ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > LM2904VDR2G
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LM2904VDR2G产品简介:
ICGOO电子元器件商城为您提供LM2904VDR2G由ON Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM2904VDR2G价格参考。ON SemiconductorLM2904VDR2G封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, General Purpose Amplifier 2 Circuit 8-SOIC。您可以下载LM2904VDR2G参考资料、Datasheet数据手册功能说明书,资料中有LM2904VDR2G 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 1MHZ 8SOIC运算放大器 - 运放 3-26V Dual Lo PWR Extended Temp |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | ON Semiconductor |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,运算放大器 - 运放,ON Semiconductor LM2904VDR2G- |
数据手册 | |
产品型号 | LM2904VDR2G |
PCN组件/产地 | |
产品种类 | 运算放大器 - 运放 |
供应商器件封装 | 8-SOIC N |
共模抑制比—最小值 | 50 dB |
关闭 | No Shutdown |
其它名称 | LM2904VDR2GOS |
包装 | 带卷 (TR) |
压摆率 | 0.6 V/µs |
双重电源电压 | +/- 3 V, +/- 5 V, +/- 9 V |
商标 | ON Semiconductor |
增益带宽生成 | 1 MHz |
增益带宽积 | 1MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | -40°C ~ 125°C |
工作电源电压 | 3 V to 32 V, +/- 1.5 V to +/- 16 V |
工厂包装数量 | 2500 |
技术 | Bipolar |
放大器类型 | 通用 |
最大双重电源电压 | +/- 16 V |
最大工作温度 | + 125 C |
最小双重电源电压 | +/- 1.5 V |
最小工作温度 | - 40 C |
标准包装 | 2,500 |
电压-电源,单/双 (±) | 3 V ~ 32 V, ±1.5 V ~ 16 V |
电压-输入失调 | 2mV |
电流-电源 | 1.5mA |
电流-输入偏置 | 45nA |
电流-输出/通道 | 40mA |
电源电流 | 1.2 mA |
电路数 | 2 |
系列 | LM2904V |
转换速度 | 0.6 V/us |
输入偏压电流—最大 | 250 nA |
输入补偿电压 | 7 mV |
输出电流 | 40 mA |
输出类型 | - |
通道数量 | 2 Channel |
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 Single Supply Dual Operational Amplifiers www.onsemi.com Utilizing the circuit designs perfected for Quad Operational Amplifiers, these dual operational amplifiers feature low power drain, a common mode input voltage range extending to ground/VEE, and PDIP−8 single supply or split supply operation. The LM358 series is N, AN, VN SUFFIX equivalent to one−half of an LM324. 8 CASE 626 These amplifiers have several distinct advantages over standard 1 operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 32 V, with SOIC−8 quiescent currents about one−fifth of those associated with the 8 D, VD SUFFIX CASE 751 MC1741 (on a per amplifier basis). The common mode input range 1 includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. Micro8(cid:2) 8 DMR2 SUFFIX Features CASE 846A • Short Circuit Protected Outputs 1 • True Differential Input Stage • Single Supply Operation: 3.0 V to 32 V PIN CONNECTIONS • Low Input Bias Currents • Internally Compensated • Common Mode Range Extends to Negative Supply Output A 1 8 VCC • Single and Split Supply Operation Inputs A 2 +− 7 Output B 3 6 • ESD Clamps on the Inputs Increase Ruggedness of the Device VEE/Gnd4 −+ 5 Inputs B without Affecting Operation (Top View) • NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable ORDERING INFORMATION • See detailed ordering and shipping information in the package These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS dimensions section on page 10 of this data sheet. Compliant DEVICE MARKING INFORMATION See general marking information in the device marking section on page 11 of this data sheet. © Semiconductor Components Industries, LLC, 2016 1 Publication Order Number: October, 2016 − Rev. 32 LM358/D
