ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > LM2731YMF/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LM2731YMF/NOPB产品简介:
ICGOO电子元器件商城为您提供LM2731YMF/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM2731YMF/NOPB价格参考。Texas InstrumentsLM2731YMF/NOPB封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 可调式 升压 开关稳压器 IC 正 2.7V 1 输出 1.8A(开关) SC-74A,SOT-753。您可以下载LM2731YMF/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM2731YMF/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BOOST ADJ 1.8A SOT23-5稳压器—开关式稳压器 0.6/1.6MHZ BOOST CONVERTER |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments LM2731YMF/NOPB- |
数据手册 | |
产品型号 | LM2731YMF/NOPB |
PWM类型 | 电流模式 |
产品目录页面 | |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | SOT-23-5 |
其它名称 | *LM2731YMF |
包装 | 剪切带 (CT) |
同步整流器 | 无 |
商标 | Texas Instruments |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | SC-74A,SOT-753 |
封装/箱体 | SOT-23 |
工作温度 | -40°C ~ 125°C |
工厂包装数量 | 1000 |
开关频率 | 600 kHz |
拓扑结构 | Boost |
最大工作温度 | + 125 C |
最大输入电压 | 20 V |
最小工作温度 | - 40 C |
标准包装 | 1 |
电压-输入 | 2.7 V ~ 14 V |
电压-输出 | 1.23 V ~ 22 V |
电流-输出 | 1.8A |
类型 | Step Up |
系列 | LM2731 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
输出数 | 1 |
输出电压 | 1.23 V to 22 V |
输出电流 | 1.8 A |
输出端数量 | 1 Output |
输出类型 | 可调式 |
配用 | /product-detail/zh/LM2731YEVAL/LM2731YEVAL-ND/1640613 |
频率-开关 | 600kHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 LM2731 0.6/1.6-MHz Boost Converters With 22-V Internal FET Switch in SOT-23 1 Features 3 Description • 22-VDMOSFETSwitch The LM2731 switching regulators are current-mode 1 boost converters operating at fixed frequencies of 1.6 • 1.6-MHz(XOption),0.6-MHz(YOption)Switching MHz(Xoption)and600kHz(Yoption). Frequency The use of SOT-23 package, made possible by the • LowR (ON)DMOSFET DS minimal power loss of the internal 1.8-A switch, and • SwitchCurrentUpto1.8A use of small inductors and capacitors result in the • WideInputVoltageRange(2.7Vto14V) highest power density of the industry. The 22-V internal switch makes these solutions perfect for • LowShutdownCurrent(<1µA) boostingtovoltagesupto20V. • 5-LeadSOT-23Package These parts have a logic-level shutdown pin that can • UsesTinyCapacitorsandInductors reducequiescentcurrentandextendbatterylife. • Cycle-by-CycleCurrentLimiting Protection is provided through cycle-by-cycle current • InternallyCompensated limiting and thermal shutdown. Internal compensation simplifiesdesignandreducescomponentcount. 2 Applications • WhiteLEDCurrentSources DeviceInformation(1) • PDAsandPalm-TopComputers PARTNUMBER PACKAGE BODYSIZE(NOM) • DigitalCameras LM2731 SOT-23(5) 1.60mm×2.90mm • PortablePhonesandGames (1) For all available packages, see the orderable addendum at theendofthedatasheet. • LocalBoostRegulators BlockDiagram 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 8 ApplicationandImplementation........................ 13 2 Applications........................................................... 1 8.1 ApplicationInformation............................................13 3 Description............................................................. 1 8.2 TypicalApplication..................................................13 4 RevisionHistory..................................................... 2 8.3 SystemExamples...................................................18 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 20 6 Specifications......................................................... 3 10 Layout................................................................... 20 6.1 AbsoluteMaximumRatings......................................3 10.1 LayoutGuidelines.................................................20 6.2 ESDRatings..............................................................3 10.2 LayoutExample....................................................20 6.3 RecommendedOperatingConditions.......................4 10.3 ThermalConsiderations........................................21 6.4 ThermalInformation..................................................4 11 DeviceandDocumentationSupport................. 22 6.5 ElectricalCharacteristics...........................................5 11.1 DeviceSupport......................................................22 6.6 TypicalCharacteristics..............................................7 11.2 CommunityResources..........................................22 7 DetailedDescription............................................ 