + + D D H H T T 0.01 0.01 0.001 0.001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure15. Figure16. THD+NvsFrequency THD+NvsFrequency V =3.6V,R =16Ω V =3.6V,R =32Ω DD L DD L P =30mW,22kHzBW P =30mW,22kHzBW O O 10 10 1 1 %) %) N ( 0.1 N ( 0.1 + + D D H H T T 0.01 0.01 0.001 0.001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure17. Figure18. THD+NvsFrequency THD+NvsFrequency V =4.2V,R =16Ω V =4.2V,R =32Ω DD L DD L P =30mW,22kHzBW P =30mW,22kHzBW O O 10 10 1 1 %) %) D+N ( 0.1 D+N ( 0.1 H H T T 0.01 0.01 0.001 0.001 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure19. Figure20. 8 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 Typical Performance Characteristics (continued) PSRRvsFrequency PSRRvsFrequency V =3V,R =16Ω V =3V,R =32Ω DD L DD L V =200mV V =200mV RIPPLE PP RIPPLE PP 0 0 -10 -10 -20 -20 -30 -30 B) -40 B) -40 R (d -50 R (d -50 R R PS -60 PS -60 -70 -70 -80 -80 -90 -90 -100 -100 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure21. Figure22. PSRRvsFrequency PSRRvsFrequency V =3.6V,R =16Ω V =3.6V,R =32Ω DD L DD L V =200mV V =200mV RIPPLE PP RIPPLE PP 0 0 -10 -10 -20 -20 -30 -30 B) -40 B) -40 d d R ( -50 R ( -50 R R PS -60 PS -60 -70 -70 -80 -80 -90 -90 -100 -100 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure23. Figure24. PSRRvsFrequency PSRRvsFrequency V =4.2V,R =16Ω V =4.2V,R =32Ω DD L DD L V =200mV V =200mV RIPPLE PP RIPPLE PP 0 0 -10 -10 -20 -20 -30 -30 B) -40 B) -40 R (d -50 R (d -50 R R PS -60 PS -60 -70 -70 -80 -80 -90 -90 -100 -100 20 200 2k 20k 20 200 2k 20k FREQUENCY (Hz) FREQUENCY (Hz) Figure25. Figure26. Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com Typical Performance Characteristics (continued) OutputPowervsSupplyVoltage OutputPowervsSupplyVoltage R =16Ω,f=1kHz,22kHzBW R =32Ω,f=1kHz,22kHzBW L L 120 70 THD+N = 10% 100 60 THD+N = 10% W) W) 50 R (m 80 R (m THD+N = 1% E THD+N = 1% E 40 W W O 60 O P P T T 30 U U P 40 P UT UT 20 O O 20 10 0 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Figure27. Figure28. PowerDissipationvsOutputPower PowerDissipationvsOutputPower V =3V,R =16Ω,f=1kHz V =3V,R =32Ω,f=1kHz DD L DD L 300 200 175 W) 250 W) m m 150 N ( 200 N ( O O 125 TI TI A A SIP 150 SIP 100 S S DI DI 75 R 100 R E E W W 50 O O P 50 P 25 0 0 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 OUTPUT POWER/CHANNEL (mW) OUTPUT POWER/ CHANNEL (mW) Figure29. Figure30. PowerDissipationvsOutputPower PowerDissipationvsOutputPower V =5V,R =16Ω,f=1kHz V =5V,R =32Ω,f=1kHz DD L DD L 700 400 600 350 W) W) m m 300 N ( 500 N ( O O 250 ATI 400 ATI SIP SIP 200 S 300 S DI DI 150 R R E 200 E W W 100 O O P P 100 50 0 0 0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80 OUTPUT POWER/CHANNEL (mW) OUTPUT POWER/CHANNEL (mW) Figure31. Figure32. 10 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 Typical Performance Characteristics (continued) SupplyCurrentvsSupplyVoltage PowerDeratingCurve V =GND,NoLoad V =3V,R =16Ω IN DD L 4.00 150 C) Y CURRENT (mA) 33..5705 TEMPERATURE (° 114405 SUPPL 3.25 BIENT 135 M A 3.00 130 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 50 100 150 200 250 300 SUPPLY VOLTAGE (V) POWER DISSIPATION (mW) Figure33. Figure34. PowerDeratingCurve PowerDeratingCurve V =3V,R =32Ω V =5V,R =16Ω DD L DD L 150 150 E (°C) E (°C) 140 R R U 145 U AT AT 130 R R E E P P M M E E 120 T T T 140 T N N E E BI BI 110 M M A A 135 100 0 20 40 60 80 100120140160180200 0 100 200 300 400 500 600 700 POWER DISSIPATION (mW) POWER DISSIPATION (mW) Figure35. Figure36. PowerDeratingCurve V =5V,R =32Ω DD L 150 C) E (° 145 R U T A 140 R E P M TE 135 T N E MBI 130 A 125 0 50 100 150 200 250 300 350 400 POWER DISSIPATION (mW) Figure37. Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com APPLICATION INFORMATION SUPPLY VOLTAGE SEQUENCING It is a good general practice to first apply the supply voltage to a CMOS device before any other signal or supply onotherpins.ThisisalsotruefortheLM48860audioamplifierwhichisaCMOSdevice. Before applying any signal to the inputs or shutdown pins of the LM48860, it is important to apply a supply voltage to the V pins. After the device has been powered, signals may be applied to the shutdown pins (see DD MICROPOWERSHUTDOWN)andinputpins. ELIMINATING THE OUTPUT COUPLING CAPACITOR The LM48860 features a low noise inverting charge pump that generates an internal negative supply voltage. This allows the outputs of the LM48860 to be biased about GND instead of a nominal DC voltage, like traditional headphone amplifiers. Because there is no DC component, the large DC blocking capacitors (typically 220µF) are not necessary. The coupling capacitors are replaced by two, small ceramic charge pump capacitors, saving boardspaceandcost. Eliminating the output coupling capacitors also improves low frequency response. In traditional headphone amplifiers, the headphone impedance and the output capacitor form a high pass filter that not only blocks the DC component of the output, but also attenuates low frequencies, impacting the bass response. Because the LM48860 does not require the output coupling capacitors, the low frequency response of the device is not degradedbyexternalcomponents. In addition to eliminating the output coupling capacitors, the ground referenced output nearly doubles the available dynamic range of the LM48860 when compared to a traditional headphone amplifier operating from the samesupplyvoltage. OUTPUT TRANSIENT ('CLICK AND POPS') ELIMINATED The LM48860 contains advanced circuitry that virtually eliminates output transients ('clicks and pops'). This circuitry prevents all traces of transients when the supply voltage is first applied or when the part resumes operationaftercomingoutofshutdownmode. AMPLIFIER CONFIGURATION EXPLANATION As shown in Figure 1, the LM48860 has two internal operational amplifiers. The two amplifiers have internally configuredgain. Sincethisisanoutputground-referencedamplifier,theLM48860doesnotrequireoutputcouplingcapacitors. POWER DISSIPATION From the graph (THD+N vs Output Power , V = 3V, R = 16Ω, f = 1kHz, 22kH BW, two channels in phase, DD L page 6) assuming a 3V power supply and a 16Ω load, the maximum power dissipation point and thus the maximum package dissipation point is 281mW. The maximum power dissipation point obtained must not be greaterthanthepowerdissipationthatresultsfromEquation1. P =(T -T )/(θ ) (1) DMAX JMAX A JA For the DSBGA package θ = 59.3°C/W. T = 150°C for the LM48860. Depending on the ambient JA JMAX temperature, T , of the system surroundings, Equation 1 can be used to find the maximum internal power A dissipation supported by the IC packaging. If the maximum power dissipation from the graph is greater than that of Equation 1, then either the supply voltage must be decreased, the load impedance increased or T reduced A (see power derating curves). For the application of a 5V power supply, with a 16Ω load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately 110°C provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature may beincreasedaccordingly. 12 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 POWER SUPPLY BYPASSING As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. Applications that employ a 3V power supply typically use a 4.7µF capacitor in parallel with a 0.1µF ceramic filter capacitor to stabilize the power supply's output, reduce noise on the supply line, and improve the supply's transient response. Keep the length of leads and traces that connect capacitors between the LM48860's powersupplypinandgroundasshortaspossible. MICRO POWER SHUTDOWN The voltage applied to the SD_LC (shutdown left channel) pin and the SD_RC (shutdown right channel) pin controls the LM48860’s shutdown function. When active, the LM48860’s micropower shutdown feature turns off the amplifiers’ bias circuitry, reducing the supply current. The trigger point is 0.45V for a logic-low level, and 1.2V for logic-high level. The low 0.01µA (typ) shutdown current is achieved by applying a voltage that is as near as ground a possible to the SD_LC/SD_RC pins. A voltage that is higher than ground may increase the shutdown current.DonotletSD_LC/SD_RCfloat,connecteithertohighorlow. SELECTING PROPER EXTERNAL COMPONENTS Optimizing the LM48860's performance requires properly selecting external components. Though the LM48860 operates well when using external components with wide tolerances, best performance is achieved by optimizing componentvalues. ChargePumpCapacitorSelection Use low ESR (equivalent series resistance) (<100mΩ) ceramic capacitors with an X7R dielectric for best performance. Low ESR capacitors keep the charge pump output impedance to a minimum, extending the headroom on the negative supply. Higher ESR capacitors result in reduced output power from the audio amplifiers. Charge pump load regulation and output impedance are affected by the value of the flying capacitor (C4). A larger valued C4 (up to 3.3uF) improves load regulation and minimizes charge pump output resistance. Beyond 3.3uF,theswitch-onresistancedominatestheoutputimpedance. The output ripple is affected by the value and ESR of the output capacitor (C3). Larger capacitors reduce output ripple on the negative power supply. Lower ESR capacitors minimize the output ripple and reduce the output impedanceofthechargepump. TheLM48860chargepumpdesignisoptimizedfor2.2uF,lowESR,ceramic,flyingandoutputcapacitors. InputCapacitorValueSelection Amplifying the lowest audio frequencies requires high value input coupling capacitors (C1 and C2 in Figure 1). A high value capacitor can be expensive and may compromise space efficiency in portable designs. In many cases, however, the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 150Hz. Applications using speakers with this limited frequency response reap little improvementbyusinghighvalueinputandoutputcapacitors. As shown in Figure 1, the internal input resistor, R and the input capacitors, C1 and C2, produce a -3dB high- i passfiltercutofffrequencythatisfoundusingEquation2. f =1/2πR C (Hz) (2) i-3dB IN ThevalueofR canbefoundintheElectricalCharacteristicstables. IN Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com Demonstration Board PCB Layout Figure38.TopSilkscreen Figure39.TopLayer Figure40.Midlayer1 Figure41.Midlayer2 14 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
LM48860 www.ti.com SNAS398D–JANUARY2008–REVISEDMAY2013 Figure42.BottomLayer Figure43.BottomSilkscreen Copyright©2008–2013,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM48860
LM48860 SNAS398D–JANUARY2008–REVISEDMAY2013 www.ti.com REVISION HISTORY Rev Date Description 1.0 01/16/08 Initialrelease. 1.01 01/29/08 Textedits. 1.02 02/14/08 Fixedtypos(x-axis)onfewcurves. 1.03 10/17/08 EditedtheX1andX2limitsunderthe PhysicalDimensionsection. D 05/02/2013 ChangedlayoutofNationalDataSheettoTI format. 16 SubmitDocumentationFeedback Copyright©2008–2013,TexasInstrumentsIncorporated ProductFolderLinks:LM48860
PACKAGE OPTION ADDENDUM www.ti.com 2-May-2013 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Top-Side Markings Samples (1) Drawing Qty (2) (3) (4) LM48860TL/NOPB ACTIVE DSBGA YZR 12 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 84 GJ7 & no Sb/Br) LM48860TLX/NOPB ACTIVE DSBGA YZR 12 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 84 GJ7 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1
PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM48860TL/NOPB DSBGA YZR 12 250 178.0 8.4 1.68 2.13 0.76 4.0 8.0 Q1 LM48860TLX/NOPB DSBGA YZR 12 3000 178.0 8.4 1.68 2.13 0.76 4.0 8.0 Q1 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM48860TL/NOPB DSBGA YZR 12 250 210.0 185.0 35.0 LM48860TLX/NOPB DSBGA YZR 12 3000 210.0 185.0 35.0 PackMaterials-Page2
MECHANICAL DATA YZR0012xxx 0.600±0.075 D E TLA12XXX (Rev C) D: Max = 2.014 mm, Min =1 .954 mm E: Max = 1.514 mm, Min =1 .454 mm 4215049/A 12/12 NOTES: A.Alllineardimensionsareinmillimeters.DimensioningandtolerancingperASMEY14.5M-1994. B.Thisdrawingissubjecttochangewithoutnotice. www.ti.com
IMPORTANTNOTICE TexasInstrumentsIncorporated(TI)reservestherighttomakecorrections,enhancements,improvementsandotherchangestoits semiconductorproductsandservicesperJESD46,latestissue,andtodiscontinueanyproductorserviceperJESD48,latestissue.Buyers shouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete. TI’spublishedtermsofsaleforsemiconductorproducts(http://www.ti.com/sc/docs/stdterms.htm)applytothesaleofpackagedintegrated circuitproductsthatTIhasqualifiedandreleasedtomarket.AdditionaltermsmayapplytotheuseorsaleofothertypesofTIproductsand services. ReproductionofsignificantportionsofTIinformationinTIdatasheetsispermissibleonlyifreproductioniswithoutalterationandis accompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchreproduced documentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.ResaleofTIproductsorserviceswithstatements differentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsallexpressandanyimpliedwarrantiesforthe associatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements. BuyersandotherswhoaredevelopingsystemsthatincorporateTIproducts(collectively,“Designers”)understandandagreethatDesigners remainresponsibleforusingtheirindependentanalysis,evaluationandjudgmentindesigningtheirapplicationsandthatDesignershave fullandexclusiveresponsibilitytoassurethesafetyofDesigners'applicationsandcomplianceoftheirapplications(andofallTIproducts usedinorforDesigners’applications)withallapplicableregulations,lawsandotherapplicablerequirements.Designerrepresentsthat,with respecttotheirapplications,Designerhasallthenecessaryexpertisetocreateandimplementsafeguardsthat(1)anticipatedangerous consequencesoffailures,(2)monitorfailuresandtheirconsequences,and(3)lessenthelikelihoodoffailuresthatmightcauseharmand takeappropriateactions.DesigneragreesthatpriortousingordistributinganyapplicationsthatincludeTIproducts,Designerwill thoroughlytestsuchapplicationsandthefunctionalityofsuchTIproductsasusedinsuchapplications. TI’sprovisionoftechnical,applicationorotherdesignadvice,qualitycharacterization,reliabilitydataorotherservicesorinformation, including,butnotlimitedto,referencedesignsandmaterialsrelatingtoevaluationmodules,(collectively,“TIResources”)areintendedto assistdesignerswhoaredevelopingapplicationsthatincorporateTIproducts;bydownloading,accessingorusingTIResourcesinany way,Designer(individuallyor,ifDesignerisactingonbehalfofacompany,Designer’scompany)agreestouseanyparticularTIResource solelyforthispurposeandsubjecttothetermsofthisNotice. TI’sprovisionofTIResourcesdoesnotexpandorotherwisealterTI’sapplicablepublishedwarrantiesorwarrantydisclaimersforTI products,andnoadditionalobligationsorliabilitiesarisefromTIprovidingsuchTIResources.TIreservestherighttomakecorrections, enhancements,improvementsandotherchangestoitsTIResources.TIhasnotconductedanytestingotherthanthatspecifically describedinthepublisheddocumentationforaparticularTIResource. Designerisauthorizedtouse,copyandmodifyanyindividualTIResourceonlyinconnectionwiththedevelopmentofapplicationsthat includetheTIproduct(s)identifiedinsuchTIResource.NOOTHERLICENSE,EXPRESSORIMPLIED,BYESTOPPELOROTHERWISE TOANYOTHERTIINTELLECTUALPROPERTYRIGHT,ANDNOLICENSETOANYTECHNOLOGYORINTELLECTUALPROPERTY RIGHTOFTIORANYTHIRDPARTYISGRANTEDHEREIN,includingbutnotlimitedtoanypatentright,copyright,maskworkright,or otherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information regardingorreferencingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservices,orawarrantyor endorsementthereof.UseofTIResourcesmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthe thirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. TIRESOURCESAREPROVIDED“ASIS”ANDWITHALLFAULTS.TIDISCLAIMSALLOTHERWARRANTIESOR REPRESENTATIONS,EXPRESSORIMPLIED,REGARDINGRESOURCESORUSETHEREOF,INCLUDINGBUTNOTLIMITEDTO ACCURACYORCOMPLETENESS,TITLE,ANYEPIDEMICFAILUREWARRANTYANDANYIMPLIEDWARRANTIESOF MERCHANTABILITY,FITNESSFORAPARTICULARPURPOSE,ANDNON-INFRINGEMENTOFANYTHIRDPARTYINTELLECTUAL PROPERTYRIGHTS.TISHALLNOTBELIABLEFORANDSHALLNOTDEFENDORINDEMNIFYDESIGNERAGAINSTANYCLAIM, INCLUDINGBUTNOTLIMITEDTOANYINFRINGEMENTCLAIMTHATRELATESTOORISBASEDONANYCOMBINATIONOF PRODUCTSEVENIFDESCRIBEDINTIRESOURCESOROTHERWISE.INNOEVENTSHALLTIBELIABLEFORANYACTUAL, DIRECT,SPECIAL,COLLATERAL,INDIRECT,PUNITIVE,INCIDENTAL,CONSEQUENTIALOREXEMPLARYDAMAGESIN CONNECTIONWITHORARISINGOUTOFTIRESOURCESORUSETHEREOF,ANDREGARDLESSOFWHETHERTIHASBEEN ADVISEDOFTHEPOSSIBILITYOFSUCHDAMAGES. UnlessTIhasexplicitlydesignatedanindividualproductasmeetingtherequirementsofaparticularindustrystandard(e.g.,ISO/TS16949 andISO26262),TIisnotresponsibleforanyfailuretomeetsuchindustrystandardrequirements. WhereTIspecificallypromotesproductsasfacilitatingfunctionalsafetyorascompliantwithindustryfunctionalsafetystandards,such productsareintendedtohelpenablecustomerstodesignandcreatetheirownapplicationsthatmeetapplicablefunctionalsafetystandards andrequirements.Usingproductsinanapplicationdoesnotbyitselfestablishanysafetyfeaturesintheapplication.Designersmust ensurecompliancewithsafety-relatedrequirementsandstandardsapplicabletotheirapplications.DesignermaynotuseanyTIproductsin life-criticalmedicalequipmentunlessauthorizedofficersofthepartieshaveexecutedaspecialcontractspecificallygoverningsuchuse. Life-criticalmedicalequipmentismedicalequipmentwherefailureofsuchequipmentwouldcauseseriousbodilyinjuryordeath(e.g.,life support,pacemakers,defibrillators,heartpumps,neurostimulators,andimplantables).Suchequipmentincludes,withoutlimitation,all medicaldevicesidentifiedbytheU.S.FoodandDrugAdministrationasClassIIIdevicesandequivalentclassificationsoutsidetheU.S. TImayexpresslydesignatecertainproductsascompletingaparticularqualification(e.g.,Q100,MilitaryGrade,orEnhancedProduct). Designersagreethatithasthenecessaryexpertisetoselecttheproductwiththeappropriatequalificationdesignationfortheirapplications andthatproperproductselectionisatDesigners’ownrisk.Designersaresolelyresponsibleforcompliancewithalllegalandregulatory requirementsinconnectionwithsuchselection. DesignerwillfullyindemnifyTIanditsrepresentativesagainstanydamages,costs,losses,and/orliabilitiesarisingoutofDesigner’snon- compliancewiththetermsandprovisionsofthisNotice. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2017,TexasInstrumentsIncorporated