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 3.0 V to VCC(max) VCC VCC 1.5 V to VCC(max) 1 1 2 2 1.5 V to VEE(max) VEE VEE/Gnd Single Supply Split Supplies Figure 1. Bias Circuitry Common to Both Output Amplifiers Q15 VCC Q22 Q16 Q14 Q13 40 k Q19 5.0 pF Q12 Q24 25 Q23 Q18 Q20 Inputs Q11 Q9 Q17 Q21 Q6 Q7 Q25 Q2 Q5 Q1 2.4 k Q8 Q10 Q3 Q4 Q26 2.0 k VEE/Gnd Figure 2. Representative Schematic Diagram (One−Half of Circuit Shown) www.onsemi.com 2
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.) Rating Symbol Value Unit Power Supply Voltages Vdc Single Supply VCC 32 Split Supplies VCC, VEE ±16 Input Differential Voltage Range (Note 1) VIDR ±32 Vdc Input Common Mode Voltage Range VICR −0.3 to 32 Vdc Output Short Circuit Duration tSC Continuous Junction Temperature TJ 150 °C Thermal Resistance, Junction−to−Air (Note 2) Case 846A R(cid:2)JA 238 °C/W Case 751 212 Case 626 161 Storage Temperature Range Tstg −65 to +150 °C Operating Ambient Temperature Range TA °C LM258 −25 to +85 LM358, LM358A, LM358E 0 to +70 LM2904, LM2904A, LM2904E −40 to +105 LM2904V, NCV2904 (Note 3) −40 to +125 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Split Power Supplies. 2. All R(cid:2)JA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 3. NCV2904 is qualified for automotive use. ESD RATINGS Rating HBM MM Unit ESD Protection at any Pin (Human Body Model − HBM, Machine Model − MM) NCV2904 (Note 3) 2000 200 V LM358E, LM2904E 2000 200 V LM358DG/DR2G, LM2904DG/DR2G 250 100 V All Other Devices 2000 200 V www.onsemi.com 3
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM258 LM358, LM358E LM358A Characteristic Symbol Min Typ Max Min Typ Max Min Typ Max Unit Input Offset Voltage VIO mV VCC = 5.0 V to 30 V, VIC = 0 V to VCC −1.7 V, VO (cid:2) 1.4 V, RS = 0 (cid:3) TA = 25°C − 2.0 5.0 − 2.0 7.0 − 2.0 3.0 TA = Thigh (Note 4) − − 7.0 − − 9.0 − − 5.0 TA = Tlow (Note 4) − − 7.0 − − 9.0 − − 5.0 Average Temperature Coefficient of Input Offset (cid:4)VIO/(cid:4)T − 7.0 − − 7.0 − − 7.0 − (cid:5)V/°C Voltage TA = Thigh to Tlow (Note 4) Input Offset Current IIO − 3.0 30 − 5.0 50 − 5.0 30 nA TA = Thigh to Tlow (Note 4) − − 100 − − 150 − − 75 Input Bias Current IIB − −45 −150 − −45 −250 − −45 −100 TA = Thigh to Tlow (Note 4) − −50 −300 − −50 −500 − −50 −200 Average Temperature Coefficient of Input Offset (cid:4)IIO/(cid:4)T − 10 − − 10 − − 10 − pA/°C Current TA = Thigh to Tlow (Note 4) Input Common Mode Voltage Range (Note 5), VICR 0 − 28.3 0 − 28.3 0 − 28.5 V VCC = 30 V VCC = 30 V, TA = Thigh to Tlow 0 − 28 0 − 28 0 − 28 Differential Input Voltage Range VIDR − − VCC − − VCC − − VCC V Large Signal Open