11 11.3 Trademarks...........................................................22 7.1 Overview.................................................................11 11.4 ElectrostaticDischargeCaution............................22 7.2 FunctionalBlockDiagram.......................................11 11.5 Glossary................................................................22 7.3 FeatureDescription.................................................11 12 Mechanical,Packaging,andOrderable Information........................................................... 22 7.4 DeviceFunctionalModes........................................12 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionF(November2012)toRevisionG Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection. ................................................................................................ 1 2 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 5 Pin Configuration and Functions DBVPackage 5-PinSOT-23 TopView FB GND SW 3 2 1 4 5 SHDN V IN PinFunctions PIN I/O DESCRIPTION NAME NO. FB 3 I Feedbackpointthatconnectstoexternalresistivedivider. GND 2 PWR Analogandpowerground SHDN 4 I Shutdowncontrolinput.ConnecttoV ifthefeatureisnotused. IN SW 1 O DrainoftheinternalFETswitch V 5 PWR Analogandpowerinput IN 6 Specifications 6.1 Absolute Maximum Ratings(1) MIN MAX UNIT OperatingJunctionTemperature –40 125 °C LeadTemperature(Soldering,5sec.) 300 °C PowerDissipation(2) InternallyLimited FBPinVoltage –0.4 6 V SWPinVoltage –0.4 22 V InputSupplyVoltage –0.4 14.5 V SHDNPinVoltage –0.4 V +0.3 V IN StorageTemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Themaximumpowerdissipationwhichcanbesafelydissipatedforanyapplicationisafunctionofthemaximumjunctiontemperature, T(MAX)=125°C,thejunction-to-ambientthermalresistancefortheSOT-23package,R =265°C/W,andtheambienttemperature, J θJA T .Themaximumallowablepowerdissipationatanyambienttemperaturefordesignsusingthisdevicecanbecalculatedusingthe A T (MAX)-T 125-T P(MAX)= J A = A q 265 formula: J-A .Ifpowerdissipationexceedsthemaximumspecifiedabove,theinternalthermal protectioncircuitrywillprotectthedevicebyreducingtheoutputvoltageasrequiredtomaintainasafejunctiontemperature. 6.2 ESD Ratings VALUE UNIT V Electrostaticdischarge Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001(1)(2) ±2000 V (ESD) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) Thehumanbodymodelisa100-pFcapacitordischargedthrougha1.5-kΩresistorintoeachpin. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT V InputSupplyVoltage 2.7 14 V IN V SWPinVoltage 3 20 V sw V ShutdownSupplyVoltage(1) 0 VIN V shdn T JunctionTemperatureRange –40 125 ºC J (1) ThispinshouldnotbeallowedtofloatorbegreaterthanV +0.3V. IN 6.4 Thermal Information LM2731 THERMALMETRIC(1) DBV(SOT-23) UNIT 5PINS R Junction-to-ambientthermalresistance 209.9 °C/W θJA R Junction-to-case(top)thermalresistance 122 °C/W θJC(top) R Junction-to-boardthermalresistance 38.4 °C/W θJB ψ Junction-to-topcharacterizationparameter 12.8 °C/W JT ψ Junction-to-boardcharacterizationparameter 37.5 °C/W JB R Junction-to-case(bottom)thermalresistance N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 4 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 6.5 Electrical Characteristics LimitsareforT =25°C.Unlessotherwisespecified:V =5V,V =5V,I =0A. J IN SHDN L PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT VIN InputVoltage −40°C≤TJ≤125°C 2.7 14 V VIN=2.7V 7 −40°C≤TJ≤ 5.4 125°C RXLO=p4tio3nΩ(3) VIN=3.3V 10 −40°C≤TJ≤ 8 125°C VIN=5V 16 VIN=2.7V 7.5 −40°C≤TJ≤ 6 125°C RYLO=p4tio3nΩ(3) VIN=3.3V 11 −40°C≤TJ≤ 8.75 125°C VIN=5V 15 VOUT(MIN) MinimumOutputVoltageUnderLoad V VIN=2.7V 5 −40°C≤TJ≤ 3.75 125°C RXLO=p1tio5nΩ(3) VIN=3.3V 6.5 −40°C≤TJ≤ 5 125°C VIN=5V 10 VIN=2.7V 5 −40°C≤TJ≤ 4 125°C RYLO=p1tio5nΩ(3) VIN=3.3V 7 −40°C≤TJ≤ 5.5 125°C VIN=5V 10 TJ=25°C 1.8 2 ISW SwitchCurrentLimit See(4) −40°C≤TJ≤ 1.4 A 125°C TJ=25°C 260 400 ISW=100mA Vin=5V −40°C≤TJ≤ 500 125°C RDS(ON) SwitchON-Resistance mΩ TJ=25°C 300 450 ISW=100mA Vin=3.3V −40°C≤TJ≤ 550 125°C DeviceON −40°C≤TJ≤ 1.5 125°C SHDNTH ShutdownThreshold V DeviceOFF −40°C≤TJ≤ 0.5 125°C VSHDN=0 0 ISHDN ShutdownPinBiasCurrent TJ=25°C 0 µA VSHDN=5V −40°C≤TJ≤ 2 125°C TJ=25°C 1.230 VFB FeedbackPinReferenceVoltage VIN=3V −40°C≤TJ≤ 1.205 1.255 V 125°C TJ=25°C 60 IFB FeedbackPinBiasCurrent VFB=1.23V −40°C≤TJ≤ 500 nA 125°C (1) Limitsareensuredbytesting,statisticalcorrelation,ordesign. (2) Typicalvaluesarederivedfromthemeanvalueofalargequantityofsamplestestedduringcharacterizationandrepresentthemost likelyexpectedvalueoftheparameteratroomtemperature. (3) L=10µH,C =4.7µF,dutycycle=maximum OUT (4) Switchcurrentlimitisdependentondutycycle(seeTypicalCharacteristics). Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com Electrical Characteristics (continued) LimitsareforT =25°C.Unlessotherwisespecified:V =5V,V =5V,I =0A. J IN SHDN L PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT TJ=25°C 2 VSHDN=5V,Switching "X" −40°C≤TJ≤ 3 125°C mA TJ=25°C 1 VSHDN=5V,Switching IQ QuiescentCurrent "Y" −12450°°CC≤TJ≤ 2 TJ=25°C 400 VSHDN=5V,Not Switching −40°C≤TJ≤ 500 µA 125°C VSHDN=0 0.024 1 ΔVFB/ΔVIN FBVoltageLineRegulation 2.7V≤VIN≤14V 0.02 %/V TJ=25°C 1.6 “X”Option −40°C≤TJ≤ 1 1.85 125°C FSW SwitchingFrequency(5) MHz TJ=25°C 0.6 “Y”Option −40°C≤TJ≤ 0.4 0.8 125°C TJ=25°C 86% “X”Option −40°C≤TJ≤ 78% 125°C DMAX MaximumDutyCycle(5) TJ=25°C 93% “Y”Option −40°C≤TJ≤ 88% 125°C IL SwitchLeakage NotSwitchingVSW=5V 1 µA (5) SpecifiedlimitsarethesameforVin=3.3Vinput. 6 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 6.6 Typical Characteristics Unlessotherwisespecified:V =5V,SHDNpintiedtoV . IN IN 2.2 1.25 2.15 1.2 2.1 A) 1.15 A) m VE (m 2.05 TIVE ( 1.1 V ACTIQIN 1.952 I V ACQIN 1.015 I 1.9 0.95 1.85 0.9 -50 -25 0 25 50 75 100 125 150 1.8 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (oC) TEMPERATURE (oC) Figure1.IqVIN(Active)vsTemperature-XOption Figure2.IqVIN(Active)vsTemperature-YOption 1.58 0.6 Hz) 1.56 VIN = 5V Hz) 0.58 VIN = 5V M 1.54 M Y ( Y ( ENC 1.52 VIN = 3.3V ENC 0.56 VIN = 3.3V U U Q 1.5 Q E E 0.54 R R F 1.48 F R R O O T 1.46 T 0.52 A A L L L L CI 1.44 CI S S 0.5 O O 1.42 1.4 0.48 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (oC) TEMPERATURE (oC) Figure3.OscillatorFrequencyvsTemperature-XOption Figure4.OscillatorFrequencyvsTemperature-YOption 0.6 96.8 Hz) 0.58 VIN = 5V 96.7 M 96.6 Y ( %) QUENC 0.56 VIN = 3.3V YCLE ( 9966..45 VIN = 3.3V E 0.54 C R FR UTY 96.3 O D LLAT 0.52 MAX 96.2 VIN = 5V CI 96.1 S 0.5 O 96 0.48 95.9 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (oC) TEMPERATURE (oC) Figure5.MaximumDutyCyclevsTemperature-XOption Figure6.MaximumDutyCyclevsTemperature-YOption Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com Typical Characteristics (continued) Unlessotherwisespecified:V =5V,SHDNpintiedtoV . IN IN 380 0.09 375 0.08 370 A) 0.07 P T ( A)P 365 REN 0.06 E) ( CUR 0.05 DL 360 AS (IN K BI 0.04 I VQI 355 DBAC 0.03 E E 350 F 0.02 345 0.01 340 0 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (oC) TEMPERATURE (oC) Figure7.I V (Idle)vsTemperature Figure8.FeedbackBiasCurrentvsTemperature q IN 1.231 0.5 1.23 0.45 0.4 V) 1.229 Vin = 3.3V GE ( 1.228 0.35 TA :) 0.3 VOL 1.227 (ON) 0.25 Vin = 5V ACK 1.226 RDS( 0.2 EDB 1.225 0.15 E F 1.224 0.1 1.223 0.05 1.222 0 -40 -25 0 25 50 75 100 125 -40 -25 0 25 50 75 100 125 TEMPERATURE (oC) TEMPERATURE (oC) Figure9.FeedbackVoltagevsTemperature Figure10.R (ON)vsTemperature DS 2.6 350 300 2.5 250 A) T ( 2.4 MI :) 200 LI m NT 2.3 (ON RE DS_ 150 R R CU 2.2 100 2.1 50 2 0 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 -40 -25 0 25 50 75 100 125 TEMPERATURE (oC) VIN (V) Figure11.CurrentLimitvsTemperature Figure12.R (ON)vsV DS IN 8 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 Typical Characteristics (continued) Unlessotherwisespecified:V =5V,SHDNpintiedtoV . IN IN 100 100 90 90 80 80 70 %) 70 NCY (%) 5600 CIENCY ( 5600 CIE 40 FFI 40 FI E EF 30 30 20 20 10 10 0 0 0 50 100 150 200 250 300 0 200 400 600 800 1000 1200 1400 LOAD (mA) LOAD (mA) VIN=2.7V VOUT=5V VIN=4.2V VOUT=5V Figure13.EfficiencyvsLoadCurrent-XOption Figure14.EfficiencyvsLoadCurrent-XOption 80 100 70 90 80 60 %) 70 EFFICIENCY (%) 345000 EFFICIENCY ( 456000 20 30 20 10 10 0 0 0 10 20 30 40 50 0 100 200 300 400 500 600 LOAD (mA) LOAD (mA) VIN=2.7V VOUT=12V VIN=5V VOUT=12V Figure15.EfficiencyvsLoadCurrent-XOption Figure16.EfficiencyvsLoadCurrent-XOption 100 100 90 90 80 80 70 %) 70 CY (%) 60 NCY ( 60 EN 50 CIE 50 FFICI 40 EFFI 40 E 30 30 20 20 10 10 0 0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 LOAD (mA) LOAD (mA) VIN=5V VOUT=18V VIN=2.7V VOUT=5V Figure17.EfficiencyvsLoadCurrent-XOption