图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM358ST
  • 制造商: STMicroelectronics
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM358ST产品简介:

ICGOO电子元器件商城为您提供LM358ST由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM358ST价格参考¥2.17-¥2.60。STMicroelectronicsLM358ST封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, General Purpose Amplifier 2 Circuit 8-TSSOP-B。您可以下载LM358ST参考资料、Datasheet数据手册功能说明书,资料中有LM358ST 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 1.1MHZ 8MINISO运算放大器 - 运放 Dual Low Power

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

STMicroelectronics

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,STMicroelectronics LM358ST-

数据手册

点击此处下载产品Datasheet

产品型号

LM358ST

产品目录页面

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

8-MiniSO

共模抑制比—最小值

70 dB

关闭

No Shutdown

其它名称

497-6456-6

其它有关文件

http://www.st.com/web/catalog/sense_power/FM123/SC61/SS1378/LN1594/PF63721?referrer=70071840http://www.st.com/web/catalog/sense_power/FM123/SC61/SS1378/PF63721?referrer=70071840

包装

Digi-Reel®

压摆率

0.6 V/µs

双重电源电压

+/- 3 V, +/- 5 V, +/- 9 V, +/- 12 V

商标

STMicroelectronics

增益带宽生成

1.1 MHz

增益带宽积

1.1MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-TSSOP,8-MSOP(0.118",3.00mm 宽)

封装/箱体

TSSOP-8

工作温度

0°C ~ 70°C

工作电源电压

3 V to 30 V, +/- 1.5 V to +/- 15 V

工厂包装数量

4000

技术

Bipolar

放大器类型

Low Power Amplifier

最大双重电源电压

+/- 15 V

最大工作温度

+ 70 C

最小双重电源电压

+/- 1.5 V

最小工作温度

0 C

标准包装

1

电压-电源,单/双 (±)

3 V ~ 30 V, ±1.5 V ~ 15 V

电压-输入失调

2mV

电流-电源

700µA

电流-输入偏置

20nA

电流-输出/通道

60mA

电源电流

1.2 mA

电路数

2

系列

LM358

转换速度

0.6 V/us

输入偏压电流—最大

150 nA

输入参考电压噪声

55 nV

输入补偿电压

7 mV

输出电流

40 mA

输出类型

-

通道数量

2 Channel

推荐商品

型号:LM6181IMX

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MC33174DTBR2

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:TL072IDRE4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM2904MX

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:THS4304DBVTG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMV842MAX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLC274AIDG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT6604IUFF-15#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM358ST 相关产品

LMH6657MG

品牌:Texas Instruments

价格:

NCS20074DTBR2G

品牌:ON Semiconductor

价格:

THS4504D

品牌:Texas Instruments

价格:

LMV932MA

品牌:Texas Instruments

价格:

MAX4470EUK-T

品牌:Maxim Integrated

价格:

SA5534AD

品牌:ON Semiconductor

价格:¥9.08-¥9.08

AD8063ARTZ-REEL

品牌:Analog Devices Inc.

价格:

OP07CSZ-REEL7

品牌:Analog Devices Inc.

价格:¥5.21-¥5.50

PDF Datasheet 数据手册内容提取

Datasheet Operational Amplifiers SIGNATURE SERIES Operational Amplifiers LM358xxx LM324xxx LM2904xxx LM2902xxx General Description Key Specifications LM358xxx, LM324xxx, LM2904xxx, and LM2902xxx  Operating Supply Voltage are monolithic IC’s which integrate two or four Single Supply +3V to +36V independent op-amps on a single chip and feature Dual Supply ±1.5V to ±18V high gain, low power consumption, and an operating  Supply Current voltage range of 3V to 36V (single power supply). LM358xxx/LM324xxx 0.7mA(Typ) LM2904xxx/LM2902xxx 0.7mA(Typ) Features  Input Bias Current 20nA(Typ)  Input Offset Current 2nA(Typ)  Operable with a single power supply  Operating Temperature Range  Wide operating supply voltage range LM358xxx/LM324xxx -40°C to +85°C  Input and output are operable GND sense LM2904xxx/LM2902xxx -40°C to +125°C  Low supply current  High open loop voltage gain  Wide temperature range Packages W(Typ) x D(Typ) x H(Max) SO Package8 4.90mm x 6.0mm x 1.55mm Application SO Package14 8.65mm x 6.0mm x 1.55mm  Current sense application TSSOP8 3.00mm x 6.4mm x 1.10mm  Buffer application TSSOP14 5.00mm x 6.4mm x 1.10mm  Active filter Mini SO8 3.00mm x 4.9mm x 0.95mm  Consumer electronics Pin Configuration SO Package8 : LM358DT (SOP-J8) : LM358WDT : LM2904DT : LM2904WDT TSSOP8 : LM358PT (TSSOP-B8) : LM358WPT : LM2904PT : LM2904WPT Mini SO8 : LM358ST (TSSOP-B8J) : LM2904ST OUTPUT 1 1 8 Vcc+ INVERTING INPUT 1 2 C- H 1+ 7 OUTPUT 2 NON-INVERTING INPUT 1 3 C+H 2- 6 INVERTING INPUT 2 Vcc- 4 5 NON-INVERTING INPUT 2 ○Product structure:Silicon monolithic integrated circuit ○This product has no designed protection against radioactive rays. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 1/35 15.Jun.2015 Rev.001 TSZ22111・14・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Pin Description Pin No. Pin Name Function 1 OUTPUT 1 CH1 OUTPUT 2 INVERTING INPUT 1 CH1 INVERTING INPUT 3 NON-INVERTING INPUT 1 CH1 NON-INVERTING INPUT 4 Vcc- Negative power supply 5 NON-INVERTING INPUT 2 CH2 NON-INVERTING INPUT 6 INVERTING INPUT 2 CH2 INVERTING INPUT 7 OUTPUT 2 CH2 OUTPUT 8 Vcc+ Positive power supply SO Package14 : LM324DT (SOP-J14) : LM324WDT : LM2902DT : LM2902WDT TSSOP14 : LM324PT (TSSOP-B14J) : LM2902PT OUTPUT 1 1 14 OUTPUT 4 INVERTING INPUT 1 2 C- H+1 C+H -4 13 INVERTING INPUT 4 NON-INVERTING INPUT 1 3 12 NON-INVERTING INPUT 4 Vcc+ 4 11 Vcc- NON-INVERTING INPUT 2 5 10 NON-INVERTING INPUT 3 INVERTING INPUT 2 6 C-H +2 C+ H-3 9 INVERTING INPUT 3 OUTPUT 2 7 8 OUTPUT 3 Pin Description Pin No. Pin Name Function 1 OUTPUT1 CH1 OUTPUT 2 INVERTING INPUT 1 CH1 INVERTING INPUT 3 NON-INVERTING INPUT 1 CH1 NON-INVERTING INPUT 4 Vcc+ Positive power supply 5 NON-INVERTING INPUT 2 CH2 NON-INVERTING INPUT 6 INVERTING INPUT 2 CH2 INVERTING INPUT 7 OUTPUT 2 CH2 OUTPUT 8 OUTPUT3 CH3 OUTPUT 9 INVERTING INPUT 3 CH3 INVERTING INPUT 10 NON-INVERTING INPUT 3 CH3 NON-INVERTING INPUT 11 Vcc- Negative power supply 12 NON-INVERTING INPUT 4 CH4 NON-INVERTING INPUT 13 INVERTING INPUT 4 CH4 INVERTING INPUT 14 OUTPUT 4 CH4 OUTPUT www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 2/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Circuit Diagram Vcc + INVERTING INPUT OUTPUT NON-INVERTING INPUT Vcc - Figure 1 Circuit Diagram (each Op-Amp) Absolute Maximum Ratings (Ta=25°C) Rating Parameter Symbol Unit LM358xxx LM324xxx LM2904xxx LM2902xxx Supply Voltage Vcc+-Vcc- +36 V SO Package8 0.67 (Note 1,6) - 0.67 (Note 1,6) - TSSOP8 0.62 (Note 2,6) - 0.62 (Note 2,6) - Power Dissipation Pd Mini SO8 0.58 (Note 3,6) - 0.58 (Note 3,6) - W SO Package14 - 1.02 (Note 4,6) - 1.02 (Note 4,6) Mini SO8 - 0.84 (Note 5,6) - 0.84 (Note 5,6) Differential Input Voltage (Note 7) V 36 V ID Input Common-mode V (Vcc--0.3) to (Vcc-+36) V Voltage Range ICM Input Current (Note 8) I -10 mA I +3.0 to +36.0 Operating Supply Voltage V V OPR (±1.5 to ±18.0) Operating Temperature Range T -40 to +85 -40 to +125 °C OPR Storage Temperature Range T -55 to +150 °C STG Maximum Junction T +150 °C Temperature JMAX Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (Note 1) To use at temperature above TA=25°C reduce 5.4mW. (Note 2) To use at temperature above TA=25°C reduce 5.0mW (Note 3) To use at temperature above TA=25°C reduce 4.7mW. (Note 4) To use at temperature above TA=25°C reduce 8.2mW. (Note 5) To use at temperature above TA=25°C reduce 6.8mW (Note 6) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm(Copper foil area less than 3%). (Note 7) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than Vcc-. (Note 8) An excessive input current will flow when input voltages of less than Vcc--0.6V are applied. The input current can be set to less than the rated current by adding a limiting resistor. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 3/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Electrical Characteristics ○LM358xxx (Unless otherwise specified, Vcc+=+5V, Vcc-=0V) Temperature Limit Parameter Symbol Unit Conditions Range Min. Typ. Max. 25°C - 2 7 VO=1.4V,RS=0Ω Input Offset Voltage (Note 9) V mV 5V< Vcc+<30V IO Full Range - - 9 0<VIC< Vcc+-1.5V 25°C - 2 30 Input Offset Current (Note 9) I nA VO=1.4V IO Full Range - - 100 25°C - 20 150 Input Bias Current (Note 9) I nA VO=1.4V B Full Range - - 200 Vcc+=15V Large Signal Voltage Gain AV 25°C 25 100 - V/mV VO=1.4V to 11.4V RL=2kΩ 25°C 65 100 - RS≦10kΩ Supply Voltage Rejection Ratio PSRR dB Full Range 65 - - Vcc+=5V to 30V - 0.7 1.2 Vcc+=5V,No Load Supply Current I Full Range mA CC - - 2 Vcc+=30V,No Load Input Common-mode Voltage 25°C 0 - Vcc+-1.5 Vcc+=30V V V Range ICM Full Range 0 - Vcc+-2.0 RS≦10kΩ 25°C 70 85 - Common-mode Rejection Ratio CMRR dB RS≦10kΩ Full Range 60 - - Output Source Current (Note 10) ISOURCE 25°C 20 40 60 mA VVcIDc=+=+115VV ,VO=+2V VO=+2V, 10 20 - mA Vcc+=15V ,VID=-1V Output Sink Current (Note 10) ISINK 25°C VO=+0.2V, 12 50 - μA Vcc+=15V ,VID=-1V 25°C - - Vcc+-1.5 Output Voltage Swing Vopp V RL=2kΩ Full Range - - Vcc+-2.0 25°C 27 28 - High Level Output Voltage V V Vcc+=30V,RL=10kΩ OH Full Range 27 - - 25°C - 5 20 Low Level Output Voltage V mV RL=10kΩ OL Full Range - - 20 RL=2kΩ,CL=100pF, Vcc+=15V Slew Rate SR 25°C - 0.3 - V/μs VI=0.5V to 3V, Unity Gain Vcc+=30V,RL=2kΩ, Gain Bandwidth Product GBP 25°C - 0.6 - MHz CL=100pF VIN=10mV,f=100kHz f=1kHz,AV=20dB Total Harmonic Distortion THD 25°C - 0.02 - % RL=2kΩ CL=100pF,VO=2Vpp f=1kHz,RS=100Ω Input Equivalent Noise Voltage VN 25°C - 40 - nV/ Hz Vcc+=30V Input Offset Voltage Drift (Note 9) ΔVIO/ΔT - - 7 - μV/°C - Input Offset Current Drift (Note 9) ΔIIO/ΔT - - 10 - pA/°C - Channel Separation CS 25°C - 120 - dB 1kHz≦f≦20kHz (Note 9) Absolute value (Note 10) Under high temperatures, please consider the power dissipation when selecting the output current. When output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 4/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Electrical Characteristics - continued ○LM324xxx (Unless otherwise specified, Vcc+=+5V, Vcc-=0V) Temperature Limit Parameter Symbol Unit Conditions Range Min. Typ. Max. 25°C - - 7 VO=1.4V,RS=0Ω Input Offset Voltage (Note 11) VIO mV 5V< Vcc+<30V Full Range - - 9 0<VIC< Vcc+-1.5V 25°C - 2 30 Input Offset Current (Note 11) I nA VO=1.4V IO Full Range - - 100 25°C - 20 150 Input Bias Current (Note 11) I nA VO=1.4V B Full Range - - 300 Vcc+=15V Large Signal Voltage Gain AV 25°C 25 100 - V/mV VO=1.4V to 11.4V RL=2kΩ 25°C 65 110 - RS≦10kΩ Supply Voltage Rejection Ratio PSRR dB Full Range 65 - - Vcc+=5V to 30V 25°C - 0.7 1.2 Vcc+=5V,No Load 25°C - 1.5 3 Vcc+=30V,No Load Supply Current I mA CC Full Range - 0.8 1.2 Vcc+=5V,No Load Full Range - 1.5 3 Vcc+=30V,No Load Input Common-mode Voltage V 25°C 0 - Vcc+-1.5 V Vcc+=30V Range ICM Full Range 0 - Vcc+-2.0 25°C 70 80 - Common-mode Rejection Ratio CMRR dB RS≦10kΩ Full Range 60 - - Output Source Current (Note 12) ISOURCE 25°C 20 40 70 mA VVcIDc=+=+115VV ,VO=+2V VO=+2V, 10 20 - mA Vcc+=15V,VID=-1V Output Sink Current (Note 12) ISINK 25°C VO=+0.2V, 12 50 - μA Vcc+=15V ,VID=-1V 25°C - - Vcc+-1.5 Output Voltage Swing Vopp V RL=2kΩ Full Range - - Vcc+-2.0 25°C 27 28 - High Level Output Voltage V V Vcc+=30V,RL=10kΩ OH Full Range 27 - - 25°C - 5 20 Low Level Output Voltage V mV RL=10kΩ OL Full Range - - 20 RL=2kΩ,CL=100pF, Vcc+=15V Slew Rate SR 25°C - 0.3 - V/μs VI=0.5V to 3V, Unity Gain Vcc+=30V,RL=2kΩ, Gain Bandwidth Product GBP 25°C - 0.6 - MHz CL=100pF VIN=10mV,f=100kHz f=1kHz,AV=20dB Total Harmonic Distortion THD 25°C - 0.015 - % RL=2kΩ CL=100pF,VO=2Vpp f=1kHz,RS=100Ω Input Equivalent Noise Voltage VN 25°C - 40 - nV/ Hz Vcc+=30V Input Offset Voltage Drift (Note 11) ΔV /ΔT - - 7 - μV/°C - IO Input Offset Current Drift (Note 11) ΔIIO/ΔT - - 10 - pA/°C - Channel Separation CS 25°C - 120 - dB 1kHz≦f≦20kHz (Note 11) Absolute value (Note 12) Under high temperatures, please consider the power dissipation when selecting the output current. When output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 5/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Electrical Characteristics - continued ○LM2904xxx (Unless otherwise specified, Vcc+=+5V, Vcc-=0V) Temperature Limit Parameter Symbol Unit Conditions Range Min. Typ. Max. 25°C - 2 7 Input Offset Voltage (Note 13) V mV VO=1.4V IO Full Range - - 9 25°C - 2 50 Input Offset Current (Note 13) I nA VO=1.4V IO Full Range - - 200 25°C - 20 150 Input Bias Current (Note 13) I nA VO=1.4V B Full Range - - 200 Vcc+=15V Large Signal Voltage Gain AV 25°C 25 100 - V/mV VO=1.4V to 11.4V RL=2kΩ 25°C 65 100 - RS≦10kΩ Supply Voltage Rejection Ratio PSRR dB Full Range 65 - - Vcc+=5V to 30V 25°C - 0.7 1.2 Supply Current I mA Vcc+=5V,No Load CC Full Range - - 2 Input Common-mode Voltage V 25°C 0 - Vcc+-1.5 V Vcc+=30V Range ICM Full Range 0 - Vcc+-2.0 25°C 70 85 - Common-mode Rejection Ratio CMRR dB RS=10kΩ Full Range 60 - - Output Source Current (Note 14) ISOURCE 25°C 20 40 60 mA VVcIDc=+=++11V5 V,VO=+2V VO=2V,Vcc+=+5V 10 20 - mA VID=-1V Output Sink Current (Note 14) I 25°C SINK VO=+0.2V, 12 50 - μA Vcc+=+15V ,VID=-1V 25°C - - Vcc+-1.5 Output Voltage Swing Vopp V RL=2kΩ Full Range - - Vcc+-2.0 25°C 27 - - High Level Output Voltage V V Vcc+=30V,RL=10kΩ OH Full Range 27 28 - 25°C - 5 20 Low Level Output Voltage V mV RL=10kΩ OL Full Range - - 20 RL=2kΩ,CL=100pF, Unity Gain Slew Rate SR 25°C - 0.3 - V/μs VI=0.5V to 3V Vcc+=15V Vcc+=30V,RL=2kΩ Gain Bandwidth Product GBP 25°C - 0.6 - MHz CL=100pF VIN=10mV f=1kHz,AV=20dB RL=2kΩ Total Harmonic Distortion THD 25°C - 0.02 - % CL=100pF, Vcc+=30V,VO=2Vpp f=1kHz,RS=100Ω Input Equivalent Noise Voltage VN 25°C - 40 - nV/ Hz Vcc+=30V Input Offset Voltage Drift (Note 13) ΔV /ΔT - - 7 - μV/°C - IO Input Offset Current Drift (Note 13) ΔIIO/ΔT - - 10 - pA/°C - Channel Separation CS 25°C - 120 - dB 1kHz≦f≦20kHz (Note 13) Absolute value (Note 14) Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 6/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Electrical Characteristics - continued ○LM2902xxx (Unless otherwise specified, Vcc+=+5V, Vcc-=0V) Temperature Limit Parameter Symbol Unit Conditions Range Min. Typ. Max. 25°C - 2 7 Input Offset Voltage (Note 15) V mV VO=1.4V IO Full Range - - 9 25°C - 2 30 Input Offset Current (Note 15) I nA VO=1.4V IO Full Range - - 200 25°C - 20 150 Input Bias Current (Note 15) I nA VO=1.4V B Full Range - - 300 Vcc+=15V Large Signal Voltage Gain AV 25°C 25 100 - V/mV VO=1.4V to 11.4V RL=2kΩ 25°C 65 110 - RS≦10kΩ Supply Voltage Rejection Ratio PSRR dB Full Range 65 - - Vcc+=5V to 30V 25°C - 0.7 1.2 Vcc+=5V,No Load 25°C - 1.5 3 Vcc+=30V,No Load Supply Current I mA CC Full Range - 0.8 1.2 Vcc+=5V,No Load Full Range - 1.5 3 Vcc+=30V,No Load Input Common-mode Voltage 25°C 0 - Vcc+-1.5 V V Vcc+=30V Range ICM Full Range 0 - Vcc+-2.0 25°C 70 80 - Common-mode Rejection Ratio CMRR dB RS=10kΩ Full Range 60 - - Vcc+=+15V,VO=+2V Output Source Current (Note 16) I 25°C 20 40 70 mA SOURCE VID=+1V VO=2V,Vcc+=+5V 10 20 - mA VID=-1V Output Sink Current (Note 16) ISINK 25°C VO=+0.2V, 12 50 - μA Vcc+=+15V ,VID=-1V 25°C - - Vcc+-1.5 Output Voltage Swing Vopp V RL=2kΩ Full Range - - Vcc+-2.0 25°C 27 28 - High Level Output Voltage V V Vcc+=30V,RL=10kΩ OH Full Range 27 - - 25°C - 5 20 Low Level Output Voltage V mV RL=10kΩ OL Full Range - - 20 RL=2kΩ,CL=100pF, Unity Gain Slew Rate SR 25°C - 0.3 - V/μs VI=0.5V to 3V Vcc+=15V Vcc+=30V,RL=2kΩ Gain Bandwidth Product GBP 25°C - 0.3 - MHz CL=100pF VIN=10mV f=1kHz,AV=20dB RL=2kΩ Total Harmonic Distortion THD 25°C - 0.015 - % CL=100pF, Vcc+=30V,VO=2Vpp f=1kHz,RS=100Ω Input Equivalent Noise Voltage VN 25°C - 40 - nV/ Hz Vcc+=30V Input Offset Voltage Drift (Note 15) ΔVIO/ΔT - - 7 - μV/°C - Input Offset Current Drift (Note 15) ΔIIO/ΔT - - 10 - pA/°C - Channel Separation CS 25°C - 120 - dB 1kHz≦f≦20kHz (Note 15) Absolute value (Note 16) Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 7/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or general document. 1. Absolute maximum ratings Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (1) Supply Voltage (Vcc+/ Vcc-) Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power supply terminal without deterioration or destruction of characteristics of internal circuit. (2) Differential Input Voltage (V ) ID Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging the IC. (3) Input Common-mode Voltage Range (V ) ICM Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics. (4) Operating and storage temperature ranges (Topr,Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. (5) Power dissipation (P ) D Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃ (normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in the package (maximum junction temperature) and the thermal resistance of the package. 2. Electrical characteristics (1) Input Offset Voltage (V ) IO Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the input voltage difference required for setting the output voltage at 0 V. (2) Input Offset Voltage drift (△V /△T) IO Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. (3) Input Offset Current (I ) IO Indicates the difference of input bias current between the non-inverting and inverting terminals. (4) Input Offset Current Drift (△Iio/△T) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. (5) Input Bias Current (I ) B Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at the non-inverting and inverting terminals. (6) Supply Current (ICC) Indicates the current that flows within the IC under specified no-load conditions. (7) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL) Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output voltage High and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output voltage low indicates the lower limit. (8) Large Signal Voltage Gain (Av) Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage. Av = (Output voltage) / (Differential Input voltage) (9) Input Common-mode Voltage Range (V ) ICM Indicates the input voltage range where IC normally operates. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 8/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet (10) Common-mode Rejection Ratio (CMRR) Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is normally the fluctuation of DC. CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation) (11) Power Supply Rejection Ratio (PSRR) Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of DC. PSRR= (Change of power supply voltage)/(Input offset fluctuation) (12) Output Source Current/ Output Sink Current (I / I ) source sink The maximum current that can be output from the IC under specific output conditions. The output source current indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC. indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC. (13) Channel Separation (CS) Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of the channel which is not driven. (14) Slew Rate (SR) Indicates the ratio of the change in output voltage with time when a step input signal is applied. (15) Gain Bandwidth (GBW) The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave. (16) Input Referred Noise Voltage (V ) N Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series with input terminal. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 9/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Typical Performance Curves ○LM358xxx, LM2904xxx 1.0 1.0 LM358DT LM358WDT W] .0.8 LM358PT mA] 0.8 ON [ LM358WPT LLMM22990044WDTD T NT [ TI0.6 E 0.6 PA RR -40℃ 25℃ SI LM2904PT U S LM2904WPT C DI0.4 Y 0.4 R LM358ST LM2904ST L E P OW0.2 UP 0.2 85℃ 125℃ P S 0.0 0.0 85 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] . SUPPLY VOLTAGE [V] Figure 2. Figure 3. Derating Curve Supply Current- Supply Voltage 1.0 40 ] V [ E A] 0.8 G m A T 30 T [ OL -40℃ N E 0.6 V R T R 36V U 20 125℃ U P C T 0.4 U 25℃ Y O PL M P 5V U 10 85℃ U 0.2 3V M S I X A M 0.0 0 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 4. Figure 5. Supply Current – Ambient Temperature Maximum Output Voltage - Supply Voltage (RL=10kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. LM358:-40°C to +85°C LM2904:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 10/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○ LM358xxx, LM2904xxx 5 50 V] A] m GE [ T [ -40℃ A 4 N 40 T E L R O R 25℃ V U T 3 C 30 U E P C 85℃ UT R O 2 U 20 M SO U T M 1 U 10 125℃ XI P T A U M O 0 0 -50 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 6. Figure 7. Maximum Output Voltage - Ambient Temperature Output Source Current - Output Voltage (Vcc+=5V, RL=2kΩ) (Vcc+=5V) 50 100 ] mA A] NT [ 40 T [m 10 85℃ E N R 3V E R R 125℃ U 30 R 1 C 5V U CE 15V K C -40℃ R N 25℃ U 20 SI 0.1 O T S U T P U 10 T 0.01 P U T O U O 0 0.001 -50 -25 0 25 50 75 100 125 150 0 0.4 0.8 1.2 1.6 2 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 8. Figure 9. Output Source Current - Ambient Temperature Output Sink Current - Output Voltage (OUT=0V) (Vcc+=5V) (*) The above data is measurement value of typical sample, it is not guaranteed. LM358:-40°C to +70°C LM2904:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 11/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM358xxx, LM2904xxx 30 80 ] A A] μ 70 m 15V T [ T [ EN 60 25℃ -40℃ N R E 20 R R R U 50 CU 3V 5V NK C 40 85℃ 125℃ K I N S I L 30 T S 10 VE U E 20 P L T - W U 10 O O L 0 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 10. Figure 11. Output Sink Current - Ambient Temperature Low Level Sink Current - Supply Voltage (OUT= Vcc+) (OUT=0.2V) 80 8 μA] 70 36V mV] 6 NT [ E [ E 60 G 4 R A R T -40℃ 25℃ U 50 L 2 C O V NK 40 5V T 0 3V E SI S L 30 F -2 85℃ 125℃ E F V O LE 20 UT -4 W- P O 10 N -6 L I 0 -8 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 12. Figure 13. Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (OUT=0.2V) (VICM=0V, OUT=1.4V) (*) The above data is measurement value of typical sample, it is not guaranteed. LM358:-40°C to +85°C LM2904:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 12/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM358xxx, LM2904xxx 8 50 ] mV 6 A] GE [ 4 T [n 40 A N T 3V E L 2 R O R 30 V U 25℃ T 0 C -40℃ SE 5V 36V S F -2 A 20 F BI O T T -4 U 85℃ U P 10 P N N -6 I 125℃ I -8 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 14. Figure 15. Input Offset Voltage - Ambient Temperature Input Bias Current - Supply Voltage (VICM=0V, OUT=1.4V) (VICM=0V, OUT=1.4V) 50 50 A] A] 40 n 40 n T [ T [ EN EN 30 R 30 R R 36V R U U C C 20 S S A 20 A BI BI 10 T T 5V U 3V U P 10 P N N 0 I I 0 -10 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 16. Figure 17. Input Bias Current - Ambient Temperature Input Bias Current - Ambient Temperature (V =0V, OUT=1.4V) (Vcc+=30V, V =28V, OUT=1.4V) ICM ICM (*) The above data is measurement value of typical sample, it is not guaranteed. LM358:-40°C to +85°C LM2904:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 13/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM358xxx, LM2904xxx 8 10 V] 6 A] m n E [ 4 -40℃ 85℃ NT [ 5 LTAG 2 25℃ 125℃ RRE -40℃ 25℃ O U V C T 0 T 0 E E S S 125℃ F -2 F 85℃ F F O O T -4 T -5 U U P P -6 N N I I -8 -10 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 INPUT VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 18. Figure 19. Input Offset Voltage - Common Mode Input Voltage Input Offset Current - Supply Voltage (Vcc+=5V) (VICM=0V, OUT=1.4V) 10 ] 140 B d A] N [ 130 n I T [ GA -40℃ 25℃ N 5 120 RE 36V GE R A 110 U T L T C 0 VO 100 SE 5V 3V AL 90 85℃ 125℃ F N F O G T -5 SI 80 U E P G 70 N R I A -10 L 60 -50 -25 0 25 50 75 100 125 150 4 6 8 10 12 14 16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 20. Figure 21. Input Offset Current - Ambient Temperature Large Signal Voltage Gain - Supply Voltage (V =0V, OUT=1.4V) (RL=2kΩ) ICM (*) The above data is measurement value of typical sample, it is not guaranteed. LM358:-40°C to +85°C LM2904:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 14/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM358xxx, LM2904xxx B] ] 140 d 140 B d O [ N [ 130 TI I A E GA 120 15V N R 120 -40℃ 25℃ O G TA 110 CTI 100 L E AL VO 10900 5V E REJ 80 85℃ 125℃ N D G O I 80 M S N 60 E G 70 O R M A M L 60 O 40 -50 -25 0 25 50 75 100 125 150 C 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 22. Figure 23. Large Signal Voltage Gain Common Mode Rejection Ratio - Ambient Temperature - Supply Voltage (RL=2kΩ) ] B B] 140 d 140 d [ O [ O TI ATI 130 A 120 R R 36V N 120 N O TIO 100 CTI 110 C E E J J E 100 E R R 80 5V Y E 3V L 90 D P O P M U 80 N 60 S O R 70 E M W M 40 O 60 CO -50 -25 0 25 50 75 100 125 150 P -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 24. Figure 25. Common Mode Rejection Ratio Power Supply Rejection Ratio - Ambient Temperature - Ambient Temperature (*) The above data is measurement value of typical sample, it is not guaranteed. LM358:-40°C to +85°C LM2904:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 15/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM324xxx, LM2902xxx 1.2 2.0 LM324DT LM324WDT W] .1.0 A] 1.6 ON [0.8 L M324PT T [m ATI LLMM22990020D2WT DT EN 1.2 P R -40℃ 25℃ SI0.6 R S U R DI0.4 L M2902PT Y C 0.8 E L W P P PO0.2 U 0.4 85℃ 125℃ S 0.0 85 0.0 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] . SUPPLY VOLTAGE [V] Figure 26. Figure 27. Derating Curve Supply Current - Supply Voltage 2.0 40 ] V [ E ] G mA 1.6 TA 30 T [ OL -40℃ N RRE 1.2 36V UT V 20 125℃ U P T C 0.8 U 25℃ Y O PL M P U 10 85℃ U 0.4 5V M S 3V XI A M 0.0 0 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 28. Figure 29. Supply Current - Ambient Temperature Maximum Output Voltage - Supply Voltage (RL=10kΩ) (*) The above data is measurement value of typical sample, it is not guaranteed. LM324:-40°C to +85°C LM2902:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 16/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○ LM324xxx, LM2902xxx 5 50 V] A] m [ GE T [ -40℃ TA 4 EN 40 L R O R 25℃ V U T 3 C 30 U E P C 85℃ UT R O 2 U 20 M O S U T M 1 U 10 125℃ XI P T A U M O 0 0 -50 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 30. Figure 31. Maximum Output Voltage - Ambient Temperature Output Source Current - Output Voltage (Vcc+=5V, RL=2kΩ) (Vcc+=5V) 50 100 ] mA A] NT [ 40 T [m 10 85℃ E N R 3V E R R 125℃ U 30 R 1 C 5V U CE 15V K C -40℃ R N 25℃ U 20 SI 0.1 O T S U T P U 10 T 0.01 P U T O U O 0 0.001 -50 -25 0 25 50 75 100 125 150 0 0.4 0.8 1.2 1.6 2 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Figure 32. Figure 33. Output Source Current - Ambient Temperature Output Sink Current - Output Voltage (OUT=0V) (Vcc+=5V) (*) The above data is measurement value of typical sample, it is not guaranteed. LM324:-40°C to +85°C LM2902:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 17/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○ LM324xxx, LM2902xxx 30 80 ] A A] μ 70 m 15V T [ T [ EN 60 25℃ -40℃ N R E 20 R R R U 50 U C C 3V 5V NK 40 85℃ 125℃ K I N S I L 30 T S 10 VE U E 20 P L T - W U 10 O O L 0 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 34. Figure 35. Output Sink Current - Ambient Temperature Low Level Sink Current - Supply Voltage (OUT= Vcc+) (OUT=0.2V) 80 8 μA] 70 36V mV] 6 NT [ E [ E 60 G 4 R A R T -40℃ 25℃ U 50 L 2 C O V NK 40 5V T 0 3V E SI S L 30 F -2 85℃ 125℃ E F V O E 20 T -4 L U - W P O 10 N -6 L I 0 -8 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 36. Figure 37. Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (OUT=0.2V) (V =0V, OUT=1.4V) ICM (*) The above data is measurement value of typical sample, it is not guaranteed. LM324:-40°C to +85°C LM2902:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 18/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM324xxx, LM2902xxx 8 50 ] mV 6 A] GE [ 4 T [n 40 A N T 3V E L 2 R O R 30 V U 25℃ T 0 C -40℃ SE 5V 36V S F -2 A 20 F BI O T T -4 U 85℃ U P 10 P N N -6 I 125℃ I -8 0 -50 -25 0 25 50 75 100 125 150 0 5 10 15 20 25 30 35 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 38. Figure 39. Input Offset Voltage - Ambient Temperature Input Bias Current - Supply Voltage (V =0V, OUT=1.4V) (V =0V, OUT=1.4V) ICM ICM 50 50 A] A] 40 n 40 n T [ T [ N N E E 30 R 30 R R 36V R U U C C 20 S S A 20 A BI BI 10 T T 5V U 3V U P 10 P N N 0 I I 0 -10 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 40. Figure 41. Input Bias Current - Ambient Temperature Input Bias Current - Ambient Temperature (V =0V, OUT=1.4V) (Vcc+=30V, V =28V, OUT=1.4V) ICM ICM (*) The above data is measurement value of typical sample, it is not guaranteed. LM324:-40°C to +85°C LM2902:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 19/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM324xxx, LM2902xxx 8 10 V] A] 6 E [m 4 -40℃ 85℃ NT [n 5 AG 125℃ RE -40℃ 25℃ LT 2 25℃ R O U V C T 0 T 0 E E FS -2 FS 85℃ 125℃ F F O O T -4 T -5 U U P P -6 N N I I -8 -10 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 INPUT VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 42. Figure 43. Input Offset Voltage - Common Mode Input Voltage Input Offset Current - Supply Voltage (Vcc+=5V) (V =0V, OUT=1.4V) ICM 10 ] 140 B d A] N [ 130 n I T [ GA -40℃ 25℃ N 5 120 E E R 36V G R A 110 U T L C O T 0 V 100 SE 5V 3V AL 90 85℃ 125℃ F N F G O T -5 SI 80 U E P G 70 N R I A -10 L 60 -50 -25 0 25 50 75 100 125 150 4 6 8 10 12 14 16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 44. Figure 45. Input Offset Current - Ambient Temperature Large Signal Voltage Gain - Supply Voltage (V =0V, OUT=1.4V) (RL=2kΩ) ICM (*) The above data is measurement value of typical sample, it is not guaranteed. LM324:-40°C to +85°C LM2902:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 20/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet ○LM324xxx, LM2902xxx B] B] 140 d 140 d O [ N [ 130 TI GAI 120 15V N RA 120 -40℃ 25℃ E O AG 110 TI T C 100 L E VO 100 5V EJ L R 80 85℃ 125℃ A 90 E N D G O I 80 M S N 60 E G 70 O R M A M L 60 O 40 -50 -25 0 25 50 75 100 125 150 C 0 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 46. Figure 47. Large Signal Voltage Gain - Ambient Temperature Common Mode Rejection Ratio (RL=2kΩ) - Supply Voltage ] B B] 140 d 140 TIO [d ATIO [ 130 A 120 R R 36V N 120 N O O TI TI 100 C 110 C E E J J E 100 E R DE R 80 5V 3V PLY 90 O P M U 80 N 60 S O ER 70 M W M 40 O 60 O C -50 -25 0 25 50 75 100 125 150 P -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] AMBIENT TEMPERATURE [℃] Figure 48. Figure 49. Common Mode Rejection Ratio Power Supply Rejection Ratio - Ambient Temperature - Ambient Temperature (*) The above data is measurement value of typical sample, it is not guaranteed. LM324:-40°C to +85°C LM2902:-40°C to +125°C www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 21/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Application Information Measurement Circuit 1 NULL Method Measurement Condition Parameter VF S1 S2 S3 Vcc+ Vcc- EK Vicm Calculation Input Offset Voltage VF1 ON ON OFF 5 to 30 0 -1.4 0 1 Input Offset Current VF2 OFF OFF OFF 5 0 -1.4 0 2 VF3 OFF ON 5 0 -1.4 0 Input Bias Current OFF 3 VF4 ON OFF 5 0 -1.4 0 VF5 15 0 -1.4 0 Large Signal Voltage Gain ON ON ON 4 VF6 15 0 -11.4 0 VF7 5 0 -1.4 0 Common-mode Rejection Ratio ON ON OFF 5 VF8 5 0 -1.4 3.5 VF9 5 0 -1.4 0 Supply Voltage Rejection Ratio ON ON OFF 6 VF10 30 0 -1.4 0 -Calculation- |V | 1. Input Offset Voltage (Vio) VIO = F1 [V] 1+R /R F S |V -V | F2 F1 2. Input Offset Current (Iio) IIO = R ×(1+R /R ) [A] I F S |V -V | F4 F3 3. Input Bias Current (Ib) IB = 2 × R ×(1+R /R ) [A] I F S 10 × (1+R/R ) 4. Large Signal Voltage Gain (Av) AV = 20Log F S [dB] |V -V | F5 F6 5. Common-mode Rejection Ration (CMRR) CMRR = 20Log 3.5 × (1+RF/RS) [dB] |V -V | F8 F7 25 × (1+ R/R ) PSRR = 20Log F S [dB] 6. Power supply rejection ratio (PSRR) |V – V | F10 F9 0.1µF RF=50kΩ 500kΩ 0.1µF SW1 Vcc+ EK 15V RS=50Ω Ri=10kΩ Vo 500kΩ DUT NULL SW3 RS=50Ω Ri=10kΩ 1000pF Vicm RL VF SW2 50kΩ Vcc- -15V Figure . 50 Test circuit1 (one channel only) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 22/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Measurement Circuit2 Switch Condition SW SW SW SW SW SW SW SW SW SW SW SW SW SW SW SW No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Supply Current OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF High level Output Voltage OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF Low level Output Voltage OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF Output source current OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Output sink current OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Slew Rate OFF OFF OFF ON OFF OFF OFF OFF ON ON ON OFF OFF OFF OFF Gain band width product OFF ON OFF OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF Equivalent input noise voltage ON OFF OFF OFF ON OFF ON OFF OFF OFF OFF ON OFF OFF OFF SW4 Input voltage SW5 R2 3V SW6 R3 Vcc+ A - 0.5V S1 W SW 2 SW3 + SW10 SW11 SW12 SW13 SW14 SW15 Input waveform t SW7 SW8 SW9 RS R1 Vcc- Output voltage SR = ΔV / Δt A 3V ~ VIN- VIN+ ~ RL CL ~V V VOUT ΔV Δt 0.5V Figure 51 Measurement circuit2 (Each Op-Amps) Output waveform t Figure 52 Slew Rate Input Waveform Vcc+ Vcc+ OTHER R 1 //R 2 R1 // R2 CH Vcc- Vcc- R1 R2 VIN V =O0 U.5 T V 1r ms R 1 R2 V OUT 2 100 × OUT 1 CS= 2 0 × log OUT 2 Figure 53 Measurement Circuit3 (Channel Separation) (R1=1kΩ, R2=100kΩ) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 23/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Examples of circuit ○Voltage follower Voltage gain is 0 dB. This circuit controls output voltage (OUT) equal input Vcc+ voltage (IN), and keeps OUT with stable because of high input impedance and low output impedance. OUT is shown next formula. OUT=IN OUT IN Vcc- ○Inverting amplifier R2 Vcc+ For inverting amplifier, IN is amplified by voltage gain R1 decided R1 and R2, and phase reversed voltage is IN output. OUT is shown next formula. OUT OUT=-(R2/R1)・IN Input impedance is R1. R1//R2 Vcc- ○Non-inverting amplifier For non-inverting amplifier, IN is amplified by voltage gain decided R1 and R2, and phase is same with IN. R1 R2 OUT is shown next formula. OUT= (1+R2/R1)・IN Vcc+ This circuit realizes high input impedance because Input impedance is operational amplifier’s input Impedance. OUT IN Vcc- www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 24/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Power Dissipation Power dissipation (total loss) indicates the power that the IC can consume at T =25°C (normal temperature). As the IC A consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and consumable power. Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold resin or lead frame of the package. Thermal resistance, represented by the symbol θ °C/W, indicates this heat dissipation JA capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance. Figure 54(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the Thermal resistance (θ ), given the ambient temperature (T ), maximum junction temperature (T ), and power dissipation JA A Jmax (P ). D θ = (T -T ) / P °C/W JA Jmax A D The derating curve in Figure 54(b) indicates the power that the IC can consume with reference to ambient temperature. Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal resistance (θ ), which depends on the chip size, power consumption, package, ambient temperature, package condition, JA wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 54(c), (d) shows an example of the derating curve for LM358xxx, LM2904xxx, LM324xxx and LM2902xxx. Power dissipation of LSI [W] θJA=(TJmax-TA)/ PD °C/W PDmax Ambient temperature TA [ °C ] n of IC P2 θJA2 < θJA1 o dissipati P1 θJA2 er w Po TJmax θJA1 Chip surface temperature TJ [ °C ] 0 25 50 75 100 125 150 (a) Thermal Resistance Ambient temperature TA [ °C ] (b) Derating Curve 1.0 1.2 LM358DT(Note 17) LM324DT(Note 20) N [W] .0.8 LM358W LLDMMT33(55No88teWP 1T7P)( NTo(tNe o1t8e) 18) LLMM22990044WDTD(NTo(tNe o1t7e) 17) N [W] .1.0 L M324 L WMD32T4(NPoTte (2N0o) te 21) O O0.8 TI0.6 TI LM2902DT(Note 20) A LM2904PT(Note 18) A LM29002WDT(Note 20) SIP L M2904WPT(Note 18) SIP0.6 R DIS0.4 LM2904ST(Note 18) R DIS0.4 L M2902PT(Note 21) E LM358ST(Note 19) E W0.2 W O O0.2 P P 0.0 0.0 85 85 0 25 50 75 100 125 150 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] . AMBIENT TEMPERATURE [℃] . (C)LM358DT/WDT/PT/WPT/ST (d)LM324DT/WDT/PT LM2904DT/WDT/PT/WPT/ST LM2902DT/PT Power Dissipation (Note 17) (Note 18) (Note 19) (Note 20) (Note 21) Unit 6.2 5.4 5.0 8.2 7.0 mW/°C Figure 54 Derating Curves www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 25/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply terminals. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current GND traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 26/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Operational Notes – continued 11. Regarding Input Pins of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B B Pin B C Pin A E B C P+ P P+ P+ N P P+ N N N N Parasitic N N N E Element Parasitic P Substrate P Substrate Element GND GND GND GND Parasitic Parasitic Parasitic element Element Element or Transistor Figure 55. Example of Monolithic IC Structure 12. Unused Circuits When there are unused circuits it is recommended that they be connected as in Figure 104, setting the non-inverting input terminal to a potential within the in-phase input voltage range (V ). ICM Vcc+ + OPEN - Keep this potential in VICM Vcc- Figure 56. Disable Circuit Example 13. Input Terminal Voltage Applying Vcc- + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. 14. Power Supply (signal / dual) The op-amp operates when the specified voltage supplied is between Vcc+ and Vcc-. Therefore, the single supply op-amp can be used as a dual supply op-amp as well. 15. Terminal short-circuits When the output and Vcc+ terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction. 16. IC Handling Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezo resistance effects. 17. Output Capacitor If a large capacitor is connected between the output pin and Vcc- pin, current from the charged capacitor will flow into the output pin and may destroy the IC when the Vcc+ pin is shorted to ground or pulled down to 0V. Use a capacitor smaller than 0.1uF between output pin and Vcc- pin. www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 27/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Physical Dimensions Tape and Reel information Package Name SO Package8 (SOP-J8) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 28/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name TSSOP8 (TSSOP-B8) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 29/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name Mini SO8 (TSSOP-B8J) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 30/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name SO Package14 (SOP-J14) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 31/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Physical Dimension, Tape and Reel Information – continued Package Name TSSOP14 (TSSOP-B14J) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 32/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Ordering Information L M x x x x W x T Part ESD Tolerance Number applicable Package type P ack aging and forming specification LM358xx W : 2kV D : S.O package T: Embossed tape and reel P : SSOP LM324xx None : Normal S : Mini SO LM2902xx LM2904xx Line-up Topr Dual/Quad ESD Package Orderable Part Number SO Package8 (SOP-J8) LM358DT Normal TSSOP8 (TSSPO-B8) LM358PT Dual Mini SO8 (TSSOP-B8J) LM358ST SO Package8 (SOP-J8) LM358WDT -40°C to 85°C 2kV TSSOP8 (TSSPO-B8) LM358WPT SO Package14 (SOP-J14) LM324DT Normal Quad TSSOP14 (TSSOP-B14J) LM324PT 2kV SO Package14 (SOP-J14) LM324WDT SO Package8 (SOP-J8) LM2904DT Normal TSSOP8 (TSSPO-B8) LM2904PT Dual Mini SO8 (TSSOP-B8J) LM2904ST SO Package8 (SOP-J8) LM2904WDT -40°C to +125°C 2kV TSSOP8 (TSSPO-B8) LM2904WPT SO Package14 (SOP-J14) LM2902DT Normal Quad TSSOP14 (TSSOP-B14J) LM2902PT 2kV SO Package14 (SOP-J14) LM2902WDT www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 33/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Marking Diagram SOP-J8(TOP VIEW) TSSOP-B8(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK TSSOP-B8J(TOP VIEW) SOP-J14(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK TSSOP-B14J (TOP VIEW) Part Number Marking LOT Number 1PIN MARK Product Name Package Type Marking DT SO Package8 (SOP-J8) PT TSSOP8 (TSSPO-B8) LM358 ST Mini SO8 (TSSOP-B8J) 358 WDT SO Package8 (SOP-J8) WPT TSSOP8 (TSSPO-B8) DT SO Package14 (SOP-J14) LM324 PT TSSOP14 (TSSOP-B14J) 324 WDT SO Package14 (SOP-J14) DT SO Package8 (SOP-J8) PT TSSOP8 (TSSPO-B8) LM2904 ST Mini SO8 (TSSOP-B8J) 2904 WDT SO Package8 (SOP-J8) WPT TSSOP8 (TSSPO-B8) DT SO Package14 (SOP-J14) LM2902 PT TSSOP14 (TSSOP-B14J) 2902 WDT SO Package14 (SOP-J14) www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 34/35 15.Jun.2015 Rev.001 TSZ22111・15・001

LM358xxx LM324xxx LM2904xxx LM2902xxx Datasheet Land Pattern Data All dimensions in mm Land pitch Land space Land length Land width PKG e MIE ≥ℓ 2 b2 SO Package8 (SOP-J8) 1.27 3.90 1.35 0.76 SO Package14 (SOP-J14) TSSOP8 (TSSPO-B8) 0.65 4.60 1.20 0.35 TSSOP14 (TSSOP-B14J) Mini SO8 (TSSOP-B8J) 0.65 3.20 1.15 0.35 SOP-J8, TSSOP-B8, TSSOP-B8J, SOP-J14, TSSOP-B14J MIE e 2 b ℓ 2 Revision History Date Revision Changes 15.Jun.2015 001 New Release www.rohm.com TSZ02201-0RAR0G200520-1-2 ©2015 ROHM Co., Ltd. All rights reserved. 35/35 15.Jun.2015 Rev.001 TSZ22111・15・001

DDaattaasshheeeett Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E Rev.001 © 2015 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E Rev.001 © 2015 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sale s representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE Rev.001 © 2015 ROHM Co., Ltd. All rights reserved.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: R OHM Semiconductor: LM2904ST LM324DT LM358ST LM2904WDT LM358DT LM2904DT LM358WDT LM2904WPT LM324PT LM2902DT LM2904PT LM2902PT LM2902WDT LM324WDT LM358WPT LM358PT