Loop Voltage Gain AVOL V/mV RL = 2.0 k(cid:3), VCC = 15 V, For Large VO Swing, 50 100 − 25 100 − 25 100 − TA = Thigh to Tlow (Note 4) 25 − − 15 − − 15 − − Channel Separation CS − −120 − − −120 − − −120 − dB 1.0 kHz ≤ f ≤ 20 kHz, Input Referenced Common Mode Rejection CMR 70 85 − 65 70 − 65 70 − dB RS ≤ 10 k(cid:3) Power Supply Rejection PSR 65 100 − 65 100 − 65 100 − dB Output Voltage−High Limit VOH V TA = Thigh to Tlow (Note 4) VCC = 5.0 V, RL = 2.0 k(cid:3), TA = 25°C 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − VCC = 30 V, RL = 2.0 k(cid:3) 26 − − 26 − − 26 − − VCC = 30 V, RL = 10 k(cid:3) 27 28 − 27 28 − 27 28 − Output Voltage−Low Limit VOL − 5.0 20 − 5.0 20 − 5.0 20 mV VCC = 5.0 V, RL = 10 k(cid:3), TA = Thigh to Tlow (Note 4) Output Source Current IO(cid:2)+ mA VID = +1.0 V, VCC = 15 V 20 40 − 20 40 − 20 40 − TA = Thigh to Tlow (LM358A Only) 10 − − Output Sink Current IO(cid:2)− VID = −1.0 V, VCC = 15 V 10 20 − 10 20 − 10 20 − mA TA = Thigh to Tlow (LM358A Only) 5.0 − − mA VID = −1.0 V, VO = 200 mV 12 50 − 12 50 − 12 50 − (cid:5)A Output Short Circuit to Ground (Note 6) ISC − 40 60 − 40 60 − 40 60 mA Power Supply Current (Total Device) ICC mA TA = Thigh to Tlow (Note 4) VCC = 30 V, VO = 0 V, RL = ∞ − 1.5 3.0 − 1.5 3.0 − 1.5 2.0 VCC = 5 V, VO = 0 V, RL = ∞ − 0.7 1.2 − 0.7 1.2 − 0.7 1.2 4. LM258: Tlow = −25°C, Thigh = +85°C LM358, LM358A, LM358E: Tlow = 0°C, Thigh = +70°C LM2904/A/E: Tlow = −40°C, Thigh = +105°C LM2904V & NCV2904: Tlow = −40°C, Thigh = +125°C NCV2904 is qualified for automotive use. 5. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC − 1.7 V. 6. Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. www.onsemi.com 4
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = Gnd, TA = 25°C, unless otherwise noted.) LM2904/LM2904E LM2904A LM2904V, NCV2904 Characteristic Symbol Min Typ Max Min Typ Max Min Typ Max Unit Input Offset Voltage VIO mV VCC = 5.0 V to 30 V, VIC = 0 V to VCC −1.7 V, VO (cid:2) 1.4 V, RS = 0 (cid:3) TA = 25°C − 2.0 7.0 − 2.0 7.0 − − 7.0 TA = Thigh (Note 7) − − 10 − − 10 − − 13 TA = Tlow (Note 7) − − 10 − − 10 − − 10 Average Temperature Coefficient of Input Offset (cid:4)VIO/(cid:4)T − 7.0 − − 7.0 − − 7.0 − (cid:5)V/°C Voltage TA = Thigh to Tlow (Note 7) Input Offset Current IIO − 5.0 50 − 5.0 50 − 5.0 50 nA TA = Thigh to Tlow (Note 7) − 45 200 − 45 200 − 45 200 Input Bias Current IIB − −45 −250 − −45 −100 − −45 −250 TA = Thigh to Tlow (Note 7) − −50 −500 − −50 −250 − −50 −500 Average Temperature Coefficient of Input Offset (cid:4)IIO/(cid:4)T − 10 − − 10 − − 10 − pA/°C Current TA = Thigh to Tlow (Note 7) Input Common Mode Voltage Range (Note 8), VICR 0 − 28.3 0 − 28.3 0 − 28.3 V VCC = 30 V VCC = 30 V, TA = Thigh to Tlow 0 − 28 0 − 28 0 − 28 Differential Input Voltage Range VIDR − − VCC − − VCC − − VCC V Large Signal Open Loop Voltage Gain AVOL V/mV RL = 2.0 k(cid:3), VCC = 15 V, For Large VO Swing, 25 100 − 25 100 − 25 100 − TA = Thigh to Tlow (Note 7) 15 − − 15 − − 15 − − Channel Separation CS − −120 − − −120 − − −120 − dB 1.0 kHz ≤ f ≤ 20 kHz, Input Referenced Common Mode Rejection CMR 50 70 − 50 70 − 50 70 − dB RS ≤ 10 k(cid:3) Power Supply Rejection PSR 50 100 − 50 100 − 50 100 − dB Output Voltage−High Limit VOH V TA = Thigh to Tlow (Note 7) VCC = 5.0 V, RL = 2.0 k(cid:3), TA = 25°C 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − VCC = 30 V, RL = 2.0 k(cid:3) 26 − − 26 − − 26 − − VCC = 30 V, RL = 10 k(cid:3) 27 28 − 27 28 − 27 28 − Output Voltage−Low Limit VOL − 5.0 20 − 5.0 20 − 5.0 20 mV VCC = 5.0 V, RL = 10 k(cid:3), TA = Thigh to Tlow (Note 7) Output Source Current IO(cid:2)+ 20 40 − 20 40 − 20 40 − mA VID = +1.0 V, VCC = 15 V Output Sink Current IO(cid:2)− VID = −1.0 V, VCC = 15 V 10 20 − 10 20 − 10 20 − mA VID = −1.0 V, VO = 200 mV − − − − − − − − − (cid:5)A Output Short Circuit to Ground (Note 9) ISC − 40 60 − 40 60 − 40 60 mA Power Supply Current (Total Device) ICC mA TA = Thigh to Tlow (Note 7) VCC = 30 V, VO = 0 V, RL = ∞ − 1.5 3.0 − 1.5 3.0 − 1.5 3.0 VCC = 5 V, VO = 0 V, RL = ∞ − 0.7 1.2 − 0.7 1.2 − 0.7 1.2 7. LM258: Tlow = −25°C, Thigh = +85°C LM358, LM358A, LM358E: Tlow = 0°C, Thigh = +70°C LM2904/A/E: Tlow = −40°C, Thigh = +105°C LM2904V & NCV2904: Tlow = −40°C, Thigh = +125°C NCV2904 is qualified for automotive use. 8. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC − 1.7 V. 9. Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 5
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 CIRCUIT DESCRIPTION The LM358 series is made using two internally compensated, two−stage operational amplifiers. The first VRCL C= =2 .105 k V(cid:3)dc stage of each consists of differential input devices Q20 and TA = 25°C Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first V stage performs not only the first stage gain function but also DI V/ performs the level shifting and transconductance reduction 0 1. functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common 5.0 (cid:5)s/DIV mode range can include the negative supply or ground, in single supply operation, without saturating either the input Figure 3. Large Signal Voltage devices or the differential to single−ended converter. The Follower Response second stage consists of a standard current source load amplifier stage. Each amplifier is biased from an internal−voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. 20 120 B) GE (V) 111684 GE GAIN (d 18000 VVTACE EC= ==2 5G1°5nC dV OLTA 12 OLTA 60 V V V , INPUT I 6 81..000 Negative Positive PEN LOOP 4200 O 4.0 , OL 0 2.0 V A 0 -20 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 1.0 10 100 1.0 k 10 k 100 k 1.0 M VCC/VEE, POWER SUPPLY VOLTAGES (V) f, FREQUENCY (Hz) Figure 4. Input Voltage Range Figure 5. Large−Signal Open Loop Voltage Gain www.onsemi.com 6
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 14 550 E (V)pp 12 RVCL C= =2 .105 k V(cid:3) mV) 500 Input VVTACE EC= ==2 5G3°0nC dV ANG 10 VGEaEin = = G -n1d00 GE ( 450 CL = 50 pF AGE R 8.0 RRIF == 11.000 k (cid:3)k(cid:3) VOLTA 400 Output VOLT 6.0 PUT 350 OUTPUT 4.0 V, OUTO320500 , OR 2.0 200 V 0 0 1.0 10 100 1000 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 f, FREQUENCY (kHz) t, TIME (ms) Figure 6. Large−Signal Frequency Response Figure 7. Small Signal Voltage Follower Pulse Response (Noninverting) 2.4 mA) 2.1 TA = 25°C NT ( RL = (cid:3) A) 90 RRE 1.8 NT (n U 1.5 E C R Y R PL 1.2 CU UP S ER S 0.9 T BIA 80 W U I , POCC 00..63 I , INPIB 0 70 0 5.0 10 15 20 25 30 35 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 VCC, POWER SUPPLY VOLTAGE (V) VCC, POWER SUPPLY VOLTAGE (V) Figure 8. Power Supply Current versus Figure 9. Input Bias Current versus Power Supply Voltage Supply Voltage www.onsemi.com 7
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 50 k R1 VCC R2 VCC 5.0 k - 1L/M2358 VO Vref 10 k 1-/2 VCC MC1403 + LM358 VO 2.5 V + 1 1 fo = 2 (cid:6) RC Vref = 2 VCC VO = 2.5 V (1 +RR12 ) R C R C For: fRCo === 101..600 1kk(cid:3) H(cid:5)zF Figure 10. Voltage Reference Figure 11. Wien Bridge Oscillator 1 e1 + CR R 1/2 LM358 R2 Hysteresis - VOH R1 R1 a R1 -1L/M2358 eo Vref 1+/2 VO LM358 b R1 + Vin - VO VOL - 1R VinL VinH C 1L/M2358 VinL = R1R +1 R2 (VOL - Vref)+ Vref Vref e2 + R R1 VinH = R1 + R2 (VOH - Vref) + Vref eo = C (1 + a + b) (e2 - e1) H = R1 R+ 1R2 (VOH - VOL) Figure 12. High Impedance Differential Amplifier Figure 13. Comparator with Hysteresis 1 R fo = 2 (cid:6) R 100 k RC R1 = QR 1 Vin C1 R2 1-/2C R C R2 = TRB1P Vref = 2 VCC - L+M358 1/2 100 k - R3 = TN R2 LM358 1/2 C1 = 10 C + LM358 Vref + For: fo = 1.0 kHz Bandpass Vref Q = 10 Vref Output R3 TBP= 1 R1 TN = 1 R2 - C1 1/2 Notch Output R = 160 k(cid:3) LM358 + C = 0.001 (cid:5)F R1= 1.6 M(cid:3) Vref Where: TTBNP (cid:2) == PCaesnstbear nFdre Nqoutecnhc Gy aGinain RR23== 11..66 MM(cid:3)(cid:3) Figure 14. Bi−Quad Filter www.onsemi.com 8
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 VCC C R3 R1 C Vin - 1/2 LM358 VO + CO R2 CO = 10 C Vref 1 Vref =2 VCC Given: fo = center frequency A(fo) = gain at center frequency Choose value fo, C Q Vref = 21 VCC TrianOguletp Wutave R2 Then: R3 = (cid:6) fo C 300 k R3 Vref 1+/2 R3 + R1 = 2 A(fo) LM358 75 k 1/2 R2 = R1 R3 - R1 100 k LM358 Square 4Q2 R1 -R3 - C Vref WOuatvpeut For less than 10% error from operational amplifier. QBoW fo < 0.1 Rf Where fo and BW are expressed in Hz. f = R1 + RC if, R3 = R2 R1 If source impedance varies, filter may be preceded with voltage 4 CRf R1 R2 + R1 follower buffer to stabilize filter parameters. Figure 15. Function Generator Figure 16. Multiple Feedback Bandpass Filter www.onsemi.com 9
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 ORDERING INFORMATION Device Operating Temperature Range Package Shipping† LM358ADR2G 2500 / Tape & Reel SOIC−8 LM358DG 98 Units / Rail (Pb−Free) LM358DR2G 2500 / Tape & Reel LM358EDR2G SOIC−8 2500 / Tape & Reel 0°Cto +70°C (Pb−Free) LM358DMR2G Micro8 4000 / Tape & Reel (Pb−Free) LM358NG PDIP−8 50 Units / Rail (Pb−Free) LM258DG 98 Units / Rail SOIC−8 LM258DR2G (Pb−Free) 2500 / Tape & Reel LM258DMR2G −25°Cto +85°C Micro8 4000 / Tape & Reel (Pb−Free) LM258NG PDIP−8 50 Units / Rail (Pb−Free) LM2904DG 98 Units / Rail SOIC−8 LM2904DR2G (Pb−Free) 2500 / Tape & Reel LM2904EDR2G SOIC−8 2500 / Tape & Reel (Pb−Free) LM2904DMR2G Micro8 2500 / Tape & Reel (Pb−Free) −40°Cto +105°C LM2904NG PDIP−8 50 Units / Rail (Pb−Free) LM2904ADMG 4000 / Tape & Reel Micro8 LM2904ADMR2G (Pb−Free) 4000 / Tape & Reel LM2904ANG PDIP−8 50 Units / Rail (Pb−Free) LM2904VDG 98 Units / Rail SOIC−8 LM2904VDR2G (Pb−Free) 2500 / Tape & Reel LM2904VDMR2G Micro8 4000 / Tape & Reel (Pb−Free) LM2904VNG −40°Cto +125°C PDIP−8 50 Units / Rail (Pb−Free) NCV2904DR2G* SOIC−8 2500 / Tape & Reel (Pb−Free) NCV2904DMR2G* Micro8 4000 / Tape & Reel (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. www.onsemi.com 10
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 MARKING DIAGRAMS PDIP−8 PDIP−8 PDIP−8 N SUFFIX AN SUFFIX VN SUFFIX CASE 626 CASE 626 CASE 626 8 8 8 8 LMx58N LM2904N LM2904AN LM2904VN AWL AWL AWL AWL YYWWG YYWWG YYWWG YYWWG 1 1 1 1 SOIC−8 SOIC−8 D SUFFIX VD SUFFIX CASE 751 CASE 751 8 8 8 8 * LMx58 LM358 2904 2904V ALYW ALYWA ALYW ALYW (cid:2) (cid:2) (cid:2) (cid:2) 1 1 1 1 8 8 358E 2904E ALYWA ALYW (cid:2) (cid:2) 1 1 Micro8 DMR2 SUFFIX CASE 846A 8 8 8 8 * x58 2904 904A 904V AYW(cid:2) AYW(cid:2) AYW(cid:2) AYW(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 1 1 1 1 x = 2 or 3 *This diagram also applies to NCV2904 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb−Free Package (cid:2) = Pb−Free Package − (Note: Microdot may be in either location) www.onsemi.com 11
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 PACKAGE DIMENSIONS PDIP−8 N, AN, VN SUFFIX CASE 626−05 ISSUE P D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. E 2. CONTROLLING DIMENSION: INCHES. H 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK- AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3. 8 5 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE E1 NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR 1 4 TO DATUM C. 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE NOTE 8 c LEADS UNCONSTRAINED. b2 B 7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE END VIEW LEADS, WHERE THE LEADS EXIT THE BODY. TOP VIEW WITH LEADS CONSTRAINED 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS). NOTE 5 INCHES MILLIMETERS A2 DIM MIN MAX MIN MAX e/2 A A −−−− 0.210 −−− 5.33 NOTE 3 A1 0.015 −−−− 0.38 −−− A2 0.115 0.195 2.92 4.95 L b 0.014 0.022 0.35 0.56 b2 0.060 TYP 1.52 TYP C 0.008 0.014 0.20 0.36 D 0.355 0.400 9.02 10.16 SEATING A1 PLANE D1 0.005 −−−− 0.13 −−− E 0.300 0.325 7.62 8.26 C M E1 0.240 0.280 6.10 7.11 D1 e 0.100 BSC 2.54 BSC e eB eB −−−− 0.430 −−− 10.92 L 0.115 0.150 2.92 3.81 8Xb END VIEW M −−−− 10° −−− 10° 0.010 M C A M B M NOTE 6 SIDE VIEW www.onsemi.com 12
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK NOTES: −X− 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. A 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 8 5 PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR B S 0.25 (0.010) M Y M PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL 1 IN EXCESS OF THE D DIMENSION AT −Y− 4 K 6. 7M5A1X−I0M1U TMH RMUA T7E51R−IA0L6 CAROEN DOIBTSIOONL.ETE. NEW STANDARD IS 751−07. G MILLIMETERS INCHES DIM MIN MAX MIN MAX A 4.80 5.00 0.189 0.197 C NX 45(cid:3) B 3.80 4.00 0.150 0.157 SEATING C 1.35 1.75 0.053 0.069 PLANE D 0.33 0.51 0.013 0.020 −Z− G 1.27 BSC 0.050 BSC H 0.10 0.25 0.004 0.010 0.10 (0.004) J 0.19 0.25 0.007 0.010 H D M J K 0.40 1.27 0.016 0.050 M 0 (cid:3) 8 (cid:3) 0 (cid:3) 8 (cid:3) N 0.25 0.50 0.010 0.020 0.25 (0.010)M Z Y S X S S 5.80 6.20 0.228 0.244 SOLDERING FOOTPRINT* 1.52 0.060 7.0 4.0 0.275 0.155 0.6 1.270 0.024 0.050 (cid:4) (cid:5) mm SCALE 6:1 inches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 13
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904 PACKAGE DIMENSIONS Micro8(cid:4) CASE 846A−02 ISSUE J DD NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. HE E 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02. MILLIMETERS INCHES DIM MIN NOM MAX MIN NOM MAX PIN 1 ID e A −− −− 1.10 −− −− 0.043 b8 PL A1 0.05 0.08 0.15 0.002 0.003 0.006 b 0.25 0.33 0.40 0.010 0.013 0.016 0.08 (0.003) M T B S A S c 0.13 0.18 0.23 0.005 0.007 0.009 D 2.90 3.00 3.10 0.114 0.118 0.122 E 2.90 3.00 3.10 0.114 0.118 0.122 e 0.65 BSC 0.026 BSC SEATING L 0.40 0.55 0.70 0.016 0.021 0.028 −T− PLANE HE 4.75 4.90 5.05 0.187 0.193 0.199 0.038 (0.0015) A A1 c L RECOMMENDED SOLDERING FOOTPRINT* 8X 8X0.48 0.80 5.25 0.65 PITCH DIMENSION: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Micro8 is a trademark of International Rectifier. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free ON Semiconductor Website: www.onsemi.com Literature Distribution Center for ON Semiconductor USA/Canada 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Phone: 421 33 790 2910 Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Japan Customer Focus Center For additional information, please contact your local Email: orderlit@onsemi.com Phone: 81−3−5817−1050 Sales Representative ◊ www.onsemi.com LM358/D 14
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: O N Semiconductor: NCV2904DMR2 NCV2904DMR2G NCV2904DR2 NCV2904DR2G LM258D LM258DG LM258DMR2 LM258DMR2G LM258DR2 LM258DR2G LM258N LM258NG LM2904ADMG LM2904ADMR2 LM2904ADMR2G LM2904AN LM2904ANG LM2904D LM2904DG LM2904DMR2 LM2904DMR2G LM2904DR2 LM2904DR2G LM2904N LM2904NG LM2904VD LM2904VDG LM2904VDMR2 LM2904VDMR2G LM2904VDR2 LM2904VDR2G LM2904VN LM2904VNG LM358D LM358DMR2 LM358DR2 LM358N NCV2904VDR2G SC358DR2G SC2904DR2G TY30533R2G SC2904VDR2G SC258DR2G LM358EDR2G LM2904EDR2G LM2904DR2GH