Figure18.EfficiencyvsLoadCurrent-YOption Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com Typical Characteristics (continued) Unlessotherwisespecified:V =5V,SHDNpintiedtoV . IN IN 100 100 90 90 80 80 CY (%) 6700 NCY (%) 6700 FICIEN 50 FFICIE 4500 F 40 E E 30 30 20 20 10 10 0 0 0 200 400 600 800 1000 12001400 0 200 400 600 800 1000 1200 1400 LOAD (mA) LOAD (mA) VIN=4.2V VOUT=5V V =3.3V V =5V IN OUT Figure19.EfficiencyvsLoadCurrent-YOption Figure20.EfficiencyvsLoadCurrent-YOption 100 100 90 90 80 80 CY (%) 6700 Y (%) 6700 EFFICIEN 4500 EFFICIENC 4500 30 30 20 20 10 10 0 0 0 20 40 60 80 0 50 100 150 200 250 LOAD (mA) LOAD (mA) VIN=2.7V VOUT=12V VIN=3.3V VOUT=12V Figure21.EfficiencyvsLoadCurrent-YOption Figure22.EfficiencyvsLoadCurrent-YOption 100 90 80 70 %) Y ( 60 C EN 50 CI FI 40 F E 30 20 10 0 0 100 200 300 400 500 600 LOAD (mA) V =5V V =12V IN OUT Figure23.EfficiencyvsLoadCurrent-YOption 10 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 7 Detailed Description 7.1 Overview The LM2731 device is a switching converter IC that operates at a fixed frequency (0.6 or 1.6 MHz) for fast transient response over a wide input voltage range and incorporates pulse-by-pulse current limiting protection. Because this is current mode control, a 33-mΩ sense resistor in series with the switch FET is used to provide a voltage (which is proportional to the FET current) to both the input of the pulse width modulation (PWM) comparatorandthecurrentlimitamplifier. 7.1.1 TheoryofOperation At the beginning of each cycle, the S-R latch turns on the FET. As the current through the FET increases, a voltage (proportional to this current) is summed with the ramp coming from the ramp generator and then fed into the input of the PWM comparator. When this voltage exceeds the voltage on the other input (coming from the Gmamplifier),thelatchresetsandturnstheFEToff.BecausethesignalcomingfromtheGmamplifierisderived from the feedback (which samples the voltage at the output), the action of the PWM comparator constantly sets thecorrectpeakcurrentthroughtheFETtokeeptheoutputvoltageinregulation. Q1 and Q2 along with R3 - R6 form a bandgap voltage reference used by the IC to hold the output in regulation. The currents flowing through Q1 and Q2 will be equal, and the feedback loop will adjust the regulated output to maintainthis.Becauseofthis,theregulatedoutputisalwaysmaintainedatavoltagelevelequaltothevoltageat theFBnode"multipliedup"bytheratiooftheoutputresistive-divider. The current limit comparator feeds directly into the flip-flop that drives the switch FET. If the FET current reaches the limit threshold, the FET is turned off and the cycle terminated until the next clock pulse. The current limit inputterminatesthepulseregardlessofthestatusoftheoutputofthePWMcomparator. 7.2 Functional Block Diagram 7.3 Feature Description TheLM2731isafixed-frequencyboostregulatorICthatdeliversaminimum1.8-Apeakswitchcurrent. The device provides cycle-by-cycle current limit protection as well as thermal shutdown protection. The device canalsobecontrolledthroughtheshutdownpin. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 7.4 Device Functional Modes 7.4.1 ShutdownPinOperation Thedeviceisturnedoffbypullingtheshutdownpinlow.Ifthisfunctionisnotgoingtobeused,thepinshouldbe tied directly to V . If the SHDN function will be needed, a pullup resistor must be used to V (approximately 50 IN IN kΩto100kΩrecommended).TheSHDNpinmustnotbeleftunterminated. 7.4.2 ThermalShutdown Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature exceeds 160°C. After thermal shutdown occurs, the output switch doesn’t turn on until the junction temperature dropstoapproximately150°C. 7.4.3 CurrentLimit The LM2731 uses cycle-by-cycle current limiting to protect the internal NMOS switch. It is important to note that this current limit will not protect the output from excessive current during an output short-circuit. The input supply is connected to the output by the series connection of an inductor and a diode. If a short circuit is placed on the output,excessivecurrentcandamageboththeinductoranddiode. 12 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information The device will operate with input voltage range from 2.7 V to 14 V and provide a regulated output voltage. This device is optimized for high-efficiency operation with minimum number of external components. For component selection,seeDetailedDesignProcedure. 8.2 Typical Application 100 D1 L1/10PH MBR0520 5 - 12V Boost 5 VIN ^y_(cid:3)s(cid:30)(cid:140)(cid:144)]}v VIN U1 SW 90 R3 LM2731 ‡;· R1/117K 12V %) SHDN 51K OUT Y ( FB 500mA C SHDN (TYP) EN C1 GND EFFICI 80 2.2PF R2 CF C2 GND 13.3K 220pF 4.7PF 70 0 100 200 300 400 500 LOAD CURRENT (mA) Figure24. ApplicationSchematic Figure25. EfficiencyvsLoadCurrent 8.2.1 DesignRequirements The device must be able to operate at any voltage within the recommended operating range. The load current must be defined in order to properly size the inductor, input, and output capacitors. The inductor must be able to handle full expected load current as well as the peak current generated during load transients and start-up. Inrush current at start-up will depend on the output capacitor selection. More details are provided in Detailed DesignProcedure. The device has a shutdown pin which is used to disable the device. This pin is active-LOW and care must be takenthatthevoltageonthispindoesnotexceedVIN+0.3V.Thispinmustalsonotbeleftfloating. 8.2.2 DetailedDesignProcedure 8.2.2.1 SelectingtheExternalCapacitors The best capacitors for use with the LM2731 are multi-layer ceramic capacitors. These capacitors have the lowest ESR (equivalent series resistance) and highest resonance frequency which makes them optimum for use withhigh-frequencyswitchingconverters. When selecting a ceramic capacitor, only X5R and X7R dielectric types should be used. Other types such as Z5U and Y5F have such severe loss of capacitance due to effects of temperature variation and applied voltage, they may provide as little as 20% of rated capacitance in many typical applications. Always consult capacitor manufacturer’s data curves before selecting a capacitor. High-quality ceramic capacitors can be obtained from Taiyo-Yuden,AVX,andMurata. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 8.2.2.2 SelectingtheOutputCapacitor A single ceramic capacitor of value 4.7 µF to 10 µF will provide sufficient output capacitance for most applications. If larger amounts of capacitance are desired for improved line support and transient response, tantalum capacitors can be used. Aluminum electrolytics with ultra low ESR such as Sanyo Oscon can be used, butareusuallyprohibitivelyexpensive.TypicalAIelectrolyticcapacitorsarenotsuitableforswitchingfrequencies above 500 kHz due to significant ringing and temperature rise due to self-heating from ripple current. An output capacitorwithexcessiveESRcanalsoreducephasemarginandcauseinstability. In general, if electrolytics are used, TI recommends that they be paralleled with ceramic capacitors to reduce ringing,switchinglosses,andoutputvoltageripple. 8.2.2.3 SelectingtheInputCapacitor An input capacitor is required to serve as an energy reservoir for the current which must flow into the coil each time the switch turns ON. This capacitor must have extremely low ESR, so ceramic is the best choice. TI recommends a nominal value of 2.2 µF, but larger values can be used. Since this capacitor reduces the amount of voltage ripple seen at the input pin, it also reduces the amount of EMI passed back along that line to other circuitry. 8.2.2.4 FeedforwardCompensation Although internally compensated, the feedforward capacitor Cf is required for stability (see Figure 26). Adding this capacitor puts a zero in the loop response of the converter. The recommended frequency for the zero fz shouldbeapproximately6kHz.Cfcanbecalculatedusingtheformula: Cf=1/(2×πXR1×fz) (1) 8.2.2.5 SelectingDiodes The external diode used in the typical application should be a Schottky diode. TI recommends a 20-V diode such astheMBR0520. The MBR05XX series of diodes are designed to handle a maximum average current of 0.5 A. For applications exceeding0.5-Aaveragebutlessthan1A,aMicrosemiUPS5817canbeused. 8.2.2.6 SettingtheOutputVoltage The output voltage is set using the external resistors R1 and R2 (see Figure 26). A minimum value of 13.3 kΩ is recommendedforR2toestablishadividercurrentofapproximately92µA.R1iscalculatedusingtheformula: R1=R2×(V /1.23−1) (2) OUT 8.2.2.7 SwitchingFrequency TheLM2731isprovidedwithtwoswitchingfrequencies:the “X”versionistypically1.6MHz,whilethe “Y”version is typically 600 kHz. The best frequency for a specific application must be determined based on the trade-offs involved: Higher switching frequency means the inductors and capacitors can be made smaller and cheaper for a given output voltage and current. The down side is that efficiency is slightly lower because the fixed switching losses occur more frequently and become a larger percentage of total power loss. EMI is typically worse at higher switching frequencies because more EMI energy will be seen in the higher frequency spectrum where most circuitsaremoresensitivetosuchinterference. Figure26. BasicApplicationCircuit 14 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 8.2.2.8 DutyCycle The maximum duty cycle of the switching regulator determines the maximum boost ratio of output-to-input voltage that the converter can attain in continuous mode of operation. The duty cycle for a given boost applicationisdefinedas: V +V -V OUT DIODE IN DutyCycle = VOUT+VDIODE-VSW (3) Thisappliesforcontinuousmodeoperation. 8.2.2.9 InductanceValue The first question that is usually asked is: “How small can I make the inductor?” (because they are the largest sized component and usually the most costly). The answer is not simple and involves trade-offs in performance. Larger inductors mean less inductor ripple current, which typically means less output voltage ripple (for a given size of output capacitor). Larger inductors also mean more load power can be delivered because the energy storedduringeachswitchingcycleis: E=L/2×(lp)2 (4) Where “lp” is the peak inductor current. An important point to observe is that the LM2731 will limit its switch current based on peak current. This means that since lp(max) is fixed, increasing L will increase the maximum amount of power available to the load. Conversely, using too little inductance may limit the amount of load currentwhichcanbedrawnfromtheoutput. Best performance is usually obtained when the converter is operated in “continuous” mode at the load current range of interest, typically giving better load regulation and less output ripple. Continuous operation is defined as not allowing the inductor current to drop to zero during the cycle. All boost converters shift over to discontinuous operation as the output load is reduced far enough, but a larger inductor stays “continuous” over a wider load currentrange. To better understand these trade-offs, a typical application circuit (5-V to 12-V boost with a 10-µH inductor) will beanalyzed.Wewillassume: V =5V,V =12V,V =0.5V,V =0.5V (5) IN OUT DIODE SW Because the frequency is 1.6 MHz (nominal), the period is approximately 0.625 µs. The duty cycle will be 62.5%, which means the ON-time of the switch is 0.390 µs. When the switch is ON, the voltage across the inductor is approximately4.5V. Usingtheequation: V=L(di/dt) (6) The di/dt rate of the inductor can then be calculated, which is found to be 0.45 A/µs during the ON time. Using thesefacts,whattheinductorcurrentwilllooklikeduringoperationcanbeshown: 0.176A I LOAD 1-DC 0 0.390 µs 0.235 µs Figure27. 10µHInductorCurrent,5V–12VBoost(LM2731X) During the 0.390-µs ON-time, the inductor current ramps up 0.176 A and ramps down an equal amount during the OFF-time. This is defined as the inductor “ripple current”. If the load current drops to about 33 mA, the inductor current will begin touching the zero axis which means it will be in discontinuous mode. A similar analysis can be performed on any boost converter, to make sure the ripple current is reasonable and continuous operationwillbemaintainedatthetypicalloadcurrentvalues. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 8.2.2.10 MaximumSwitchCurrent The maximum FET switch current available before the current limiter cuts in is dependent on duty cycle of the application.Thisisillustratedinthegraphsbelowwhichshowtypicalvaluesofswitchcurrentforboththe"X"and "Y"versionsasafunctionofeffective(actual)dutycycle: 3000 3000 2500 2500 V = 5V IN A) m LIMIT (mA) 2000 VIN = 3.3V NT LIMIT ( 12500000 VIN =V 3IN.3 =V 5V T 1500 E N R RE R VIN = 3V UR CU 1000 W C 1000 W S S VIN = 2.7V 500 VIN = 2.7V 500 V = 3V IN 0 20 30 40 50 60 70 80 90 100 0 20 30 40 50 60 70 80 90 100 DUTY CYCLE (%) = [1 - EFF*(V / V )] IN OUT DUTY CYCLE (%) = [1 - EFF*(V / V )] IN OUT Figure28.SwitchCurrentLimitvsDutyCycle-XOption Figure29.SwitchCurrentLimitvsDutyCycle-YOption 8.2.2.11 CalculatingLoadCurrent As shown in the figure which depicts inductor current, the load current is related to the average inductor current bytherelation: I =I (AVG)×(1-DC) (7) LOAD IND Where"DC"isthedutycycleoftheapplication.Theswitchcurrentcanbefoundby: I =I (AVG)+½(I ) (8) SW IND RIPPLE Inductorripplecurrentisdependentoninductance,dutycycle,inputvoltageandfrequency: I =DC×(V -V )/(f×L) (9) RIPPLE IN SW Combining all terms, an expression can be developed which allows the maximum available load current to be calculated: æ DC(V -V )ö I (max)=(1-DC)´çI (max)- IN SW ÷ LOAD SW è 2fL ø (10) The equation shown to calculate maximum load current takes into account the losses in the inductor or turn-OFF switching losses of the FET and diode. For actual load current in typical applications, we took bench data for various input and output voltages for both the "X" and "Y" versions of the LM2731 and displayed the maximum loadcurrentavailableforatypicaldeviceingraphform: 16 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 1200 1200 1000 1000 A) A) m m T ( 800 T ( 800 EN EN VOUT = 5V R R UR 600 VOUT = 5V UR 600 D C VOUT = 8V D C VOUT = 8V A A AX LO 400 VOUVT O=U T1 =2 V10V AX LO 400 VOUT = 10V M 200 M V = 12V V = 18V 200 OUT OUT 0 0 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 V (V) IN V (V) IN Figure30.MaximumLoadCurrent(Typical)vsVIN-X Figure31.MaximumLoadCurrent(Typical)vsVIN-Y Option Option 8.2.2.12 DesignParametersV andI SW SW The value of the FET "ON" voltage (referred to as V in the equations) is dependent on load current. A good SW approximation can be obtained by multiplying the "ON-Resistance" of the FET times the average inductor current. FET on resistance increases at V values less than 5 V, since the internal N-FET has less gate voltage in this IN input voltage range (see Typical Characteristics curves). Above V = 5V, the FET gate voltage is internally IN clampedto5V. The maximum peak switch current the device can deliver is dependent on duty cycle. For higher duty cycles, see TypicalCharacteristics. 8.2.2.13 InductorSuppliers Recommended suppliers of inductors for this product include, but are not limited to Sumida, Coilcraft, Panasonic, TDK, and Murata. When selecting an inductor, make certain that the continuous current rating is high enough to avoid saturation at peak currents. A suitable core type must be used to minimize core (switching) losses, and wirepowerlossesmustbeconsideredwhenselectingthecurrentrating. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 8.2.3 ApplicationCurves SeeTypicalCharacteristics. 100 80 90 70 80 60 %) 70 Y ( 60 %) 50 NC Y ( CIE 50 ENC 40 FI CI F 40 FI E EF 30 30 20 20 10 10 0 0 0 100 200 300 400 500 600 700 0 20 40 60 80 100 120 140 160 LOAD (mA) VIN=3.3V VOUT=5V LOAD (mA) V =3.3V V =12V IN OUT Figure32.EfficiencyvsLoadCurrent-XOption Figure33.EfficiencyvsLoadCurrent-XOption 8.3 System Examples 100 D1 L1/6.8PH MBR0520 3.3 -5V Boost 3.3 VIN ^z_(cid:3)s(cid:30)(cid:140)(cid:144)]}v VIN U1 SW 90 SHDN 5R13K LM2731 ‡<· FB R1/40.5K 70O50UVmTA ENCY (%) SHDN (TYP) FICI GND EF 80 C1 2.2PF R2 CF C2 GND 13.3K 470pF 22PF 70 0 200 400 600 800 LOAD CURRENT (mA) Figure34. VIN=3.3V,VOUT=5Vat700mA Figure35. EfficiencyvsLoadCurrent 18 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 100 D1 L1/6.8PH MBR0520 90 3.3 VIN 80 U1 VIN SW %) 70 Y ( 60 R3 LM2731 ‡<· R1/117K 12V C N 51K OUT E 50 SHDN SHDN FB 2(3T0YmP)A FFICI 40 E GND 30 GND 2.C21PF 13R.23K 27C0FpF 1C0P2F 1200 ^z3_.B(cid:3)3so (cid:30)-o1(cid:140)s2(cid:144)t]V} v 0 0 50 100 150 200 250 LOAD (mA) Figure36. VIN=3.3V,VOUT=12Vat230mA Figure37. EfficiencyvsLoadCurrent 100 D1 L1/10PH MBR0520 9V OUT 90 3.3 VIN VIN U1 SW 240mA (typ) %) 7800 SHDN 5R13K SHLDMN2G73N1D ‡;·FB R1/84K DD32 DD45 EFFICIENCY ( 34560000 ^y3_(cid:3).s3(cid:30) -(cid:140)9(cid:144)V]} v C1 GND 2.2PF 13R.23K 33C0FpF 4.C72PF R4 R5 20 10 0 0 50 100 150 200 250 300 LOAD (mA) Figure38. VIN=3.3V,VOUT=9Vat240mA Figure39. EfficiencyvsLoadCurrent B1 LI-ION L1 / 1.5 PH D1 3.3 - 4.2V MBR0520 V SW - + IN R3 LM2731"Y" 51K FB SHDN GND WHITE 0 FLASH ENABLE C1 R2 LED’s C2 4.7PF 120 4.7PF Figure40. WhiteLEDFlashApplication Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 9 Power Supply Recommendations The LM2731 device is designed to operate from various DC power supplies. The impedance of the input supply rail should be low enough that the input current transient does not cause a drop below SHUTDOWN level. If the input supply is connected by using long wires, additional bulk capacitance may be required in addition to normal inputcapacitor. 10 Layout 10.1 Layout Guidelines High-frequency switching regulators require very careful layout of components to get stable operation and low noise. All components must be as close as possible to the LM2731 device. TI recommends that a 4-layer PCB beusedsothatinternalgroundplanesareavailable. Asanexample,arecommendedlayoutofcomponentsisshowninFigure41. Someadditionalguidelinestobeobserved: • Keep the path between L1, D1, and C2 extremely short. Parasitic trace inductance in series with D1 and C2 willincreasenoiseandringing. • The feedback components R1, R2 and CF must be kept close to the FB pin of U1 to prevent noise injection ontheFBpintrace. • If internal ground planes are available (recommended), use vias to connect directly to ground at pin 2 of U1, aswellasthenegativesidesofcapacitorsC1andC2. 10.2 Layout Example Figure41. RecommendedPCBComponentLayout 20 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
LM2731 www.ti.com SNVS217G–MAY2004–REVISEDSEPTEMBER2015 10.3 Thermal Considerations At higher duty cycles, the increased ON-time of the FET means the maximum output current will be determined by power dissipation within the LM2731 FET switch. The switch power dissipation from ON-state conduction is calculatedby: P =DC×I (AVE)2×R (ON) (11) (SW) IND DS There will be some switching losses as well, so some derating needs to be applied when calculating IC power dissipation. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM2731
LM2731 SNVS217G–MAY2004–REVISEDSEPTEMBER2015 www.ti.com 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-PartyProductsDisclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.3 Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 22 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:LM2731
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM2731XMF NRND SOT-23 DBV 5 1000 TBD Call TI Call TI -40 to 125 S51A LM2731XMF/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 S51A & no Sb/Br) LM2731XMFX/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 S51A & no Sb/Br) LM2731YMF ACTIVE SOT-23 DBV 5 1000 TBD Call TI Call TI -40 to 125 S51B LM2731YMF/NOPB ACTIVE SOT-23 DBV 5 1000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 S51B & no Sb/Br) LM2731YMFX/NOPB ACTIVE SOT-23 DBV 5 3000 Green (RoHS SN Level-1-260C-UNLIM -40 to 125 S51B & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM2731XMF SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM2731XMF/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM2731XMFX/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM2731YMF SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM2731YMF/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 LM2731YMFX/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3 PackMaterials-Page1
PACKAGE MATERIALS INFORMATION www.ti.com 29-Sep-2019 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM2731XMF SOT-23 DBV 5 1000 210.0 185.0 35.0 LM2731XMF/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM2731XMFX/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 LM2731YMF SOT-23 DBV 5 1000 210.0 185.0 35.0 LM2731YMF/NOPB SOT-23 DBV 5 1000 210.0 185.0 35.0 LM2731YMFX/NOPB SOT-23 DBV 5 3000 210.0 185.0 35.0 PackMaterials-Page2
PACKAGE OUTLINE DBV0005A SOT-23 - 1.45 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 3.0 2.6 0.1 C 1.75 1.45 1.45 B A 0.90 PIN 1 INDEX AREA 1 5 2X 0.95 3.05 2.75 1.9 1.9 2 4 3 0.5 5X 0.3 0.15 0.2 C A B (1.1) TYP 0.00 0.25 GAGE PLANE 0.22 TYP 0.08 8 TYP 0.6 0 0.3 TYP SEATING PLANE 4214839/E 09/2019 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178. 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. www.ti.com
EXAMPLE BOARD LAYOUT DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM (1.9) 2 2X (0.95) 3 4 (R0.05) TYP (2.6) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:15X SOLDER MASK SOLDER MASK METAL UNDER METAL OPENING OPENING SOLDER MASK EXPOSED METAL EXPOSED METAL 0.07 MAX 0.07 MIN ARROUND ARROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED (PREFERRED) SOLDER MASK DETAILS 4214839/E 09/2019 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN DBV0005A SOT-23 - 1.45 mm max height SMALL OUTLINE TRANSISTOR PKG 5X (1.1) 1 5 5X (0.6) SYMM 2 (1.9) 2X(0.95) 3 4 (R0.05) TYP (2.6) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X 4214839/E 09/2019 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated