图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM335Z
  • 制造商: STMicroelectronics
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM335Z产品简介:

ICGOO电子元器件商城为您提供LM335Z由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM335Z价格参考。STMicroelectronicsLM335Z封装/规格:温度传感器 - 模拟和数字输出, Temperature Sensor Analog, Local -40°C ~ 100°C 10mV/°C TO-92-3。您可以下载LM335Z参考资料、Datasheet数据手册功能说明书,资料中有LM335Z 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

传感器,变送器

描述

IC SENSOR PRECISION TEMP TO-92板上安装温度传感器 Precision 1 Deg Cel

产品分类

温度传感器,变送器温度传感器

品牌

STMicroelectronics

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

板上安装温度传感器,STMicroelectronics LM335Z-

数据手册

点击此处下载产品Datasheet

产品型号

LM335Z

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30444

产品目录页面

点击此处下载产品Datasheet

产品种类

板上安装温度传感器

供应商器件封装

TO-92-3

关闭

No Shutdown

其它名称

497-1584

其它有关文件

http://www.st.com/web/catalog/sense_power/FM89/SC294/PF63712?referrer=70071840

准确性

+/- 2 C

包装

散装

商标

STMicroelectronics

增益

10 mV / K

安装风格

Through Hole

封装

Bulk

封装/外壳

TO-226-3、TO-92-3 标准主体

封装/箱体

TO-92-3

工厂包装数量

2500

感应温度

-40°C ~ 100°C

数字输出-位数

None

数字输出-总线接口

-

最大工作温度

+ 100 C

最小工作温度

- 40 C

标准包装

2,500

电压-电源

-

电源电压-最大

40 V

电源电压-最小

5 V

电源电流

1 mA

精度

±1°C

系列

LM335

设备功能

Sensor

输出电流

450 uA

输出类型

Analog

配置

Local

推荐商品

型号:STCN75DS2F

品牌:STMicroelectronics

产品名称:传感器,变送器

获取报价

型号:TMP20AIDRLR

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:LMT84DCKR

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:TMP20AIDCKR

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:AD7417ARZ-REEL

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:CAT34TS02VP2IGT4

品牌:ON Semiconductor

产品名称:传感器,变送器

获取报价

型号:TMP101NA/250

品牌:Texas Instruments

产品名称:传感器,变送器

获取报价

型号:MAX6635MSA+

品牌:Maxim Integrated

产品名称:传感器,变送器

获取报价

样品试用

万种样品免费试用

去申请
LM335Z 相关产品

MLX90614ESF-BCA-000-TU

品牌:Melexis Technologies NV

价格:¥89.87-¥89.87

LM45BIM3

品牌:Texas Instruments

价格:¥17.61-¥17.61

LM86CIMM/NOPB

品牌:Texas Instruments

价格:¥5.50-¥6.88

MAX31826MUA+

品牌:Maxim Integrated

价格:¥23.41-¥23.41

LM75BIMX-3

品牌:Texas Instruments

价格:

FM75M8

品牌:ON Semiconductor

价格:

LM335AZ

品牌:STMicroelectronics

价格:

LM95214CISDX

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 LMx35, LMx35A Precision Temperature Sensors 1 Features 3 Description • DirectlyCalibratedtotheKelvinTemperature The LM135 series are precision, easily-calibrated, 1 integrated circuit temperature sensors. Operating as Scale a 2-terminal zener, the LM135 has a breakdown • 1°CInitialAccuracyAvailable voltage directly proportional to absolute temperature • Operatesfrom400 μAto5mA at 10 mV/°K. With less than 1-Ω dynamic impedance, • Lessthan1-Ω DynamicImpedance thedeviceoperatesoveracurrentrangeof400 μAto 5 mA with virtually no change in performance. When • EasilyCalibrated calibrated at 25°C, the LM135 has typically less than • WideOperatingTemperatureRange 1°C error over a 100°C temperature range. Unlike • 200°COverrange othersensors,theLM135hasalinearoutput. • LowCost Applications for the LM135 include almost any type of temperature sensing over a −55°C to 150°C 2 Applications temperature range. The low impedance and linear output make interfacing to readout or control circuitry • PowerSupplies areespeciallyeasy. • BatteryManagement The LM135 operates over a −55°C to 150°C • HVAC temperature range while the LM235 operates over a • Appliances −40°C to 125°C temperature range. The LM335 operates from −40°C to 100°C. The LMx35 devices are available packaged in hermetic TO transistor packages while the LM335 is also available in plastic TO-92packages. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) LM135 TO-46(3) 4.699mm×4.699mm LM135A LM235 TO-92(3) 4.30mm×4.30mm LM235A LM335 SOIC(8) 4.90mm×3.91mm LM335A (1) For all available packages, see the orderable addendum at theendofthedatasheet. BasicTemperatureSensorSimplifiedSchematic CalibratedSensor 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8 ApplicationandImplementation........................ 10 2 Applications........................................................... 1 8.1 ApplicationInformation............................................10 3 Description............................................................. 1 8.2 TypicalApplication..................................................10 4 RevisionHistory..................................................... 2 8.3 SystemExamples...................................................11 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 16 6 Specifications......................................................... 4 10 Layout................................................................... 16 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................16 6.2 RecommendedOperatingConditions.......................4 10.2 LayoutExample....................................................16 6.3 ThermalInformation..................................................4 10.3 WaterproofingSensors.........................................17 6.4 TemperatureAccuracy:LM135/LM235, 10.4 MountingtheSensorattheEndofaCable..........17 LM135A/LM235A.......................................................4 11 DeviceandDocumentationSupport................. 18 6.5 TemperatureAccuracy:LM335,LM335A(1)..............5 11.1 DeviceSupport......................................................18 6.6 ElectricalCharacteristics...........................................5 11.2 RelatedLinks........................................................18 6.7 TypicalCharacteristics..............................................6 11.3 Trademarks...........................................................18 7 DetailedDescription.............................................. 8 11.4 ElectrostaticDischargeCaution............................18 7.1 Overview...................................................................8 11.5 Glossary................................................................18 7.2 FunctionalBlockDiagram.........................................8 12 Mechanical,Packaging,andOrderable 7.3 FeatureDescription...................................................8 Information........................................................... 18 7.4 DeviceFunctionalModes..........................................9 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionD(March2013)toRevisionE Page • AddedPinConfigurationandFunctionssection,FeatureDescriptionsection,DeviceFunctionalModes,Application andImplementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentation Supportsection,andMechanical,Packaging,andOrderableInformationsection................................................................ 1 ChangesfromRevisionC(November2012)toRevisionD Page • ChangedlayoutofNationalDataSheettoTIformat........................................................................................................... 18 2 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 5 Pin Configuration and Functions TO-46(NDV) 3Pins TO-92(LP) BottomView 3Pins BottomView SOIC(D) 8Pins TopView PinFunctions PIN I/O DESCRIPTION NAME TO-46 TO-92 SO8 — — 1 N.C. — — 2 — NoConnection — — 3 – — — 4 O Negativeoutput ADJ — — 5 I Calibrationadjustpin — — 6 N.C. — NoConnection — — 7 + — — 8 I Positiveinput Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2)(3)(4) MIN MAX UNIT ReverseCurrent 15 mA ForwardCurrent 10 mA Storagetemperature, 8-PinSOICPackage −65 150 °C Tstg TO/TO-92Package −60 150 °C (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) RefertoRETS135Hformilitaryspecifications. (3) IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheTISalesOffice/Distributorsforavailabilityandspecifications. (4) SolderingprocessmustcomplywiththeReflowTemperatureProfilespecifications.Refertohttp://www.ti.com/packaging. 6.2 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT Continuous(T ≤T ≤T ) −55 150 °C MIN A MAX LM135,LM135A Intermittent (1) 150 200 Continuous(T ≤T ≤T ) −40 125 °C MIN A MAX SpecifiedTemperature LM235,LM235A Intermittent (1) 125 150 Continuous(T ≤T ≤T ) −40 100 °C MIN A MAX LM335,LM335A Intermittent (1) 100 125 ForwardCurrent 0.4 1 5 mA (1) Continuousoperationatthesetemperaturesfor5,000hoursforLPpackagemaydecreaselifeexpectancyofthedevice. 6.3 Thermal Information LM335/ LM235/ LM135/ LM335A LM235A LM135A THERMALMETRIC(1) UNIT SOIC(D) TO-92(LP) TO-46(NDV) 8PINS 3PINS 3PINS R Junction-to-ambientthermalresistance 165 202 400 θJA °C/W R Junction-to-casethermalresistance — 170 — θJC (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. 6.4 Temperature Accuracy: LM135/LM235, LM135A/LM235A(1) LM135A/LM235A LM135/LM235 PARAMETER TESTCONDITIONS UNIT MIN TYP MAX MIN TYP MAX OperatingOutputVoltage T =25°C,I =1mA 2.97 2.98 2.99 2.95 2.98 3.01 V C R UncalibratedTemperatureError T =25°C,I =1mA 0.5 1 1 3 °C C R UncalibratedTemperatureError T ≤T ≤T ,I =1 1.3 2.7 2 5 °C MIN C MAX R mA TemperatureErrorwith25°C T ≤T ≤T ,I =1 0.3 1 0.5 1.5 °C MIN C MAX R mA Calibration CalibratedErroratExtended T =T (Intermittent) 2 2 °C C MAX Temperature Non-Linearity I =1mA 0.3 0.5 0.3 1 °C R (1) Accuracymeasurementsaremadeinawell-stirredoilbath.Forotherconditions,selfheatingmustbeconsidered. 4 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 6.5 Temperature Accuracy: LM335, LM335A(1) LM335A LM335 PARAMETER TESTCONDITIONS UNIT MIN TYP MAX MIN TYP MAX OperatingOutputVoltage T =25°C,I =1mA 2.95 2.98 3.01 2.92 2.98 3.04 V C R UncalibratedTemperatureError T =25°C,I =1mA 1 3 2 6 °C C R UncalibratedTemperatureError T ≤T ≤T ,I =1 2 5 4 9 °C MIN C MAX R mA TemperatureErrorwith25°C T ≤T ≤T ,I =1 0.5 1 1 2 °C MIN C MAX R mA Calibration CalibratedErroratExtended T =T (Intermittent) 2 2 °C C MAX Temperature Non-Linearity I =1mA 0.3 1.5 0.3 1.5 °C R (1) Accuracymeasurementsaremadeinawell-stirredoilbath.Forotherconditions,selfheatingmustbeconsidered. 6.6 Electrical Characteristics See (1). LM135/LM235/LM135A/LM LM335/LM335A PARAMETER TESTCONDITIONS 235A UNIT MIN TYP MAX MIN TYP MAX OperatingOutputVoltageChange 400μA≤I ≤5mA,At 2.5 10 3 14 mV R withCurrent ConstantTemperature DynamicImpedance I =1mA 0.5 0.6 Ω R OutputVoltageTemperature 10 10 mV/°C Coefficient TimeConstant StillAir 80 80 sec 100ft/MinAir 10 10 sec StirredOil 1 1 sec TimeStability T =125°C 0.2 0.2 °C/khr C (1) Accuracymeasurementsaremadeinawell-stirredoilbath.Forotherconditions,selfheatingmustbeconsidered. Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com 6.7 Typical Characteristics Figure1.ReverseVoltageChange Figure2.CalibratedError Figure3.ReverseCharacteristics Figure4.ResponseTime Figure5.DynamicImpedance Figure6.NoiseVoltage 6 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 Typical Characteristics (continued) Figure7.ThermalResistanceJunctionToAir Figure8.ThermalTimeConstant Figure9.ThermalResponseInStillAir Figure10.ThermalResponseInStirredOilBath Figure11.ForwardCharacteristics Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com 7 Detailed Description 7.1 Overview Applications for the LM135 include almost any type of temperature sensing over a −55°C to 150°C temperature range.Thelowimpedanceandlinearoutputmakeinterfacingtoreadoutorcontrolcircuitryespeciallyeasy. The LM135 operates over a −55°C to 150°C temperature range while the LM235 operates over a −40°C to 125°Ctemperaturerange.TheLM335operatesfrom −40°Cto100°C. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at 10 mV/°K. With less than 1-Ω dynamic impedance, the device operates over a current range of 400 μA to 5 mA with virtually no change in performance. When calibrated at 25°C, the LM135 has typically less than1°Cerrorovera100°Ctemperaturerange.Unlikeothersensors,theLM135hasalinearoutput. 7.2 Functional Block Diagram 7.3 Feature Description 7.3.1 TemperatureCalibrationUsingADJPin Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the arm tied to the adjustment terminal (as shown in Figure 12) allows a 1-point calibrationofthesensorthatcorrectsforinaccuracyoverthefulltemperaturerange. This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to 0-V output at 0 K (−273.15°C). Errors in output voltage versus temperature are only slope (or scale factor) errors so a slope calibration at one temperature corrects at all temperatures. Theoutputofthedevice(calibratedoruncalibrated)canbeexpressedas: where 8 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 Feature Description (continued) • TistheunknowntemperatureindegreesKelvin • T isareferencetemperatureindegreesKelvin (1) o By calibrating the output to read correctly at one temperature the output at all temperatures is correct. Nominally theoutputiscalibratedat10mV/K. Calibratefor2.982Vat25°C Figure12. CalibratedSensor 7.4 Device Functional Modes The LM135 has two functional modes calibrated and uncalibrated. For optimum accuracy, a one point calibration isrecommended.Formoreinformationoncalibration,seeTemperatureCalibrationUsingADJPin. Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information To insure good sensing accuracy, several precautions must be taken. Like any temperature-sensing device, self- heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of course, must be available to drive both the sensor and the calibration pot at the maximum operatingtemperatureaswellasanyexternalloads. Ifthesensorisusedinanambientwherethethermalresistanceisconstant,self-heatingerrorscanbecalibrated out. This is possible if the device is run with a temperature-stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self-heating error proportional to absolute temperature thesameasscalefactorerrors. 8.2 Typical Application Figure13. BasicTemperatureSensor 8.2.1 DesignRequirements Table1.DesignParameters PARAMETER EXAMPLEVALUE Accuracyat25°C ±1°C Accuracyfrom–55°Cto150°C ±2.7°C ForwardCurrent 1mA TemperatureSlope 10mV/K 8.2.2 DetailedDesignProcedure For optimum accuracy, R1 is picked such that 1 mA flows through the sensor. Additional error can be introduced by varying load currents or varying supply voltage. The influence of these currents on the minimum and maximum reverse current flowing through the LM135 should be calculated and be maintained in the range of 0.4 mA to 5 mA. Minimizing the current variation through the LM135 will provide for the best accuracy. The Operating Output Voltage Change with Current specification can be used to calculate the additional error which couldbeupto1KmaximumfromtheLM135A,forexample. 10 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 8.2.3 ApplicationCurve Figure14. ReverseCharacteristics 8.3 System Examples Figure15.WideOperatingSupply Figure16.MinimumTemperatureSensing Wirelengthfor1°Cerrorduetowiredrop Figure17.AverageTemperatureSensing Figure18.IsolatedTemperatureSensor Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com System Examples (continued) Figure19.SimpleTemperatureController Figure20.SimpleTemperatureControl AdjustR2for2.554VacrossLM336. Adjustfor2.7315VatoutputofLM308 AdjustR1forcorrectoutput. Figure21.GroundReferredFahrenheit Figure22.CentigradeThermometer Thermometer TocalibrateadjustR2for2.554VacrossLM336. AdjustR1forcorrectoutput. Figure23.FahrenheitThermometer 12 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 System Examples (continued) 8.3.1 ThermocoupleColdJunctionCompensation CompensationforGroundedThermocouple SelectR3forproperthermocoupletype Figure24. ThermocoupleColdJunctionCompensation THERMO-COUPLE R3(±1%) SEEBECKCOEFFICIENT J 377Ω 52.3μV/°C T 308Ω 42.8μV/°C K 293Ω 40.8μV/°C S 45.8Ω 6.4μV/°C Adjustments:Compensatesforbothsensorandresistortolerances 1. ShortLM329B 2. AdjustR1forSeebeckCoefficienttimesambienttemperature(indegreesK)acrossR3. 3. ShortLM335andadjustR2forvoltageacrossR3correspondingtothermocoupletype. J 14.32mV K 11.17mV T 11.79mV S 1.768mV THERMO-COUPLE R3 R4 SEEBECKCOEFFICIENT J 1.05K 385Ω 52.3μV/°C T 856Ω 315Ω 42.8μV/°C K 816Ω 300Ω 40.8μV/°C S 128Ω 46.3Ω 6.4μV/°C Adjustments: 1. AdjustR1forthevoltageacrossR3equaltotheSeebeckCoefficienttimesambienttemperatureindegreesKelvin. 2. AdjustR2forvoltageacrossR4correspondingtothermocouple. J 14.32mV T 11.79mV K 11.17mV S 1.768mV Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com Terminatethermocouplereferencejunctioninclose proximitytoLM335. Adjustments: 1.Applysignalinplaceofthermocoupleandadjust R3foragainof245.7. 2.Shortnon-invertinginputofLM308Aandoutputof SelectR3andR4forthermocoupletype LM329Btoground. 3.AdjustR1sothatV =2.982V@25°C. OUT 4.RemoveshortacrossLM329BandadjustR2so thatV =246mV@25°C. OUT 5.Removeshortacrossthermocouple. Figure25.SinglePowerSupplyColdJunction Figure26.CentigradeCalibratedThermocouple Compensation Thermometer Figure27.DifferentialTemperatureSensor Figure28.DifferentialTemperatureSensor 14 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 AdjustD1to50mVgreaterV thanD2. Z Chargeterminateson5°Ctemperaturerise. CoupleD2tobattery. Adjustforzerowithsensorat0°Cand10Tpotsetat 0°C Adjustforzerooutputwith10Tpotsetat100°Cand sensorat100°C Outputreadsdifferencebetweentemperatureand dialsettingof10Tpot Figure29.FastChargerForNickel-Cadmium Figure30.VariableOffsetThermometer Batteries *Selfheatingisusedtodetectairflow Figure31.GroundReferredCentigrade Figure32.AirFlowDetector Thermometer Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com 9 Power Supply Recommendations EnsuretheLM335isbiasedproperlywithacurrentranging0.4mAto5mA. 10 Layout 10.1 Layout Guidelines TheLM135isappliedeasilyinthesamewayasotherintegrated-circuittemperaturesensors.Glueorcementthe devicetoasurfaceandthetemperatureshouldbewithinabout0.01°Cofthesurfacetemperature. Efficient temperature transfer assumes that the ambient air temperature is almost the same as the surface temperature where the LM135 leads are attached. If there is a great difference between the air temperature and the surface temperature, the actual temperature of the LM135 die would be at an intermediate temperature between the two temperatures. For example, the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, can be greatly affected by airflow. The temperature sensed bytheTO92packagecouldgreatlydependonvelocityoftheairflowaswell. To lessen the affect of airflow, ensure that the wiring to the LM135 (leads and wires connected to the leads) is held at the same temperature as the surface temperature that is targeted for measurement. To insure that the temperature of the LM135 die is not affected by the air temperature, mechanically connect the LM135 leads with a bead of epoxy to the surface being measured. If air temperature is targeted for measurement ensure that the PCB surface temperature is close to the air temperature. Keep the LM135 away from offending PCB heat sources such as power regulators. One method commonly used for thermal isolation is to route a thermal well as showninFigure33withthesmallestpossiblegeometrytracesconnectingbacktorestofthePCB. 10.2 Layout Example VIA to ground plane VIA to power plane ADJ - N.C. N.C. N.C. N.C. + N.C. R1 Figure33. LayoutExample 16 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A www.ti.com SNIS160E–MAY1999–REVISEDFEBRUARY2015 10.3 Waterproofing Sensors Meltable inner-core, heat-shrinkable tubing, such as manufactured by Raychem, can be used to make low-cost waterproof sensors. The LM335 is inserted into the tubing about 0.5 inches from the end and the tubing heated abovethemeltingpointofthecore.Theunfilled0.5-inchendmeltsandprovidesasealoverthedevice. 10.4 Mounting the Sensor at the End of a Cable The main error due to a long wire is caused by the voltage drop across that wire caused by the reverse current biasingtheLM135on.Table2showsthewireAWGandthelengthofwirethatwouldcause1°Cerror. Figure34. CableConnectedTemperatureSensor Table2.WireLengthfor1°CErrorDuetoWireDrop I =1mA I =0.5mA(1) R R AWG FEET FEET 14 4000 8000 16 2500 5000 18 1600 3200 20 1000 2000 22 625 1250 24 400 800 (1) ForI =0.5mA,thetrimpotmustbedeleted. R Copyright©1999–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

LM135,LM135A,LM235,LM235A,LM335,LM335A SNIS160E–MAY1999–REVISEDFEBRUARY2015 www.ti.com 11 Device and Documentation Support 11.1 Device Support 11.1.1 DeviceNomenclature OperatingOutputVoltage: Thevoltageappearingacrossthepositiveandnegativeterminalsofthedeviceat specifiedconditionsofoperatingtemperatureandcurrent. UncalibratedTemperatureError: Theerrorbetweentheoperatingoutputvoltageat10mV/°Kandcase temperatureatspecifiedconditionsofcurrentandcasetemperature. CalibratedTemperatureError: Theerrorbetweenoperatingoutputvoltageandcasetemperatureat10mV/°K overatemperaturerangeataspecifiedoperatingcurrentwiththe25°Cerroradjustedtozero. 11.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table3.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LM135 Clickhere Clickhere Clickhere Clickhere Clickhere LM135A Clickhere Clickhere Clickhere Clickhere Clickhere LM235 Clickhere Clickhere Clickhere Clickhere Clickhere LM235A Clickhere Clickhere Clickhere Clickhere Clickhere LM335 Clickhere Clickhere Clickhere Clickhere Clickhere LM335A Clickhere Clickhere Clickhere Clickhere Clickhere 11.3 Trademarks Alltrademarksarethepropertyoftheirrespectiveowners. 11.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 18 SubmitDocumentationFeedback Copyright©1999–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM135 LM135A LM235 LM235A LM335 LM335A

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM135AH ACTIVE TO NDV 3 500 TBD Call TI Call TI -55 to 150 ( LM135AH, LM135AH ) LM135AH/NOPB ACTIVE TO NDV 3 500 Green (RoHS Call TI Level-1-NA-UNLIM -55 to 150 ( LM135AH, LM135AH & no Sb/Br) ) LM135H ACTIVE TO NDV 3 500 TBD Call TI Call TI -55 to 150 ( LM135H, LM135H) LM135H/NOPB ACTIVE TO NDV 3 500 Green (RoHS Call TI Level-1-NA-UNLIM -55 to 150 ( LM135H, LM135H) & no Sb/Br) LM235AH ACTIVE TO NDV 3 500 TBD Call TI Call TI -40 to 125 ( LM235AH, LM235AH ) LM235AH/NOPB ACTIVE TO NDV 3 500 Green (RoHS Call TI Level-1-NA-UNLIM -40 to 125 ( LM235AH, LM235AH & no Sb/Br) ) LM235H ACTIVE TO NDV 3 500 TBD Call TI Call TI -40 to 125 ( LM235H, LM235H) LM235H/NOPB ACTIVE TO NDV 3 500 Green (RoHS Call TI Level-1-NA-UNLIM -40 to 125 ( LM235H, LM235H) & no Sb/Br) LM335A MWC ACTIVE WAFERSALE YS 0 1 TBD Call TI Call TI -40 to 85 LM335AH/NOPB ACTIVE TO NDV 3 1000 Green (RoHS Call TI Level-1-NA-UNLIM -40 to 100 ( LM335AH, LM335AH & no Sb/Br) ) LM335AM NRND SOIC D 8 95 TBD Call TI Call TI -40 to 100 LM335 AM LM335AM/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 100 LM335 & no Sb/Br) AM LM335AMX NRND SOIC D 8 2500 TBD Call TI Call TI -40 to 100 LM335 AM LM335AMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 100 LM335 & no Sb/Br) AM LM335AZ/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS SN N / A for Pkg Type -40 to 100 LM335 & no Sb/Br) AZ LM335H ACTIVE TO NDV 3 1000 TBD Call TI Call TI -40 to 100 ( LM335H, LM335H) LM335H/NOPB ACTIVE TO NDV 3 1000 Green (RoHS Call TI Level-1-NA-UNLIM -40 to 100 ( LM335H, LM335H) & no Sb/Br) LM335M NRND SOIC D 8 95 TBD Call TI Call TI -40 to 100 LM335 M Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM335M/NOPB ACTIVE SOIC D 8 95 Green (RoHS SN Level-1-260C-UNLIM -40 to 100 LM335 & no Sb/Br) M LM335MX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS SN Level-1-260C-UNLIM -40 to 100 LM335 & no Sb/Br) M LM335Z/LFT7 ACTIVE TO-92 LP 3 2000 Green (RoHS SN N / A for Pkg Type LM335 & no Sb/Br) Z LM335Z/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS SN N / A for Pkg Type -40 to 100 LM335 & no Sb/Br) Z (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 2

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM335AMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM335AMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM335MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM335AMX SOIC D 8 2500 367.0 367.0 35.0 LM335AMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 LM335MX/NOPB SOIC D 8 2500 367.0 367.0 35.0 PackMaterials-Page2

PACKAGE OUTLINE NDV0003H TO-CAN - 2.67 mm max height SCALE 1.250 TO-46 4.95 4.55 0.76 MAX 2.67 MAX 0.64 MAX UNCONTROLLED LEAD DIA 3X 12.7 MIN 0.483 3X 0.407 5.32-5.56 2 1 3 45 ( 2.54) 1.16 0.92 1.22 0.72 4219876/A 01/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC registration TO-46. www.ti.com

EXAMPLE BOARD LAYOUT NDV0003H TO-CAN - 2.67 mm max height TO-46 (2.54) 0.07 MAX ( 1.2) ALL AROUND METAL 3 3X ( 0.7) VIA SOLDER MASK OPENING (1.27) 1 (R0.05) TYP 2X ( 1.2) 2 METAL 0.07 MAX TYP 2X SOLDER MASK OPENING LAND PATTERN EXAMPLE NON-SOLDER MASK DEFINED SCALE:12X 4219876/A 01/2017 www.ti.com

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

PACKAGE OUTLINE LP0003A TO-92 - 5.34 mm max height SCALE 1.200 SCALE 1.200 TO-92 5.21 4.44 EJECTOR PIN OPTIONAL 5.34 4.32 (1.5) TYP (2.54) SEATING 2X NOTE 3 PLANE 4 MAX (0.51) TYP 6X 0.076 MAX SEATING PLANE 3X 12.7 MIN 0.43 2X 0.55 3X 3X 0.35 2.6 0.2 0.38 2X 1.27 0.13 FORMED LEAD OPTION OTHER DIMENSIONS IDENTICAL STRAIGHT LEAD OPTION TO STRAIGHT LEAD OPTION 2.67 3X 2.03 4.19 3.17 3 2 1 3.43 MIN 4215214/B 04/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Lead dimensions are not controlled within this area. 4. Reference JEDEC TO-226, variation AA. 5. Shipping method: a. Straight lead option available in bulk pack only. b. Formed lead option available in tape and reel or ammo pack. c. Specific products can be offered in limited combinations of shipping medium and lead options. d. Consult product folder for more information on available options. www.ti.com

EXAMPLE BOARD LAYOUT LP0003A TO-92 - 5.34 mm max height TO-92 FULL R TYP 0.05 MAX (1.07) ALL AROUND METAL 3X ( 0.85) HOLE TYP TYP 2X METAL (1.5) 2X (1.5) 2X SOLDER MASK OPENING 1 2 3 (R0.05) TYP 2X (1.07) (1.27) SOLDER MASK (2.54) OPENING LAND PATTERN EXAMPLE STRAIGHT LEAD OPTION NON-SOLDER MASK DEFINED SCALE:15X 0.05 MAX ( 1.4) 2X ( 1.4) ALL AROUND METAL TYP 3X ( 0.9) HOLE METAL 2X (R0.05) TYP 1 2 3 SOLDER MASK OPENING (2.6) SOLDER MASK OPENING (5.2) LAND PATTERN EXAMPLE FORMED LEAD OPTION NON-SOLDER MASK DEFINED SCALE:15X 4215214/B 04/2017 www.ti.com

TAPE SPECIFICATIONS LP0003A TO-92 - 5.34 mm max height TO-92 13.7 11.7 32 23 (2.5) TYP 0.5 MIN 16.5 15.5 11.0 9.75 8.5 8.50 19.0 17.5 2.9 6.75 3.7-4.3 TYP TYP 2.4 5.95 13.0 12.4 FOR FORMED LEAD OPTION PACKAGE 4215214/B 04/2017 www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated