图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM3671TL-3.3/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM3671TL-3.3/NOPB产品简介:

ICGOO电子元器件商城为您提供LM3671TL-3.3/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM3671TL-3.3/NOPB价格参考。Texas InstrumentsLM3671TL-3.3/NOPB封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 3.3V 1 输出 600mA 5-WFBGA,DSBGA。您可以下载LM3671TL-3.3/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM3671TL-3.3/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BUCK SYNC 3.3V 0.6A 5USMD稳压器—开关式稳压器 2MHz, 600mA Step-Down DC-DC Converter 5-DSBGA -30 to 85

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments LM3671TL-3.3/NOPB-

数据手册

点击此处下载产品Datasheet

产品型号

LM3671TL-3.3/NOPB

PWM类型

电压模式

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30141

产品种类

稳压器—开关式稳压器

供应商器件封装

5-DSBGA

关闭

Shutdown

其它名称

LM3671TL-3.3/NOPBTR
LM3671TL-3.3TR
LM3671TL-3.3TR-ND
LM3671TL33NOPB

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM3671TL-3.3/NOPB

包装

带卷 (TR)

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

5-WFBGA

封装/箱体

uSMD

工作温度

-40°C ~ 85°C

工作温度范围

- 30 C to + 85 C

工厂包装数量

250

开关频率

2600 kHz

拓扑结构

Buck

最大工作温度

+ 85 C

最大输入电压

5.5 V

最小工作温度

- 30 C

最小输入电压

2.7 V

标准包装

250

电压-输入

2.7 V ~ 5.5 V

电压-输出

3.3V

电流-输出

600mA

电源电压-最小

2.7 V

电源电流

5 mA

类型

Step Down

系列

LM3671

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

负载调节

0.0013 %/mA

输入电压

5.5 V

输出数

1

输出电压

3.3 V

输出电流

0.6 A

输出端数量

1 Output

输出类型

固定

配用

/product-detail/zh/LM3671LC-1.8EV%2FNOPB/LM3671LC-1.8EV%2FNOPB-ND/2514788/product-detail/zh/LM3671LC-1.6EV/LM3671LC-1.6EV-ND/1882582/product-detail/zh/LM3671TL-1.8EV/LM3671TL-1.8EV-ND/1640681/product-detail/zh/LM3671TL-1.5EV/LM3671TL-1.5EV-ND/1640680/product-detail/zh/LM3671MF-1.8EV/LM3671MF-1.8EV-ND/1640679/product-detail/zh/LM3671MF-1.5EV/LM3671MF-1.5EV-ND/1640678

频率-开关

2MHz

推荐商品

型号:LTC3114EDHC-1#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AS1329B-BTTT

品牌:ams

产品名称:集成电路(IC)

获取报价

型号:TPS62293DRVR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2672MX-ADJ/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADP2503ACPZ-3.3-R7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AUR9717AGD

品牌:Diodes Incorporated

产品名称:集成电路(IC)

获取报价

型号:LTC1174IS8#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:IR3475MTRPBF

品牌:Infineon Technologies

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM3671TL-3.3/NOPB 相关产品

ADP2120ACPZ-1.0-R7

品牌:Analog Devices Inc.

价格:

MAX1721EUT-T

品牌:Maxim Integrated

价格:

LTC1627IS8#PBF

品牌:Linear Technology/Analog Devices

价格:

LM34927SDX/NOPB

品牌:Texas Instruments

价格:

PAM2301CAAB280

品牌:Diodes Incorporated

价格:

TPS62151RGTT

品牌:Texas Instruments

价格:¥6.23-¥7.89

MIC2172YN

品牌:Microchip Technology

价格:

LM2832XSD

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Reference Folder Buy Documents Software Community Design LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 LM3671/-Q1 2-MHz, 600-mA Step-Down DC-DC Converter 1 Features 3 Description • LM3671-Q1isQualifiedforAutomotive The LM3671 step-down DC-DC converter is 1 optimized for powering low voltage circuits from a Applications single Li-Ion cell battery and input voltage rails from • AECQ100-QualifiedWiththeFollowingResults 2.7 V to 5.5 V. It provides up to 600-mA load current, – DeviceTemperatureGrade1: –40°Cto over the entire input voltage range. There are several +125°CAmbientOperatingTemperature different fixed voltage output options available as well Range as an adjustable output voltage version range from 1.1Vto3.3V. • 16-µATypicalQuiescentCurrent • 600-mAMaximumLoadCapability The device offers superior features and performance for mobile phones and similar portable systems. • 2-MHzPWMFixedSwitchingFrequency(Typical) Automatic intelligent switching between PWM low- • AutomaticPFM-PWMModeSwitching noise and PFM low-current mode offers improved • InternalSynchronousRectificationforHigh system control. During PWM mode, the device Efficiency operates at a fixed-frequency of 2 MHz (typical). Hysteretic PFM mode extends the battery life by • InternalSoftStart reducing the quiescent current to 16 µA (typical) • 0.01-µATypicalShutdownCurrent during light load and standby operation. Internal • OperatesfromaSingleLi-IonCellBattery synchronous rectification provides high efficiency during PWM mode operation. In shutdown mode, the • OnlyThreeTinySurface-MountExternal device turns off and reduces battery consumption to ComponentsRequired(OneInductor,Two 0.01µA(typical). CeramicCapacitors) • CurrentOverloadandThermalShutdown A high-switching frequency of 2 MHz (typical) allows use of tiny surface-mount components. Only three Protection external surface-mount components, an inductor, and • AvailableinFixedOutputVoltagesandAdjustable twoceramiccapacitors,arerequired. Version DeviceInformation(1) 2 Applications PARTNUMBER PACKAGE BODYSIZE • MobilePhones LM3671 USON(6) 2.00mm×2.00mm(NOM) • PDAs LM3671 SOT-23(5) 2.90mm×1.60mm(NOM) • MP3Players LM3671-Q1 DSBGA(5) 1.413mm×1.083mm(MAX) • W-LAN (1) For all available packages, see the orderable addendum at theendofthedatasheet. • PortableInstruments • DigitalStillCameras • PortableHardDiskDrives • Automotive • PortableMedicalEquipment • HandheldTransactionTerminals • WirelessHome-AutomationEquipment TypicalApplicationCircuit:Fixed-Voltage TypicalApplicationCircuit:ADJ 2.7VV toIN 5.5V VIN 1 5 SW L1: 2.2 PH VOUT 2.7VV toIN 5.5V VIN 1 5 SW L1: 2.2 PH VOUT 4.C7I NPF GND 2LM3671 1C0O PUFT 4.C7I NPF GND 2LMA3D6J71- C1 R1 1C0O PUFT C2 R2 EN FB EN 3 4 FB 3 4 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................13 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 16 3 Description............................................................. 1 8.1 ApplicationInformation............................................16 4 RevisionHistory..................................................... 2 8.2 TypicalApplication..................................................16 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 20 6 Specifications......................................................... 4 10 Layout................................................................... 21 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................21 6.2 ESDRatings:LM3671..............................................4 10.2 LayoutExample....................................................22 6.3 ESDRatings:LM3671-Q1........................................4 10.3 DSBGAPackageAssemblyandUse...................22 6.4 RecommendedOperatingConditions.......................5 11 DeviceandDocumentationSupport................. 23 6.5 ThermalInformation..................................................5 11.1 DeviceSupport......................................................23 6.6 DissipationRatings...................................................5 11.2 DocumentationSupport........................................23 6.7 ElectricalCharacteristics...........................................6 11.3 RelatedLinks........................................................23 6.8 TypicalCharacteristics..............................................7 11.4 CommunityResources..........................................23 7 DetailedDescription............................................ 12 11.5 Trademarks...........................................................23 7.1 Overview.................................................................12 11.6 ElectrostaticDischargeCaution............................23 7.2 FunctionalBlockDiagram.......................................12 11.7 Glossary................................................................23 7.3 FeatureDescription.................................................13 12 Mechanical,Packaging,andOrderable Information........................................................... 24 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionR(November2014)toRevisionS Page • AddedtopnaviconforTIDesign .......................................................................................................................................... 1 • Addedseveralnew"Applications" ......................................................................................................................................... 1 • movedstoragetemperaturetoAbsMaxtable ...................................................................................................................... 4 • ChangedHandlingRatingstoESDRatings .......................................................................................................................... 4 • ChangedR forUSONfrom165°C/Wto174.7°C/W;forSOT-23from130°C/Wto165.7°C/W,andforDSBGA θJA from85°C/Wto181.0°C/W;addedadditionalthermalvalues............................................................................................... 5 • ChangedR valuesinDissipationRatingstable................................................................................................................. 5 θJA ChangesfromRevisionQ(November2013)toRevisionR Page • AddedDeviceInformationandHandlingRatingtables,FeatureDescription,DeviceFunctionalModes,Application andImplementation,PowerSupplyRecommendations,Layout,DeviceandDocumentationSupport,and Mechanical,Packaging,andOrderableInformationsections;movedsomecurvestoApplicationCurvessection .............1 ChangesfromRevisionO(April2013)toRevisionP Page • ChangedlayoutofNationalSemiconductorDataSheettoTIformat.................................................................................. 22 2 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 5 Pin Configuration and Functions DBVPackage 5PinSOT-23 NKHPackage TopView 6-PinUSON SW FB 5 4 En 1 6 Fb Pgnd 2 5 Sgnd Vin 3 4Sw TOP VIEW VIN GND EN 1 2 3 YZRPackage 5-PinDSBGA VIN A1 A3 GND GND A3 A1 VIN SW B2 B2 SW EN C1 C3 FB FB C3 C1 EN Top View Bottom View PinFunctions PIN LM3671,LM3671- LM3671 TYPE DESCRIPTION Q1 NAME SOT-23 DSBGA USON 1 A1 3 V Power Powersupplyinput.Connecttotheinputfiltercapacitor(seeInputCapacitor IN Selection). 2 A3 2 GND Ground Groundpin. 3 C1 1 EN Digital Enablepin.Thedeviceisinshutdownmodewhenvoltagetothispinis<0.4 Vandenabledwhen>1V.Donotleavethispinfloating. 4 C3 6 FB Analog Feedbackanaloginput.Connectdirectlytotheoutputfiltercapacitorforfixed voltageversions.Foradjustableversionexternalresistordividersare required(seeTypicalApplication:ADJVersion).Theinternalresistordividers aredisabledfortheadjustableversion. 5 B2 4 SW Analog SwitchingnodeconnectiontotheinternalPFETswitchandNFET synchronousrectifier. — — 5 S Ground Signalground(feedbackground). GND Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1)(2) MIN MAX UNIT V pin:voltagetoGND −0.2 6 V IN FB,SW,ENpins GND−0.2 V +0.2 V IN Continuouspowerdissipation(3) InternallyLimited Junctiontemperature,T 125 °C J-MAX Maximumleadtemperature (soldering,10sec.) 260 °C Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) IfMilitary/Aerospacespecifieddevicesarerequired,contacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. (3) Internalthermalshutdowncircuitryprotectsthedevicefrompermanentdamage.ThermalshutdownengagesatT =150°C(typical)and J disengagesatT=130°C(typical). J 6.2 ESD Ratings: LM3671 VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±500 V (ESD) Machinemodel 200 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 ESD Ratings: LM3671-Q1 VALUE UNIT Human-bodymodel(HBM),perAECQ100-002(1) ±2000 Allpinsexceptcornerpins ±500 Charged-devicemodel(CDM),per Cornerpins(1,3,4,and5):SOT-23 ±750 V Electrostaticdischarge V (ESD) AECQ100-011 Cornerpins(A1,A3,C1,andC3): ±750 DSBGA Machinemodel ±200 (1) AECQ100-002indicatesthatHBMstressingshallbeinaccordancewiththeANSI/ESDA/JEDECJS-001specification. 4 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 6.4 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT Inputvoltage(3) 2.7 5.5 V Recommendedloadcurrent 0 600 mA Junctiontemperature,T –40 125 °C J Ambienttemperature,T (4) –40 85 °C A (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) AllvoltagesarewithrespecttothepotentialattheGNDpin. (3) Theinputvoltagerangerecommendedforidealapplicationsperformanceforthespecifiedoutputvoltagesaregivenbelow:V =2.7V IN to4.5Vfor1.1V≤V <1.5V =2.7Vto5.5Vfor1.5V≤V <1.8V =(V +V )to5.5Vfor1.8V≤V ≤3.3V OUT IN OUT IN OUT DROPOUT OUT whereV =I ×(R +R ). DROPOUT LOAD DSON,PFET INDUCTOR (4) Inapplicationswherehighpowerdissipationand/orpoorpackageresistanceispresent,themaximumambienttemperaturemayhaveto bederated.Maximumambienttemperature(T )isdependentonthemaximumoperatingjunctiontemperature(T ),the A-MAX J-MAX maximumpowerdissipationofthedeviceintheapplication(P )andthejunctiontoambientthermalresistanceofthepackage D-MAX (R )intheapplication,asgivenbythefollowingequation:T =T −(R ×P ).RefertoDissipationRatingsforP θJA A-MAX J-MAX θJA D-MAX D-MAX valuesatdifferentambienttemperatures. 6.5 Thermal Information LM3671 LM3671andLM3671-Q1 THERMALMETRIC(1) NKH(USON) DBV(SOT-23) YZR(DSBGA) UNIT 6PINS 5PINS 5PINS R Junction-to-ambientthermalresistance 174.7 165.7 181.0 °C/W θJA R Junction-to-case(top)thermalresistance 87.1 116.6 0.9 °C/W θJC(top) R Junction-to-boardthermalresistance 109.0 26.8 110.3 °C/W θJB ψ Junction-to-topcharacterizationparameter 6.4 13.3 7.4 °C/W JT ψ Junction-to-boardcharacterizationparameter 109.0 26.3 110.3 °C/W JB (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 6.6 Dissipation Ratings R T ≤25°C T =60°C T =85°C θJA A A A POWERRATING POWERRATING POWERRATING 165.7°C/W(4layerboard)SOT-23 770mW 500mW 310mW 181°C/W(4layerboard)5-bumpDSBGA 1179mW 765mW 470mW 174.7°C/W(4layerboard)6-pinUSON 606mW 394mW 242mW Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com 6.7 Electrical Characteristics Unlessotherwisenoted,limitsapplyforforT =25°C,andspecificationsapplytotheLM3671MF/TL/LCwithV =EN=3.6 J IN V(1)(2)(3) PARAMETER TESTCONDITION MIN TYP MAX UNIT V Inputvoltage −40°Cto125°C,see(4) 2.7 5.5 V IN Feedbackvoltage(fixed)MF −4% 4% Feedbackvoltage(fixed)TL PWMmode(5),−40°Cto125°C −2.5% 2.5% Feedbackvoltage(fixed)LC −4% 4% V Feedbackvoltage(ADJ)MF(6) −4% 4% FB PWMmode(5),−40°Cto125°C Feedbackvoltage(ADJ)TL −2.5 2.5 Lineregulation 2.7V≤V ≤5.5V,I =10mA 0.031 %/V IN O Loadregulation 100mA≤I ≤600mA,V =3.6V 0.0013 %/mA O IN V Internalreferencevoltage 0.5 V REF EN=0V 0.01 I Shutdownsupplycurrent µA SHDN EN=0V,−40°Cto125°C 1 Noload,deviceisnotswitching(FB forcedhigherthanprogrammedoutput 16 voltage) I DCbiascurrentintoV µA Q IN Noload,deviceisnotswitching(FB forcedhigherthanprogrammedoutput 35 voltage),−40°Cto125°C R Pin-pinresistanceforPFET V =V =3.6V 380 500 mΩ DSON(P) IN GS R Pin-pinresistanceforNFET V =V =3.6V 250 400 mΩ DSON(N) IN GS Openloop(7) 1020 I Switchpeakcurrentlimit mA LIM Openloop(7),−40°Cto125°C 830 1150 V Logichighinput −40°Cto125°C 1 V IH V Logiclowinput −40°Cto125°C 0.4 V IL 0.01 I Enable(EN)inputcurrent µA EN −40°Cto125°C 1 PWMMode(5) 2 ƒ Internaloscillatorfrequency MHz OSC PWMMode(5),−40°Cto125°C 1.6 2.6 (1) Minimum(MIN)andmaximum(MAX)limitsarespecifiedbydesign,testorstatisticalanalysis.Typical(TYP)numbersarenotspecified, butdorepresentthemostlikelynorm. (2) TheparametersintheelectricalcharacteristictablearetestedatV =3.6Vunlessotherwisespecified.Forperformanceovertheinput IN voltagerangerefertodatasheetcurves. (3) Internalthermalshutdowncircuitryprotectsthedevicefrompermanentdamage.ThermalshutdownengagesatT =150°C(typical)and J disengagesatT=130°C(typical). J (4) Theinputvoltagerangerecommendedforidealapplicationsperformanceforthespecifiedoutputvoltagesaregivenbelow:V =2.7V IN to4.5Vfor1.1V≤V <1.5V =2.7Vto5.5Vfor1.5V≤V <1.8V =(V +V )to5.5Vfor1.8V≤V ≤3.3V OUT IN OUT IN OUT DROPOUT OUT whereV =I ×(R +R ). DROPOUT LOAD DSON,PFET INDUCTOR (5) Testcondition:forV lessthan2.5V,V =3.6V;forV greaterthanorequalto2.5V,V =V +1V. OUT IN OUT IN OUT (6) ADJversionisconfiguredto1.5Voutput.ForADJoutputversion:V =2.7Vto4.5Vfor0.9V≤V <1.1V =2.7Vto5.5Vfor1.1 IN OUT IN V≤V <3.3V OUT (7) RefertoTypicalCharacteristicsforclosed-loopdataanditsvariationwithregardstosupplyvoltageandtemperature.Electrical Characteristicsreflectsopen-loopdata(FB=0VandcurrentdrawnfromSWpinrampedupuntilcyclebycyclecurrentlimitis activated).Closedloopcurrentlimitisthepeakinductorcurrentmeasuredintheapplicationcircuitbyincreasingoutputcurrentuntil outputvoltagedropsby10%. 6 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 6.8 Typical Characteristics LM3671MF/TL/LC,circuitofFigure32,V =3.6V,V =1.5V,T =25°C,unlessotherwisenoted. IN OUT A 20 0.40 EN = VIN EN = GND TA = 85°C IOUT = 0 mA 0.35 )A( TNP 18 TA = 25°C )A( TNP 0.30 ER 16 ER 0.25 RU TA = -30°C RU C C 0.20 TNECS 14 NWOD 0.15 VVININ == 35..65VV E T IUQ 12 UHS 0.10 VIN = 2.7V 0.05 10 0.00 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 -30 -10 10 30 50 70 90 SUPPLY VOLTAGE (V) TEMPERATURE (°C) Figure1.QuiescentSupplyCurrentvsSupplyVoltage Figure2.ShutdownCurrentvsTemp Figure3.FeedbackBiasCurrentvsTemperature Figure4.SwitchingFrequencyvsTemperature 600 VIN = 2.7V 550 VIN = 4.5V 500 VIN = 3.6V 450 :) PFET m 400 ( )N 350 VIN = 2.7V O (SD 300 R 250 VIN = 4.5V NFET 200 150 VIN = 3.6V 100 -30 -10 10 30 50 70 90 110 TEMPERATURE (oC) Figure5.RDS(ON)vs.Temperature Figure6.Open/ClosedLoopCurrentLimitvsTemperature Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com Typical Characteristics (continued) LM3671MF/TL/LC,circuitofFigure32,V =3.6V,V =1.5V,T =25°C,unlessotherwisenoted. IN OUT A 1.5300 VOUT = 1.5 V IOUT = 10 mA 1.5200 V) E ( G A 1.5100 T L O UT V 1.5000 IOUT = 300 mA P T OU IOUT = 500 mA 1.4900 IOUT = 600 mA 1.4800 2.5 3 3.5 4 4.5 5 5.5 SUPPLY VOLTAGE(V) Figure7.OutputVoltagevs.SupplyVoltage Figure8.OutputVoltagevsSupplyVoltage 1.5300 1.5250 PFM Mode 1.5200 )V( E 1.5150 IOUT = 10 mA G A 1.5100 T L O 1.5050 IOUT = 300 mA V TU 1.5000 P TU 1.4950 O PWM Mode 1.4900 VIN = 3.6V 1.4850 IOUT = 600 mA VOUT = 1.5V 1.4800 -30 -10 10 30 50 70 90 TEMPERATURE (oC) Figure9.OutputVoltagevsTemperature Figure10.OutputVoltagevsTemperature 1.54 VIN = 3.6V VOUT = 1.5V V) PFM Mode E ( 1.52 G A T L O V UT PWM Mode P 1.5 T U O 1.48 0 100 200 300 400 500 600 OUTPUT CURRENT (mA) Figure11.OutputVoltagevsOutputCurrent Figure12.OutputVoltagevsOutputCurrent 8 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 Typical Characteristics (continued) LM3671MF/TL/LC,circuitofFigure32,V =3.6V,V =1.5V,T =25°C,unlessotherwisenoted. IN OUT A 100 100 VIN = 2.7V VOUT = 1.5V VIN = 3.0V VOUT = 1.8V 90 90 80 80 )%( Y 70 VIN = 2.7V )%( Y 70 VIN = 4.5V VIN = 3.0V CN 60 VIN = 4.5V CN 60 E E IC IC IFF 50 VIN = 3.6V IFF 50 VIN = 3.6V E E 40 40 30 30 20 20 0.01 0.10 1.00 10.00 100.00 1000.00 0.01 0.10 1.00 10.00 100.00 1000.00 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) L=2.2µH L=2.2µH Figure13.EfficiencyvsOutputCurrent Figure14.EfficiencyvsOutputCurrent L=2.2µH L=2.2µH Figure15.EfficiencyvsOutputCurrent Figure16.EfficiencyvsOutputCurrent VOUT 20 mV/DIV AC Coupled 3.6V VIN 3.0V VOUT = 1.5V IOUT = 400 mA 40 Ps/DIV Figure17.LineTransientResponse(PWMMode) Figure18.LineTransientResponse(PWMMode) Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com Typical Characteristics (continued) LM3671MF/TL/LC,circuitofFigure32,V =3.6V,V =1.5V,T =25°C,unlessotherwisenoted. IN OUT A Figure19.LoadTransientResponse(PWMMode) Figure20.LoadTransientResponse(PWMMode) PFMMode0.5mAto50mA PFMMode0.5mAto50mA Figure21.LoadTransientResponse Figure22.LoadTransientResponse PFMMode0.5mAto50mA PFMMode50mAto0.5mA Figure23.LoadTransientResponse Figure24.LoadTransientResponse 10 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 Typical Characteristics (continued) LM3671MF/TL/LC,circuitofFigure32,V =3.6V,V =1.5V,T =25°C,unlessotherwisenoted. IN OUT A Figure25.PFM-to-PWMModeChangebyLoadTransients Figure26.PWM-to-PFMModeChangebyLoadTransients Figure27.Start-UpintoPWMMode Figure28.Start-UpintoPFMMode Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com 7 Detailed Description 7.1 Overview The LM3671, a high-efficiency step-down DC-DC switching buck converter, delivers a constant voltage from a single Li-Ion battery and input voltage rails from 2.7 V to 5.5 V to portable devices such as cell phones and PDAs. Using a voltage mode architecture with synchronous rectification, the LM3671 has the ability to deliver up to600mAdependingontheinputvoltage,outputvoltage,ambienttemperatureandtheinductorchosen. There are three modes of operation depending on the current required: pulse width modulation (PWM), pulse frequency modulation (PFM), and shutdown. The device operates in PWM mode at load current of approximately 80 mA or higher. Lighter load current cause the device to automatically switch into PFM for reduced current consumption (I = 16 µA typical) and a longer battery life. Shutdown mode turns off the device, offering the Q lowestcurrentconsumption(I =0.01 µAtypical). SHUTDOWN Additional features include soft-start, undervoltage protection, current overload protection, and thermal shutdown protection.AsshownintheFigure35,onlythreeexternalpowercomponentsarerequiredforimplementation. The device uses an internal reference voltage of 0.5 V. TI recommends keeping the device in shutdown until the inputvoltageis2.7Vorhigher. 7.2 Functional Block Diagram EN VIN SW Current Limit Comparator Undervoltage Ramp Soft + Lockout Generator Start - Ref1 PFM Current Comparator Thermal Bandgap 2 MHz + Shutdown Oscillator - Ref2 PWM Comparator Error + Amp - Control Logic Driver pfm_low VREF + pfm_hi 0.5V - Vcomp + 1.0V - + - Zero Crossing Comparator Frequency Compensation Adj Ver Fixed Ver FB GND 12 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 7.3 Feature Description 7.3.1 CircuitOperation During the first portion of each switching cycle, the control block in the LM3671 turns on the internal PFET switch. This allows current to flow from the input through the inductor to the output filter capacitor and load. The inductorlimitsthecurrenttoarampwithaslopeof(V –V )/L,bystoringenergyinamagneticfield. IN OUT During the second portion of each cycle, the controller turns the PFET switch off, blocking current flow from the input, and then turns the NFET synchronous rectifier on. The inductor draws current from ground through the NFETtotheoutputfiltercapacitorandload,whichrampstheinductorcurrentdownwithaslopeof –V /L. OUT The output filter stores charge when the inductor current is high, and releases it when inductor current is low, smoothingthevoltageacrosstheload. The output voltage is regulated by modulating the PFET switch on time to control the average current sent to the load. The effect is identical to sending a duty-cycle modulated rectangular wave formed by the switch and synchronous rectifier at the SW pin to a low-pass filter formed by the inductor and output filter capacitor. The outputvoltageisequaltotheaveragevoltageattheSWpin. 7.3.2 SoftStart The LM3671 has a soft-start circuit that limits in-rush current during start-up. During start-up the switch current limit is increased in steps. Soft start is activated only if EN goes from logic low to logic high after Vin reaches 2.7 V. Soft start is implemented by increasing switch current limit in steps of 70 mA, 140 mA, 280 mA and 1020 mA (typical switch current limit). The start-up time thereby depends on the output capacitor and load current demanded at startup. Typical start-up times with a 10-µF output capacitor and 300-mA load is 400 µs and with 1- mAloadis275 µs. 7.4 Device Functional Modes 7.4.1 PWMOperation During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This allows the converter to achieve good load and line regulation. The DC gain of the power stage is proportional to the input voltage. To eliminate this dependence, feed forward inversely proportional to the input voltage is introduced. While in PWM mode, the output voltage is regulated by switching at a constant frequency and then modulating the energy per cycle to control power to the load. At the beginning of each clock cycle the PFET switch is turned on and the inductor current ramps up until the comparator trips and the control logic turns off the switch. The current limit comparator can also turn off the switch in case the current limit of the PFET is exceeded. Then the NFET switch is turned on and the inductor current ramps down. The next cycle is initiated by the clock turning off theNFETandturningonthePFET. VSW 2V/DIV IL 200 mA/DIV VIN = 3.6V IOUT = 400 mA VOUT = 1.5V VOUT 10 mV/DIV AC Coupled TIME (200 ns/DIV) Figure29. TypicalPWMOperation Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com Device Functional Modes (continued) 7.4.1.1 InternalSynchronousRectification While in PWM mode, the LM3671 uses an internal NFET as a synchronous rectifier to reduce rectifier forward voltage drop and associated power loss. Synchronous rectification provides a significant improvement in efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier diode. 7.4.1.2 CurrentLimiting A current limit feature allows the LM3671 to protect itself and external components during overload conditions. PWM mode implements current limiting using an internal comparator that trips at 1020 mA (typical). If the output is shorted to ground the device enters a timed current limit mode where the NFET is turned on for a longer duration until the inductor current falls below a low threshold. This allows the inductor current more time to decay,therebypreventingrunaway. 7.4.2 PFMOperation At very light load, the converter enters PFM mode and operates with reduced switching frequency and supply currenttomaintainhighefficiency. The device automatically transitions into PFM mode when either of two conditions occurs for a duration of 32 or moreclockcycles: 1. TheNFETcurrentreacheszero. 2. ThepeakPMOSswitchcurrentdropsbelowtheI level,(TypicallyI <30mA+V /42 Ω). MODE MODE IN VSW 2V/DIV IL 200 mA/DIV VIN = 3.6V IOUT = 20 mA VOUT = 1.5V VOUT 20 mV/DIV AC Coupled TIME (4 Ps/DIV) Figure30. TypicalPFMOperation During PFM operation, the converter positions the output voltage slightly higher than the nominal output voltage during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy load.ThePFMcomparatorssensetheoutputvoltageviathefeedbackpinandcontroltheswitchingoftheoutput FETs such that the output voltage ramps between approximately 0.6% and 1.7% above the nominal PWM output voltage. If the output voltage is below the high PFM comparator threshold, the PMOS power switch is turned on. It remains on until the output voltage reaches the high PFM threshold or the peak current exceeds the I level PFM setforPFMmode.ThetypicalpeakcurrentinPFMmodeis:I =112mA+V /27 Ω. PFM IN Once the PMOS power switch is turned off, the NMOS power switch is turned on until the inductor current ramps to zero. When the NMOS zero-current condition is detected, the NMOS power switch is turned off. If the output voltage is below the ‘high’ PFM comparator threshold (see Figure 31), the PMOS switch is again turned on and the cycle is repeated until the output reaches the desired level. Once the output reaches the ‘high’ PFM threshold, the NMOS switch is turned on briefly to ramp the inductor current to zero and then both output switches are turned off, and the device enters an extremely low power mode. Quiescent supply current during this ‘sleep’ mode is 16 µA (typ.), which allows the device to achieve high efficiency under extremely light load conditions. 14 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 Device Functional Modes (continued) If the load current should increase during PFM mode (see Figure 31) causing the output voltage to fall below the low2 PFM threshold, the device will automatically transition into fixed-frequency PWM mode. When V = 2.7 V IN the device transitions from PWM to PFM mode at approximately 35 mA output current and from PFM to PWM mode at approximately 85 mA , when V = 3.6 V, PWM to PFM transition happens at approximately 50 mA and IN PFMtoPWMtransitionhappensatapproximately100mA,whenV =4.5V,PWMtoPFMtransitionhappensat IN approximately65mAandPFMtoPWMtransitionhappensatapproximately115mA. High PFM Threshold PFM Mode at Light Load ~1.017*Vout Load current increases Low1 PFM Threshold ~1.006*Vout sxAZ i - Current load increases, IrpPefafumecnt h tlioimel ndit iNncdudufreraunrticet niotlnsontr THrVehgigarooehcl ts ihanPhegtFoodeMld, TLhtouPrwerFns EP hoTFonMld, dLTrotahowwrwe2sas PhrVdoFoslMudt Low2 PFM Threshold I inductor = 0 sleep mode Vout A Low2 PFM Threshold, six PWM Mode at switch back to PWMmode - Z Moderate to Heavy Loads Figure31. OperationinPFMModeandTransfertoPWMMode 7.4.3 Shutdown Setting the EN input pin low (< 0.4 V) places the LM3671 in shutdown mode. During shutdown the PFET switch, NFET switch, reference, control and bias circuitry of the LM3671 are turned off. Setting EN high (> 1 V) enables normal operation. It is recommended to set EN pin low to turn off the LM3671 during system power up and undervoltageconditionswhenthesupplyislessthan2.7V.DonotleavetheENpinfloating. 7.4.4 LowDropoutOperation(LDO) The LM3671-ADJ can operate at 100% duty cycle (no switching; PMOS switch completely on) for low dropout support of the output voltage. In this way the output voltage will be controlled down to the lowest possible input voltage.Whenthedeviceoperatesnear100%dutycycle,outputvoltagerippleisapproximately25mV. Theminimuminputvoltageneededtosupporttheoutputvoltageis V =I ×(R +R )+V IN,MIN LOAD DSON,PFET INDUCTOR OUT where • I LOAD:Loadcurrent • R DSON,PFET:DraintosourceresistanceofPFETswitchinthetrioderegion • R (1) INDUCTOR:Inductorresistance Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The external control of this device is very easy. First make sure the correct voltage been applied at V pin, then IN simply apply the voltage at EN pin according to the Electrical Characteristics to enable or disable the output voltage. 8.2 Typical Application 8.2.1 TypicalApplication:Fixed-VoltageVersion VIN L1: 2.2 PH 2.7V to 5.5V VIN SW VOUT 1 5 CIN LM3671 COUT 4.7 PF GND 10 PF 2 EN FB 3 4 Figure32. LM3671Fixed-VoltageTypicalApplicationCircuit 8.2.1.1 DesignRequirements Two ceramic capacitors and one inductor required for this application. These three external components need to beselectedverycarefullyforpropertyoperation.PleasereadDetailedDesignProcedure. 8.2.1.2 DetailedDesignProcedure 8.2.1.2.1 InductorSelection There are two main considerations when choosing an inductor; the inductor should not saturate, and the inductor current ripple should be small enough to achieve the desired output voltage ripple. Different saturation current rating specifications are followed by different manufacturers so attention must be given to details. Saturation current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of application should be requested from the manufacturer. The minimum value of inductance to specify good performance is 1.76 µH at I (typical) DC current over the ambient temperature range. Shielded inductors LIM radiatelessnoiseandshouldbepreferred. Therearetwomethodstochoosetheinductorsaturationcurrentrating. 8.2.1.2.1.1 Method1 The saturation current should be greater than the sum of the maximum load current and the worst case average topeakinductorcurrent.Thiscanbewrittenas ISAT ! IOUTMAX + IRIPPLE § • § • § • where IRIPPLE = ¤'VIN2 -(cid:13) VLOUT‚„(cid:13)¤'VVOIUNT‚„(cid:13)¤'1f‚„ where • I :averagetopeakinductorcurrent RIPPLE 16 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 Typical Application (continued) • I :maximumloadcurrent(600mA) OUTMAX • V :maximuminputvoltageinapplication IN • L:mininductorvalueincludingworstcasetolerances(30%dropcanbeconsideredformethod1) • f:minimumswitchingfrequency(1.6MHz) • V :outputvoltage (2) OUT 8.2.1.2.1.2 Method2 A more conservative and recommended approach is to choose an inductor that has a saturation current rating greaterthanthemaximumcurrentlimitof1150mA. A 2.2-µH inductor with a saturation current rating of at least 1150 mA is recommended for most applications. Inductor resistance should be less than 0.3 Ω for good efficiency. Table 1 lists suggested inductors and suppliers. For low-cost applications, an unshielded bobbin inductor could be considered. For noise critical applications, a toroidal or shielded-bobbin inductor should be used. A good practice is to lay out the board with overlapping footprints of both types for design flexibility. This allows substitution of a low-noise shielded inductor, intheeventthatnoisefromlow-costbobbinmodelsisunacceptable. 8.2.1.2.2 InputCapacitorSelection Aceramicinputcapacitorof4.7µF,6.3Vissufficientformostapplications.Placetheinputcapacitorascloseas possible to the V pin of the device. A larger value may be used for improved input voltage filtering. Use X7R or IN X5R types; do not use Y5V. DC bias characteristics of ceramic capacitors must be considered when selecting case sizes like 0805 and 0603. The minimum input capacitance to specify good performance is 2.2 µF at 3-V DC bias; 1.5 µF at 5-V DC bias including tolerances and over ambient temperature range. The input filter capacitor supplies current to the PFET switch of the LM3671 in the first half of each cycle and reduces voltage ripple imposed on the input power source. A ceramic capacitor’s low ESR provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select a capacitor with sufficient ripple current rating. The inputcurrentripplecanbecalculatedas: IRMS = IOUTMAX (cid:13) VVOIUNT(cid:13)¤¤'§1 - VVOIUNT +1r22‚‚„• (VIN - VOUT) (cid:13) VOUT r = L (cid:13) f (cid:13) IOUTMAX (cid:13) VIN The worst case is when VIN = 2 (cid:13) VOUT (3) Table1. SuggestedInductorsandTheirSuppliers MODEL VENDOR DIMENSIONSL×W×H(mm) D.C.R(maximum)(mΩ) DO3314-222MX Coilcraft 3.3×3.3×1.4 200 LPO3310-222MX Coilcraft 3.3×3.3×1 150 ELL5GM2R2N Panasonic 5.2×5.2×1.5 53 CDRH2D14NP-2R2NC Sumida 3.2×3.2×1.55 94 8.2.1.2.3 OutputCapacitorSelection A ceramic output capacitor of 10 µF, 6.3 V is sufficient for most applications. Use X7R or X5R types; do not use Y5V. DC bias characteristics of ceramic capacitors must be considered when selecting case sizes like 0805 and 0603. DC bias characteristics vary from manufacturer to manufacturer and dc bias curves should be requested fromthemaspartofthecapacitorselectionprocess. The minimum output capacitance to specify good performance is 5.75 µF at 1.8-V DC bias including tolerances and over ambient temperature range. The output filter capacitor smoothes out current flow from the inductor to theload,helpsmaintainasteadyoutputvoltageduringtransientloadchangesandreducesoutputvoltageripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR to perform these functions. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com The output voltage ripple is caused by the charging and discharging of the output capacitor and by the R and ESR canbecalculatedas: Voltagepeak-to-peakrippleduetocapacitancecanbeexpressedbyEquation4: IRIPPLE VPP-C = 4*f*C (4) Voltagepeak-to-peakrippleduetoESRcanbeexpressedbyEquation5: V =(2×I )×R (5) PP-ESR RIPPLE ESR Because these two components are out of phase the rms (root mean squared) value can be used to get an approximatevalueofpeak-to-peakripple. Thepeak-to-peakripplevoltage,rmsvaluecanbeexpressedbyEquation6: V = V 2 + V 2 PP-RMS PP-C PP-ESR (6) Note that the output voltage ripple is dependent on the inductor current ripple and the equivalent series resistanceoftheoutputcapacitor(R ). ESR The R is frequency dependent (as well as temperature dependent); make sure the value used for calculations ESR isattheswitchingfrequencyofthepart. Table2. SuggestedCapacitorsandTheirSuppliers CASESIZE MODEL TYPE VENDOR VOLTAGERATING(V) INCH(mm) 4.7µFforC IN C2012X5R0J475K Ceramic,X5R TDK 6.3 0805(2012) JMK212BJ475K Ceramic,X5R Taiyo-Yuden 6.3 0805(2012) GRM21BR60J475K Ceramic,X5R Murata 6.3 0805(2012) C1608X5R0J475K Ceramic,X5R TDK 6.3 0603(1608) 10µFforC OUT GRM21BR60J106K Ceramic,X5R Murata 6.3 0805(2012) JMK212BJ106K Ceramic,X5R Taiyo-Yuden 6.3 0805(2012) C2012X5R0J106K Ceramic,X5R TDK 6.3 0805(2012) C1608X5R0J106K Ceramic,X5R TDK 6.3 0603(1608) 8.2.1.3 ApplicationCurves Figure33.PFM-to-PWMModeChangebyLoadTransients Figure34.PWM-to-PFMModeChangebyLoadTransients 18 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 8.2.2 TypicalApplication:ADJVersion VIN L1: 2.2 PH 2.7V to 5.5V VIN SW VOUT 1 5 4.C7I NPF GND LMA3D6J71- C1 R1 1C0O PUFT 2 C2 R2 EN FB 3 4 Figure35. TypicalApplicationCircuitforADJVersion 8.2.2.1 DesignRequirements DESIGNPARAMETER EXAMPLEVALUE Inputvoltagerange 2.7Vto5.5V Inputcapacitor 4.7µF Outputcapacitor 10µF Inductor 2.2µH ADJprogrammableoutputvoltage 1.1Vto3.3V 8.2.2.2 DetailedDesignProcedure 8.2.2.2.1 OutputVoltageSelectionforLM3671-ADJ TheoutputvoltageoftheadjustablepartscanbeprogrammedthroughtheresistornetworkconnectedfromV OUT to FB, then to GND. V is adjusted to make the voltage at FB equal to 0.5 V. The resistor from FB to GND OUT (R2) should be 200 kΩ to keep the current drawn through this network well below the 16-µA quiescent current level (PFM mode) but large enough that it is not susceptible to noise. If R2 is 200 kΩ, and V is 0.5 V, the FB current through the resistor feedback network will be 2.5 µA. The output voltage of the adjustable parts ranges from1.1Vto3.3V. Theformulaforoutputvoltageselectionis: § R1• VOUT = VFB (cid:13)'1 + R2„ where • V :outputvoltage(volts) OUT • V :feedbackvoltage=0.5V FB • R1:feedbackresistorfromV toFB OUT • R2:feedbackresistorfromFBtoGND (7) For any output voltage greater than or equal to 1.1 V, a zero must be added around 45 kHz for stability. The formulaforcalculationofC1is: 1 C1 = (2 * S * R1 * 45 kHz) (8) For output voltages higher than 2.5 V, a pole must be placed at 45 kHz as well. If the pole and zero are at the samefrequencytheformulaforcalculationofC2is: 1 C2 = (2 * S * R2 * 45 kHz) (9) The formula for location of zero and pole frequency created by adding C1 and C2 is given below. By adding C1, azeroaswellasahigherfrequencypoleisintroduced. 1 Fz = (2 * S * R1 * C1) (10) 1 Fp = 2 * S * (R1 R2) * (C1+C2) (11) SeetheTable3table. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com Table3.LM3671-ADJConfigurationsforVariousV OUT (CircuitofFigure35) V (V) R1(kΩ) R2(kΩ) C1(pF) C2(pF) L(µH) C (µF) C (µF) OUT IN OUT 0.9 160 200 22 none 2.2 4.7 10 1.1 240 200 15 none 2.2 4.7 10 1.2 280 200 12 none 2.2 4.7 10 1.3 320 200 12 none 2.2 4.7 10 1.5 357 178 10 none 2.2 4.7 10 1.6 442 200 8.2 none 2.2 4.7 10 1.7 432 178 8.2 none 2.2 4.7 10 1.8 464 178 8.2 none 2.2 4.7 10 1.875 523 191 6.8 none 2.2 4.7 10 2.5 402 100 8.2 none 2.2 4.7 10 2.8 464 100 8.2 33 2.2 4.7 10 3.3 562 100 6.8 33 2.2 4.7 10 8.2.2.3 ApplicationCurves 2V/DIV VSW 2V/DIV VSW IOUT = 300 mA IL 500 mA/DIV VOUT 500 mV/DIV VIN = 3.6V 1V/DIV VOUT = 1.5V VOUT VIN = 3.6V IOUT = 1 mA VOUT = 1.5V EN 2V/DIV EN 2V/DIV TIME (100 Ps/DIV) TIME (100 Ps/DIV) Figure36.Start-UpintoPWMMode Figure37.Start-UpintoPFMMode 9 Power Supply Recommendations TheLM3671isdesignedtooperatefromastableinputsupplyrangeof2.7Vto5.5V. 20 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 10 Layout 10.1 Layout Guidelines PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss in the traces. These can send erroneous signals to the DC-DC converter device, resulting in poor regulation or instability. Good layout for the LM3671 can be implemented by following a few simple design rules below. Refer to Figure38fortoplayerboardlayout. 1. Place the LM3671, inductor and filter capacitors close together and make the traces short. The traces between these components carry relatively high switching currents and act as antennas. Following this rule reduces radiated noise. Special care must be given to place the input filter capacitor very close to the V IN andGNDpin. 2. Arrange the components so that the switching current loops curl in the same direction. During the first half of each cycle, current flows from the input filter capacitor through the LM3671 and inductor to the output filter capacitor and back through ground, forming a current loop. In the second half of each cycle, current is pulled up from ground through the LM3671 by the inductor to the output filter capacitor and then back through ground forming a second current loop. Routing these loops so the current curls in the same direction preventsmagneticfieldreversalbetweenthetwohalf-cyclesandreducesradiatednoise. 3. Connect the ground pins of the LM3671 and filter capacitors together using generous component-side copper fill as a pseudo-ground plane. Then, connect this to the ground-plane (if one is used) with several vias. This reduces ground-plane noise by preventing the switching currents from circulating through the groundplane.ItalsoreducesgroundbounceattheLM3671bygivingitalow-impedancegroundconnection. 4. Use wide traces between the power components and for power connections to the DC-DC converter circuit. Thisreducesvoltageerrorscausedbyresistivelossesacrossthetraces. 5. Route noise sensitive traces, such as the voltage feedback path, away from noisy traces between the power components. The voltage feedback trace must remain close to the LM3671 circuit and should be direct but must be routed opposite to noisy components. This reduces EMI-radiated onto the voltage feedback trace of the DC-DC converter. A good approach is to route the feedback trace on another layer and to have a ground plane between the top layer and layer on which the feedback trace is routed. In the same manner, for the adjustablepart,thefeedbackdividersshouldbeonthebottomlayer. 6. Placenoisesensitivecircuitry,suchasradioIFblocks,awayfromtheDC-DCconverter,CMOSdigitalblocks and other noisy circuitry. Interference with noise-sensitive circuitry in the system can be reduced through distance. In mobile phones, for example, a common practice is to place the DC-DC converter on one corner of the board, arrange the CMOS digital circuitry around it (because this also generates noise), and then place sensitive preamplifiers and IF stages on the diagonally opposing corner. Often, the sensitive circuitry is shielded with a metalpanandpowertothecircuitryispost-regulatedtoreduceconductednoise,usingLDOs. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com 10.2 Layout Example Figure38. TopLayerBoardLayoutforSOT-23 10.3 DSBGA Package Assembly and Use Use of the DSBGA package requires specialized board layout, precision mounting, and careful re-flow techniques, as detailed in AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009). Refer to the section Surface Mount Technology (DSBGA) Assembly Considerations. For best results in assembly, alignment ordinals on the PC board must be used to facilitate placement of the device. The pad style used with DSBGA package must be the NSMD (non-solder mask defined) type. This means that the solder-mask opening is larger than the pad size. This prevents a lip that otherwise forms if the solder-mask and pad overlap, from holding the device off the surface of the board and interfering with mounting. See AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009) for specific instructions how to do this. The 5-pin package used for LM3671 has 300-micron solder balls and requires 10.82 mils pads for mounting on the circuit board. The trace to each pad must enter the pad with a 90° entry angle to prevent debris from being caught in deep corners. Initially, the trace to each pad should be 7 mil wide, for a section approximately 7 mil long or longer, as a thermal relief. Then each trace must neck up or down to its optimal width. The important criteria is symmetry. This ensures the solder bumps on the LM3671 re-flow evenly and that the device solders level to the board. In particular, special attention must be paid to the pads for bumps A1 and A3, because V and GND are typically connected to large copper planes, inadequate IN thermalreliefcanresultinlateorinadequatere-flowofthesebumps. The DSBGA package is optimized for the smallest possible size in applications with red or infrared opaque cases. Because the DSBGA package lacks the plastic encapsulation characteristic of larger devices, it is vulnerable to light. Backside metallization and/or epoxy coating, along with front-side shading by the printed circuit board, reduce this sensitivity. However, the package has exposed die edges. In particular, DSBGA devicesaresensitivetolight,intheredandinfraredrange,shiningonthepackage’sexposeddieedges. 22 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 www.ti.com SNVS294S–NOVEMBER2004–REVISEDMAY2016 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 11.2 Documentation Support 11.2.1 RelatedDocumentation Foradditionalinformation,seethefollowing: AN-1112DSBGAWaferLevelChipScalePackage (SNVA009). 11.3 Related Links Table 4 lists quick access links. Categories include technical documents, support and community resources, toolsandsoftware,andquickaccesstosampleorbuy. Table4.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LM3671 Clickhere Clickhere Clickhere Clickhere Clickhere LM3671-Q1 Clickhere Clickhere Clickhere Clickhere Clickhere 11.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.5 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.6 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.7 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LM3671 LM3671-Q1

LM3671,LM3671-Q1 SNVS294S–NOVEMBER2004–REVISEDMAY2016 www.ti.com 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 24 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM3671 LM3671-Q1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM3671LC-1.2/NOPB ACTIVE USON NKH 6 1000 Green (RoHS NIPDAU Level-1-260C-UNLIM S39 & no Sb/Br) LM3671LC-1.3/NOPB ACTIVE USON NKH 6 1000 Green (RoHS NIPDAU Level-1-260C-UNLIM S40 & no Sb/Br) LM3671LC-1.6/NOPB ACTIVE USON NKH 6 1000 Green (RoHS NIPDAU Level-1-260C-UNLIM S41 & no Sb/Br) LM3671LC-1.8/NOPB ACTIVE USON NKH 6 1000 Green (RoHS NIPDAU Level-1-260C-UNLIM S42 & no Sb/Br) LM3671MF-1.2 NRND SOT-23 DBV 5 1000 TBD Call TI Call TI -40 to 85 SBPB LM3671MF-1.2/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBPB & no Sb/Br) LM3671MF-1.25/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDRB & no Sb/Br) LM3671MF-1.375/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SEDB & no Sb/Br) LM3671MF-1.5/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBRB & no Sb/Br) LM3671MF-1.6/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDUB & no Sb/Br) LM3671MF-1.8/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBSB & no Sb/Br) LM3671MF-1.875/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDVB & no Sb/Br) LM3671MF-2.5/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SJRB & no Sb/Br) LM3671MF-2.8/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SJSB & no Sb/Br) LM3671MF-3.3/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SJEB & no Sb/Br) LM3671MF-ADJ/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBTB & no Sb/Br) LM3671MFX-1.2/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBPB & no Sb/Br) Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM3671MFX-1.25/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDRB & no Sb/Br) LM3671MFX-1.8/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBSB & no Sb/Br) LM3671MFX-1.875/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SDVB & no Sb/Br) LM3671MFX-2.5/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SJRB & no Sb/Br) LM3671MFX-2.8/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SJSB & no Sb/Br) LM3671MFX-3.3/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SJEB & no Sb/Br) LM3671MFX-ADJ/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 85 SBTB & no Sb/Br) LM3671QMF-1.2/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 SH4B & no Sb/Br) LM3671QMFX-1.2/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 SH4B & no Sb/Br) LM3671QTL-1.8/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 125 9 & no Sb/Br) LM3671QTLX-1.8/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 125 9 & no Sb/Br) LM3671TL-1.2/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 C & no Sb/Br) LM3671TL-1.5/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 D & no Sb/Br) LM3671TL-1.8/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 B & no Sb/Br) LM3671TL-2.5/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 L & no Sb/Br) LM3671TL-2.8/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 K & no Sb/Br) LM3671TL-3.3/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 J & no Sb/Br) LM3671TL-ADJ/NOPB ACTIVE DSBGA YZR 5 250 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 E & no Sb/Br) Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM3671TLX-1.2/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 C & no Sb/Br) LM3671TLX-1.5/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 D & no Sb/Br) LM3671TLX-1.8/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 B & no Sb/Br) LM3671TLX-2.5/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 L & no Sb/Br) LM3671TLX-2.8/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 K & no Sb/Br) LM3671TLX-3.3/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 J & no Sb/Br) LM3671TLX-ADJ/NOPB ACTIVE DSBGA YZR 5 3000 Green (RoHS SNAGCU Level-1-260C-UNLIM -40 to 85 E & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 3

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM3671, LM3671-Q1 : •Catalog: LM3671 •Automotive: LM3671-Q1 NOTE: Qualified Version Definitions: •Catalog - TI's standard catalog product •Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 4

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM3671LC-1.2/NOPB USON NKH 6 1000 178.0 12.4 2.2 2.2 1.0 8.0 12.0 Q1 LM3671LC-1.3/NOPB USON NKH 6 1000 178.0 12.4 2.2 2.2 1.0 8.0 12.0 Q1 LM3671LC-1.6/NOPB USON NKH 6 1000 178.0 12.4 2.2 2.2 1.0 8.0 12.0 Q1 LM3671LC-1.8/NOPB USON NKH 6 1000 178.0 12.4 2.2 2.2 1.0 8.0 12.0 Q1 LM3671MF-1.2 SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.2/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.25/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.375/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.5/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.6/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.8/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-1.875/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-2.5/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-2.8/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-3.3/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MF-ADJ/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-1.2/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-1.25/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM3671MFX-1.8/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-1.875/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-2.5/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-2.8/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-3.3/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671MFX-ADJ/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671QMF-1.2/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671QMFX-1.2/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM3671QTL-1.8/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671QTLX-1.8/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-1.2/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-1.5/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-1.8/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-2.5/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-2.8/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-3.3/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TL-ADJ/NOPB DSBGA YZR 5 250 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-1.2/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-1.5/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-1.8/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-2.5/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-2.8/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-3.3/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 LM3671TLX-ADJ/NOPB DSBGA YZR 5 3000 178.0 8.4 1.14 1.47 0.76 4.0 8.0 Q1 PackMaterials-Page2

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM3671LC-1.2/NOPB USON NKH 6 1000 210.0 185.0 35.0 LM3671LC-1.3/NOPB USON NKH 6 1000 210.0 185.0 35.0 LM3671LC-1.6/NOPB USON NKH 6 1000 210.0 185.0 35.0 LM3671LC-1.8/NOPB USON NKH 6 1000 210.0 185.0 35.0 LM3671MF-1.2 SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.2/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.25/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.375/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.5/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.6/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.8/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-1.875/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-2.5/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-2.8/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-3.3/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MF-ADJ/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671MFX-1.2/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671MFX-1.25/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671MFX-1.8/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671MFX-1.875/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 PackMaterials-Page3

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM3671MFX-2.5/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671MFX-2.8/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671MFX-3.3/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671MFX-ADJ/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671QMF-1.2/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM3671QMFX-1.2/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM3671QTL-1.8/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671QTLX-1.8/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TL-1.2/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TL-1.5/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TL-1.8/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TL-2.5/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TL-2.8/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TL-3.3/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TL-ADJ/NOPB DSBGA YZR 5 250 210.0 185.0 35.0 LM3671TLX-1.2/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TLX-1.5/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TLX-1.8/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TLX-2.5/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TLX-2.8/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TLX-3.3/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 LM3671TLX-ADJ/NOPB DSBGA YZR 5 3000 210.0 185.0 35.0 PackMaterials-Page4

PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com

EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com

MECHANICAL DATA NKH0006B LCA06B (Rev A) www.ti.com

MECHANICAL DATA YZR0005xxx D 0.600±0.075 E TLA05XXX (Rev C) D: Max = 1.413 mm, Min =1 .352 mm E: Max = 1.083 mm, Min =1 .022 mm 4215043/A 12/12 NOTES: A.Alllineardimensionsareinmillimeters.DimensioningandtolerancingperASMEY14.5M-1994. B.Thisdrawingissubjecttochangewithoutnotice. www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated