ICGOO在线商城 > 集成电路(IC) > PMIC - 稳压器 - DC DC 开关稳压器 > LM2675MX-12/NOPB
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LM2675MX-12/NOPB产品简介:
ICGOO电子元器件商城为您提供LM2675MX-12/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM2675MX-12/NOPB价格参考。Texas InstrumentsLM2675MX-12/NOPB封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 12V 1 输出 1A 8-SOIC(0.154",3.90mm 宽)。您可以下载LM2675MX-12/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM2675MX-12/NOPB 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC REG BUCK 12V 1A 8-SOIC稳压器—开关式稳压器 Pwr Cnvtr Hi Eff 1A SD Vtg Reg |
产品分类 | |
品牌 | Texas Instruments |
产品手册 | http://www.ti.com/litv/snvs129e |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,稳压器—开关式稳压器,Texas Instruments LM2675MX-12/NOPBSIMPLE SWITCHER® |
数据手册 | |
产品型号 | LM2675MX-12/NOPB |
PWM类型 | - |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30128 |
产品种类 | 稳压器—开关式稳压器 |
供应商器件封装 | 8-SOIC |
其它名称 | 296-35410-1 |
制造商产品页 | http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM2675MX-12/NOPB |
包装 | 剪切带 (CT) |
同步整流器 | 无 |
商标 | Texas Instruments |
商标名 | SIMPLE SWITCHER |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | -40°C ~ 125°C |
工厂包装数量 | 2500 |
开关频率 | 260 kHz |
最大工作温度 | + 125 C |
最大输入电压 | 40 V |
最小工作温度 | - 40 C |
最小输入电压 | 6.5 V |
标准包装 | 1 |
电压-输入 | 6.5 V ~ 40 V |
电压-输出 | 12V |
电流-输出 | 1A |
类型 | 降压(降压) |
系列 | LM2675 |
设计资源 | http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176 |
输出数 | 1 |
输出电压 | 12 V |
输出电流 | 1 A |
输出端数量 | 1 Output |
输出类型 | 固定 |
配用 | /product-detail/zh/LM2675-5.0EVAL/LM2675-5.0EVAL-ND/366905 |
频率-开关 | 260kHz |
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 ® LM2675 SIMPLE SWITCHER Power Converter High Efficiency 1-A Step-Down Voltage Regulator 1 Features 3 Description • Efficiencyupto96% The LM2675 series of regulators are monolithic 1 integrated DC-DC converter circuits built with a • Availablein8-PinSOIC,PDIP,and16-PinWSON LMDMOS process. These regulators provide all the Package active functions for a step-down (buck) switching • Requiresonly5ExternalComponents regulator, capable of driving a 1-A load current with • 3.3-V,5-V,12-V,andAdjustableOutputVersions excellent line and load regulation. These devices are available in fixed output voltages of 3.3 V, 5 V, 12 V, • AdjustableVersionOutputVoltageRange:1.21V andanadjustableoutputversion. to37V Requiring a minimum number of external • ±1.5%MaximumOutputVoltageToleranceOver components, these regulators are simple to use and LineandLoadConditions include patented internal frequency compensation • Ensured1-AOutputLoadCurrent andafixedfrequencyoscillator. • WideInputVoltageRange:8Vto40V The LM2675 series operates at a switching frequency • 260-kHzFixedFrequencyInternalOscillator of 260 kHz, thus allowing smaller-sized filter • TTLShutdownCapability,Low-PowerStandby components than what would be needed with lower Mode frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the • ThermalShutdownandCurrentLimitProtection printed-circuitboardaretheonlyheatsinkingneeded. 2 Applications DeviceInformation(1) • SimpleHighEfficiency(>90%)Step-Down(Buck) PARTNUMBER PACKAGE BODYSIZE(NOM) Regulator SOIC(8) 5.00mm×6.20mm • EfficientPreregulatorforLinearRegulators LM2675 PDIP(8) 10.16mm×6.60mm • Positive-to-NegativeConverter WSON(16) 5.00mm×5.00mm (1) For all available packages, see the orderable addendum at theendofthedatasheet. TypicalApplication Copyright © 2016, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.1 Overview.................................................................10 2 Applications........................................................... 1 8.2 FunctionalBlockDiagram.......................................10 3 Description............................................................. 1 8.3 FeatureDescription.................................................10 8.4 DeviceFunctionalModes........................................11 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 12 5 Description(continued)......................................... 3 9.1 ApplicationInformation............................................12 6 PinConfigurationandFunctions......................... 3 9.2 TypicalApplication..................................................13 7 Specifications......................................................... 4 10 PowerSupplyRecommendations..................... 24 7.1 AbsoluteMaximumRatings......................................4 11 Layout................................................................... 25 7.2 ESDRatings..............................................................4 11.1 LayoutGuidelines.................................................25 7.3 RecommendedOperatingConditions.......................4 11.2 LayoutExamples...................................................25 7.4 ThermalInformation..................................................4 12 DeviceandDocumentationSupport................. 27 7.5 ElectricalCharacteristics–3.3V..............................5 7.6 ElectricalCharacteristics–5V.................................5 12.1 DocumentationSupport........................................27 7.7 ElectricalCharacteristics–12V...............................5 12.2 ReceivingNotificationofDocumentationUpdates27 7.8 ElectricalCharacteristics–Adjustable......................6 12.3 CommunityResources..........................................27 7.9 ElectricalCharacteristics–AllOutputVoltage 12.4 Trademarks...........................................................27 Versions.....................................................................6 12.5 ElectrostaticDischargeCaution............................27 7.10 TypicalCharacteristics............................................7 12.6 Glossary................................................................27 7.11 TypicalCharacteristics–FixedOutputVoltage 13 Mechanical,Packaging,andOrderable Versions.....................................................................9 Information........................................................... 27 8 DetailedDescription............................................ 10 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionE(June2005)toRevisionF Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 • DeletedallinstancesofthecomputerdesignsoftwareLM267XMadeSimple(version6.0)................................................ 1 2 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 5 Description (continued) A family of standard inductors for use with the LM2675 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in thedatasheetareselectorguidesfordiodesandcapacitorsdesignedtoworkinswitch-modepowersupplies. Other features include ±1.5%-tolerance on output voltage within specified input voltages and output load conditions, and ±10% on the oscillator frequency. External shutdown is included, featuring typically 50-μA stand- by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions. 6 Pin Configuration and Functions DorPPackage 8-PinSOICorPDIP NHNPackage TopView 16-PinWSON TopView CB 1 8 VSW CB 1 16 VSW NC 2 7 VIN NC 2 15 VSW NC 3 6 GND NC 3 14 VIN FB 4 5 ON/OFF NC 4 13 NC DAP Not to scale NC 5 12 GND NC 6 11 GND NC 7 10 NC FB 8 9 ON/OFF Not to scale PinFunctions PIN I/O DESCRIPTION NAME D,P NHN Boot-strapcapacitorconnectionforhigh-sidedriver.Connectahighquality C 1 1 I B 470-nFcapacitorfromC toV pin. B SW Feedbacksenseinputpin.Connecttothemidpointoffeedbackdividertoset FB 4 8 I VOUTforadjustableversionorconnectthispindirectlytotheoutputcapacitor forafixedoutputversion. Powergroundpins.Connecttosystemground.GroundpinsofC andC . GND 6 11,12 — IN OUT PathtoC mustbeasshortaspossible. IN 2,3,4,5, NC 2,3 — Noconnectpins. 6,7,10,13 Enableinputtothevoltageregulator.High=ONandlow=OFF.Pullthispin ON/OFF 5 9 I highorfloattoenabletheregulator. SupplyinputpintocollectorpinofhighsideFET.Connecttopowersupplyand V 7 14 I inputbypasscapacitorsC .PathfromVINpintohighfrequencybypassC IN IN IN andGNDmustbeasshortaspossible. SourcepinoftheinternalHighSideFET.Thisisaswitchingnode.Attachedthis V 8 15,16 O SW pintoaninductorandthecathodeoftheexternaldiode. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings overrecommendedoperatingjunctiontemperaturerangeof–40°Cto125°C(unlessotherwisenoted)(1)(2) MIN MAX UNIT Supplyvoltage 45 V ON/OFFpinvoltage,V –0.1 6 V SH Switchvoltagetoground –1 V Boostpinvoltage V +8 V SW Feedbackpinvoltage,V –0.3 14 V FB Powerdissipation Internallylimited Vaporphase(60s) 215 Dpackage Infrared(15s) 220 Leadtemperature °C Ppackage(soldering,10s) 260 NHNpackage SeeAN-1187 Maximumjunctiontemperature,T 150 °C J Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) IfMilitary/Aerospacespecifieddevicesarerequired,contacttheTexasInstrumentsSalesOffice/Distributorsforavailabilityand specifications. 7.2 ESD Ratings VALUE UNIT V Electrostaticdischarge Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1)(2) ±2000 V (ESD) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) Thehuman-bodymodelisa100-pFcapacitordischargedthrougha1.5-kΩresistorintoeachpin. 7.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT Supplyvoltage 6.5 40 V T Temperature –40 125 °C J 7.4 Thermal Information LM2675 THERMALMETRIC(1)(2) SOIC(D) PDIP(P) NHN(WSON) UNIT 8PINS 8PINS 16PINS R Junction-to-ambientthermalresistance(3) 105 95 — °C/W θJA R Junction-to-case(top)thermalresistance — — — °C/W θJC(top) R Junction-to-boardthermalresistance — — — °C/W θJB ψ Junction-to-topcharacterizationparameter — — — °C/W JT ψ Junction-to-boardcharacterizationparameter — — — °C/W JB R Junction-to-case(bottom)thermalresistance — — — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. (2) Thermalresistancesweresimulatedon4-layerJEDECboard. (3) Junction-to-ambientthermalresistancewithapproximately1squareinchofprinted-circuitboardcoppersurroundingtheleads. Additionalcopperarealowersthermalresistancefurther.SeeApplicationInformationintheapplicationnoteaccompanyingthisdata sheet.ThevalueR fortheWSON(NHN)packageisspecificallydependentonPCBtracearea,tracematerial,andthenumberof θJA layersandthermalvias.ForimprovedthermalresistanceandpowerdissipationfortheWSONpackage,refertoAN-1187Leadless LeadframePackage(LLP). 4 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 7.5 Electrical Characteristics – 3.3 V T =25°C(unlessotherwisenoted;seeFigure19)(1) J PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT T =25°C 3.251 3.3 3.35 J V =8Vto40V,I =20mAto1A IN LOAD T =–40°Cto125°C 3.201 3.399 J V Outputvoltage V OUT VIN=6.5Vto40V, TJ=25°C 3.251 3.3 3.35 ILOAD=20mAto500mA TJ=–40°Cto125°C 3.201 3.399 η Efficiency V =12V,I =1A 86% IN LOAD (1) Externalcomponentssuchasthecatchdiode,inductor,inputandoutputcapacitors,andvoltageprogrammingresistorscanaffect switchingregulatorperformance.WhentheLM2675isusedasshowninFigure19testcircuits,systemperformanceisasspecifiedby thesystemparameterssectionofElectricalCharacteristics. (2) Alllimitsspecifiedatroomtemperatureandattemperatureextremes.Allroomtemperaturelimitsare100%productiontested.Alllimits attemperatureextremesarespecifiedthroughcorrelationusingstandardStatisticalQualityControl(SQC)methods.Alllimitsareused tocalculateAverageOutgoingQualityLevel(AOQL). (3) Typicalnumbersareat25°Candrepresentthemostlikelynorm. 7.6 Electrical Characteristics – 5 V T =25°C(unlessotherwisenoted;seeFigure19)(1) J PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT T =25°C 4.925 5 5.075 J V =8Vto40V,I =20mAto1A IN LOAD T =–40°Cto125°C 4.85 5.15 J V Outputvoltage V OUT VIN=6.5Vto40V, TJ=25°C 4.925 5 5.075 ILOAD=20mAto500mA TJ=–40°Cto125°C 4.85 5.15 η Efficiency V =12V,I =1A 90% IN LOAD (1) Externalcomponentssuchasthecatchdiode,inductor,inputandoutputcapacitors,andvoltageprogrammingresistorscanaffect switchingregulatorperformance.WhentheLM2675isusedasshowninFigure19testcircuits,systemperformanceisasspecifiedby thesystemparameterssectionofElectricalCharacteristics. (2) Alllimitsspecifiedatroomtemperatureandattemperatureextremes.Allroomtemperaturelimitsare100%productiontested.Alllimits attemperatureextremesarespecifiedthroughcorrelationusingstandardStatisticalQualityControl(SQC)methods.Alllimitsareused tocalculateAverageOutgoingQualityLevel(AOQL). (3) Typicalnumbersareat25°Candrepresentthemostlikelynorm. 7.7 Electrical Characteristics – 12 V T =25°C(unlessotherwisenoted;seeFigure19)(1) J PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT T =25°C 11.82 12 12.18 J V Outputvoltage V =15Vto40V,I =20mAto1A V OUT IN LOAD T =–40°Cto125°C 11.64 12.36 J η Efficiency V =24V,I =1A 94% IN LOAD (1) Externalcomponentssuchasthecatchdiode,inductor,inputandoutputcapacitors,andvoltageprogrammingresistorscanaffect switchingregulatorperformance.WhentheLM2675isusedasshowninFigure19testcircuits,systemperformanceisasspecifiedby thesystemparameterssectionofElectricalCharacteristics. (2) Alllimitsspecifiedatroomtemperatureandattemperatureextremes.Allroomtemperaturelimitsare100%productiontested.Alllimits attemperatureextremesarespecifiedthroughcorrelationusingstandardStatisticalQualityControl(SQC)methods.Alllimitsareused tocalculateAverageOutgoingQualityLevel(AOQL). (3) Typicalnumbersareat25°Candrepresentthemostlikelynorm. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com 7.8 Electrical Characteristics – Adjustable T =25°C(unlessotherwisenoted;seeFigure19)(1) J PARAMETER TESTCONDITIONS MIN(2) TYP(3) MAX(2) UNIT VIN=8Vto40V,ILOAD=20mAto1A, TJ=25°C 1.192 1.21 1.228 Feedback VOUTprogrammedfor5V(seeFigure19) TJ=–40°Cto125°C 1.174 1.246 V V FB voltage VIN=6.5Vto40V,ILOAD=20mAto500 TJ=25°C 1.192 1.21 1.228 mA,V programmedfor5V(see OUT Figure19) TJ=–40°Cto125°C 1.174 1.246 η Efficiency V =12V,I =1A 90% IN LOAD (1) Externalcomponentssuchasthecatchdiode,inductor,inputandoutputcapacitors,andvoltageprogrammingresistorscanaffect switchingregulatorperformance.WhentheLM2675isusedasshowninFigure19testcircuits,systemperformanceisasspecifiedby thesystemparameterssectionofElectricalCharacteristics. (2) Alllimitsspecifiedatroomtemperatureandattemperatureextremes.Allroomtemperaturelimitsare100%productiontested.Alllimits attemperatureextremesarespecifiedthroughcorrelationusingstandardStatisticalQualityControl(SQC)methods.Alllimitsareused tocalculateAverageOutgoingQualityLevel(AOQL). (3) Typicalnumbersareat25°Candrepresentthemostlikelynorm. 7.9 Electrical Characteristics – All Output Voltage Versions T =25°C,V =12Vforthe3.3V,5V,andadjustableversions,andV =24Vforthe12Vversion,andI =100mA J IN IN LOAD (unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT V =8Vfor3.3V,5V,andadjustableversions 2.5 3.6 mA FEEDBACK I Quiescentcurrent Q V =15Vfor12Vversions 2.5 mA FEEDBACK T =25°C 50 100 J I Standbyquiescentcurrent ON/OFFPin=0V μA STBY T =–40°Cto125°C 150 J T =25°C 1.25 1.55 2.1 J I Currentlimit A CL T =–40°Cto125°C 1.2 2.2 J V =0V,ON/OFFPin=0V,V =40V 1 25 μA SWITCH IN I Outputleakagecurrent L V =−1V,ON/OFFPin=0V 6 15 mA SWITCH T =25°C 0.25 0.3 J R Switchon-resistance I =1A Ω DS(ON) SWITCH T =–40°Cto125°C 0.5 J T =25°C 260 J f Oscillatorfrequency Measuredatswitchpin kHz O T =–40°Cto125°C 225 275 J T =25°C 95% J D Minimumdutycycle T =–40°Cto125°C 0% J I Feedbackbiascurrent V =1.3V,adjustableversiononly 85 nA BIAS FEEDBACK T =25°C 1.4 J V ON/OFFpinvoltage V S/D T =–40°Cto125°C 0.8 2 J T =25°C 20 J I ON/OFFpincurrent ON/OFFPin=0V μA S/D T =–40°Cto125°C 7 37 J (1) Alllimitsspecifiedatroomtemperatureandattemperatureextremes.Allroomtemperaturelimitsare100%productiontested.Alllimits attemperatureextremesarespecifiedthroughcorrelationusingstandardStatisticalQualityControl(SQC)methods.Alllimitsareused tocalculateAverageOutgoingQualityLevel(AOQL). (2) Typicalnumbersareat25°Candrepresentthemostlikelynorm. 6 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 7.10 Typical Characteristics Figure1.NormalizedOutputVoltage Figure2.LineRegulation Figure3.Efficiency Figure4.Drain-to-SourceResistance Figure5.SwitchCurrentLimit Figure6.OperatingQuiescentCurrent Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com Typical Characteristics (continued) Figure7.StandbyQuiescentCurrent Figure8.ON/OFFThresholdVoltage Figure9.ON/OFFPinCurrent(Sourcing) Figure10.SwitchingFrequency Figure11.FeedbackPinBiasCurrent Figure12.PeakSwitchCurrent 8 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 Typical Characteristics (continued) Figure13.DropoutVoltage,3.3-VOption Figure14.DropoutVoltage,5-VOption 7.11 Typical Characteristics – Fixed Output Voltage Versions seeFigure19 V pinvoltage,10V/div V =20V,V =5V, V pinvoltage,10V/div V =20V,V =5V, SW IN OUT SW IN OUT Inductorcurrent,0.5A/div I =1A,L=47μH, Inductorcurrent,0.5A/div I =300mA,L=15μH, LOAD LOAD Outputripplevoltage, C =68μF, Outputripplevoltage, C =68μF(2×), OUT OUT 20mV/divAC-coupled C ESR=50mΩ 20mV/divAC-coupled C ESR=25mΩ OUT OUT Figure15.ContinuousModeSwitchingWaveforms, Figure16.DiscontinuousModeSwitchingWaveforms, HorizontalTimeBase:1μs/div HorizontalTimeBase:1μs/div Outputvoltage,100mV/div, V =20V,V =5V, Outputvoltage,100mV/div, V =20V,V =5V, IN OUT IN OUT AC-coupled I =1A,L=47μH, AC-coupled L=47μH, LOAD Loadcurrent:200-mA C =68μF, Loadcurrent:100-mA C =68μF(2×), OUT OUT to1-Aloadpulse C ESR=50mΩ to400-mAloadpulse C ESR=50mΩ OUT OUT Figure17.LoadTransientResponseforContinuousMode, Figure18.LoadTransientResponseforDiscontinuous HorizontalTimeBase:50μs/div Mode,HorizontalTimeBase:200μs/div Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com 8 Detailed Description 8.1 Overview The LM2675 provides all of the active functions required for a step-down (buck) switching regulator. The internal powerswitchisaDMOSpowerMOSFETtoprovidepowersupplydesignswithhighcurrentcapability,upto1A, and highly efficient operation. The LM2675 is part of the SIMPLE SWITCHER® family of power converters. A complete design uses a minimum number of external components, which have been predetermined from a variety of manufacturers. Using either this data sheet or TI's WEBENCH® design tool, a complete switching power supply can be designed quickly. See LM2670 SIMPLE SWITCHER® High Efficiency 3A Step-Down VoltageRegulatorwithSyncforadditionalapplicationinformation. 8.2 Functional Block Diagram Copyright © 2016, Texas Instruments Incorporated 8.3 Feature Description 8.3.1 AdjustableOutputVoltage The voltage regulation loop in the LM2675 regulates output voltage by maintaining the voltage on FB pin (V ) to FB be the same as the internal REF voltage (V ). A resistor divider pair is needed to program the ratio from output REF voltage V to V . The resistor is connected from the V of the LM2674 to ground with the mid-point OUT FB OUT connecting to the FB pin. The voltage reference system produces a precise voltage reference over temperature. The internal REF voltage is typically 1.21 V. To program the output voltage of the LM2675 to be a certain value V , R1 can be calculated with a selected R2. See Programming Output Voltage for adjustable output voltage OUT typical application. The recommended range for R2 in most application is from 10 kΩ to 100 kΩ. If the resistor divider is not connected properly, output voltage cannot be regulated because the feedback loop is broken. If the FB pin is shorted to ground, the output voltage is driven close to VIN, because the regulator sees very low voltage on the FB pin and tries to regulate it. The load connected to the output could be damaged under such a condition. Do not short FB pin to ground when the LM2675 is enabled. It is important to route the feedback trace awayfromthenoisyareaofthePCB.Formorelayoutrecommendations,seeLayout. 10 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 8.4 Device Functional Modes 8.4.1 ShutdownMode The ON/OFF pin provides electrical ON and OFF control for the LM2674. When the voltage of this pin is lower than1.4V,thedeviceisinshutdownmode.Thetypicalstandbycurrentinthismodeis20 μA. 8.4.2 ActiveMode WhenthevoltageoftheON/OFF pinishigherthan1.4V,thedevicestartsswitchingandtheoutputvoltagerises untilitreachesanormalregulationvoltage. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information The LM2675 is a step-down DC-DC regulator. The device is typically used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 1 A. The following design procedure can be used to select componentsfortheLM2675. When the output voltage is greater than approximately 6 V, and the duty cycle at minimum input voltage is greater than approximately 50%, the designer should exercise caution in selection of the output filter components. When an application designed to these specific operating conditions is subjected to a current limit fault condition, it may be possible to observe a large hysteresis in the current limit. This can affect the output voltage of the device until the load current is reduced sufficiently to allow the current limit protection circuit to resetitself. Undercurrentlimitingconditions,theLM2675isdesignedtorespondinthefollowingmanner: 1. At the moment when the inductor current reaches the current limit threshold, the ON-pulse is immediately terminated.Thishappensforanyapplicationcondition. 2. However, the current limit block is also designed to momentarily reduce the duty cycle to below 50% to avoid subharmonicoscillations,whichcouldcausetheinductortosaturate. 3. Thereafter, once the inductor current falls below the current limit threshold, there is a small relaxation time duringwhichthedutycycleprogressivelyrisesbackabove50%tothevaluerequiredtoachieveregulation. If the output capacitance is sufficiently large, it may be possible that as the output tries to recover, the output capacitor charging current is large enough to repeatedly re-trigger the current limit circuit before the output has fully settled. This condition is exacerbated with higher output voltage settings because the energy requirement of the output capacitor varies as the square of the output voltage (½ CV2), thus requiring an increased charging current. A simple test to determine if this condition might exist for a suspect application is to apply a short circuit across the output of the converter, and then remove the shorted output condition. In an application with properly selected external components, the output recovers smoothly. Practical values of external components that have been experimentally found to work well under these specific operating conditions are COUT = 47 µF, L = 22 µH. It should be noted that even with these components, for a device’s current limit of I , the maximum CLIM load current under which the possibility of the large current limit hysteresis can be minimized is I /2. For CLIM example, if the input is 24 V and the set output voltage is 18 V, then for a desired maximum current of 1.5 A, the current limit of the chosen switcher must be confirmed to be at least 3 A. Under extreme overcurrent or short- circuit conditions, the LM2675 employs frequency foldback in addition to the current limit. If the cycle-by-cycle inductor current increases above the current limit threshold (due to short circuit or inductor saturation for example) the switching frequency is automatically reduced to protect the IC. Frequency below 100 kHz is typical foranextremeshort-circuitcondition. 12 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 9.2 Typical Application 9.2.1 FixedOutputVoltageApplication Copyright © 2016, Texas Instruments Incorporated C =22-μF,50-VTantalum,Sprague199DSeries IN C =47-μF,25-VTantalum,Sprague595DSeries OUT D1=3.3-A,50-VSchottkyRectifier,IR30WQ05F L1=68-μHSumida#RCR110D-680L C =0.01-μF,50-VCeramic B Figure19. FixedOutputVoltageSchematic 9.2.1.1 DesignRequirements Table1liststhedesignrequirementsforthefixedoutputvoltageapplication. Table1.DesignParameters PARAMETER VALUE Regulatedoutputvoltage,V 5V OUT Maximuminputvoltage,V (max) 12V IN Maximumloadcurrent,I (max) 1A LOAD 9.2.1.2 DetailedDesignProcedure 9.2.1.2.1 InductorSelection(L1) Select the correct inductor value selection guide from Figure 21, Figure 22, or Figure 23 (output voltages of 3.3 V, 5 V, or 12 V respectively). For all other voltages, see Detailed Design Procedure. Use the inductor selectionguideforthe5-VversionshowninFigure22. From the inductor value selection guide, identify the inductance region intersected by the maximum input voltage line and the maximum load current line. Each region is identified by an inductance value and an inductor code (LXX).FromtheinductorvalueselectionguideshowninFigure22,theinductanceregionintersectedbythe12-V horizontallineandthe1-Averticallineis33 μH,andtheinductorcodeisL23. Select an appropriate inductor from the four manufacturer's part numbers listed in Table 2. Each manufacturer makes a different style of inductor to allow flexibility in meeting various design requirements. The inductance value required is 33 μH. From the table in Table 2, go to the L23 line and choose an inductor part number from any of the four manufacturers shown. In most instances, both through hole and surface mount inductors are available. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com Table2.InductorManufacturers' PartNumbers IND. SCHOTT RENCO PULSEENGINEERING COILCRAFT INDUCTANCE CURRENT REF. (μH) (A) THROUGH SURFACE THROUGH SURFACE THROUGH SURFACE SURFACE DESG. HOLE MOUNT HOLE MOUNT HOLE MOUNT MOUNT L4 68 0.32 67143940 67144310 RL-1284-68-43 RL1500-68 PE-53804 PE-53804-S DO1608-683 L5 47 0.37 67148310 67148420 RL-1284-47-43 RL1500-47 PE-53805 PE-53805-S DO1608-473 L6 33 0.44 67148320 67148430 RL-1284-33-43 RL1500-33 PE-53806 PE-53806-S DO1608-333 L7 22 0.52 67148330 67148440 RL-1284-22-43 RL1500-22 PE-53807 PE-53807-S DO1608-223 L9 220 0.32 67143960 67144330 RL-5470-3 RL1500-220 PE-53809 PE-53809-S DO3308-224 L10 150 0.39 67143970 67144340 RL-5470-4 RL1500-150 PE-53810 PE-53810-S DO3308-154 L11 100 0.48 67143980 67144350 RL-5470-5 RL1500-100 PE-53811 PE-53811-S DO3308-104 L12 68 0.58 67143990 67144360 RL-5470-6 RL1500-68 PE-53812 PE-53812-S DO3308-683 L13 47 0.7 67144000 67144380 RL-5470-7 RL1500-47 PE-53813 PE-53813-S DO3308-473 L14 33 0.83 67148340 67148450 RL-1284-33-43 RL1500-33 PE-53814 PE-53814-S DO3308-333 L15 22 0.99 67148350 67148460 RL-1284-22-43 RL1500-22 PE-53815 PE-53815-S DO3308-223 L18 220 0.55 67144040 67144420 RL-5471-2 RL1500-220 PE-53818 PE-53818-S DO3316-224 L19 150 0.66 67144050 67144430 RL-5471-3 RL1500-150 PE-53819 PE-53819-S DO3316-154 L20 100 0.82 67144060 67144440 RL-5471-4 RL1500-100 PE-53820 PE-53820-S DO3316-104 L21 68 0.99 67144070 67144450 RL-5471-5 RL1500-68 PE-53821 PE-53821-S DO3316-683 L22 47 1.17 67144080 67144460 RL-5471-6 — PE-53822 PE-53822-S DO3316-473 L23 33 1.4 67144090 67144470 RL-5471-7 — PE-53823 PE-53823-S DO3316-333 L24 22 1.7 67148370 67148480 RL-1283-22-43 — PE-53824 PE-53824-S DO3316-223 L27 220 1 67144110 67144490 RL-5471-2 — PE-53827 PE-53827-S DO5022P-224 L28 150 1.2 67144120 67144500 RL-5471-3 — PE-53828 PE-53828-S DO5022P-154 L29 100 1.47 67144130 67144510 RL-5471-4 — PE-53829 PE-53829-S DO5022P-104 L30 68 1.78 67144140 67144520 RL-5471-5 — PE-53830 PE-53830-S DO5022P-683 9.2.1.2.2 OutputCapacitorSelection(C ) OUT Select an output capacitor from Table 3. Using the output voltage and the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor value and voltage rating. The capacitor list contains through-hole electrolytic capacitors from four different capacitor manufacturers and surface mount tantalum capacitors from two different capacitor manufacturers. TI recommends using both the manufacturers and the manufacturer'sseriesthatarelistedinthetable. Use the 5-V section in Table 3. Choose a capacitor value and voltage rating from the line that contains the inductance value of 33 μH. The capacitance and voltage rating values corresponding to the 33-μH inductor are thesurfacemountandthroughhole. Surfacemount: • 68-μF,10-V Sprague594Dseries • 100-μF,10-V AVXTPSseries Throughhole: • 68-μF,10-V SanyoOS-CONSAseries • 220-μF,35-V SanyoMV-GXseries • 220-μF,35-V NichiconPLseries • 220-μF,35-V PanasonicHFQseries 14 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 Table3.OutputCapacitorTable OUTPUTCAPACITOR OUTPUT SURFACEMOUNT THROUGHHOLE INDUCTANCE VOLTAGE (μH) SPRAGUE AVXTPS SANYOOS-CON SANYOMV-GX NICHICON PANASONIC (V) 594DSERIES SERIES SASERIES SERIES PLSERIES HFQSERIES (μF/V) (μF/V) (μF/V) (μF/V) (μF/V) (μF/V) 22 120/6.3 100/10 100/10 330/35 330/35 330/35 33 120/6.3 100/10 68/10 220/35 220/35 220/35 47 68/10 100/10 68/10 150/35 150/35 150/35 3.3 68 120/6.3 100/10 100/10 120/35 120/35 120/35 100 120/6.3 100/10 100/10 120/35 120/35 120/35 150 120/6.3 100/10 100/10 120/35 120/35 120/35 22 100/16 100/10 100/10 330/35 330/35 330/35 33 68/10 10010 68/10 220/35 220/35 220/35 47 68/10 100/10 68/10 150/35 150/35 150/35 5 68 100/16 100/10 100/10 120/35 120/35 120/35 100 100/16 100/10 100/10 120/35 120/35 120/35 150 100/16 100/10 100/10 120/35 120/35 120/35 22 120/20 (2×)68/20 68/20 330/35 330/35 330/35 33 68/25 68/20 68/20 220/35 220/35 220/35 47 47/20 68/20 47/20 150/35 150/35 150/35 12 68 47/20 68/20 47/20 120/35 120/35 120/35 100 47/20 68/20 47/20 120/35 120/35 120/35 150 47/20 68/20 47/20 120/35 120/35 120/35 220 47/20 68/20 47/20 120/35 120/35 120/35 9.2.1.2.3 CatchDiodeSelection(D1) In normal operation, the average current of the catch diode is the load current times the catch diode duty cycle, 1-D (D is the switch duty cycle, which is approximately the output voltage divided by the input voltage). The largest value of the catch diode average current occurs at the maximum load current and maximum input voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average current. However, if the power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2675. The most stressful condition for this diode is a shorted output condition (see Table 4). In this example, a 1-A, 20-V Schottky diode provides the best performance. If the circuit must withstand a continuous shorted output, TI recommends a Schottky diode ofhighercurrent. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. ThisSchottkydiodemustbelocatedclosetotheLM2675usingshortleadsandshortprintedcircuittraces. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com Table4.SchottkyDiodeSelectionTable 1-ADIODES 3-ADIODES V R SURFACEMOUNT THROUGHHOLE SURFACEMOUNT THROUGHHOLE SK12 1N5817 SK32 1N5820 20V B120 SR102 — SR302 SK13 1N5818 SK33 1N5821 30V B130 11DQ03 30WQ03F 31DQ03 MBRS130 SR103 — — SK14 1N5819 SK34 1N5822 B140 11DQ04 30BQ040 MBR340 MBRS140 SR104 30WQ04F 31DQ04 40V 10BQ040 — MBRS340 SR304 10MQ040 — MBRD340 — 15MQ040 — — — SK15 MBR150 SK35 MBR350 50V B150 11DQ05 30WQ05F 31DQ05 10BQ050 SR105 — SR305 9.2.1.2.4 InputCapacitor(C ) IN A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. This capacitor must be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor must be selected to be at least ½ the DC load current. The capacitor manufacturer data sheet must be checked to assure that this current rating is not exceeded. Figure 20 shows typical RMS current ratings for several different aluminum electrolytic capacitor values. A parallel connection of two or more capacitors may be required to increase the total minimum RMS current rating tosuittheapplicationrequirements. Figure20. RMSCurrentRatingsforLowESRElectrolyticCapacitors(Typical) 16 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 For an aluminum electrolytic capacitor, the voltage rating must be at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating must be twice the maximum input voltage. Table 3 shows the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. TI also recommends that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in serieswiththeinputsupplyline. Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the V IN pin. The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a maximum input voltage of 12 V, an aluminum electrolytic capacitor with a voltage rating greater than 15 V (1.25× V )wouldbeneeded.Thenexthighercapacitorvoltageratingis16V. IN The RMS current rating requirement for the input capacitor in a buck regulator is approximately ½ the DC load current.Inthisexample,witha1-Aload,acapacitorwithaRMScurrentratingofatleast500mAisneeded.The curvesshowninFigure20canbeusedtoselectanappropriateinputcapacitor.Fromthecurves,locatethe16-V lineandnotewhichcapacitorvalueshaveRMScurrentratingsgreaterthan500mA. Forathroughholedesign,a330-μF,16-Velectrolyticcapacitor(PanasonicHFQseries,NichiconPL,SanyoMV- GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZseriescouldbeconsidered. For surface-mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating and voltage rating. In this example, checking Table 5, and the Sprague 594D seriesdatasheet,aSprague594D15-μF,25-Vcapacitorisadequate. Table5.Sprague594D RECOMMENDEDAPPLICATIONVOLTAGE VOLTAGERATING 85°CRATING 2.5 4 3.3 6.3 5 10 8 16 12 20 18 25 24 35 29 50 Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com 9.2.1.2.5 BoostCapacitor(C ) B This capacitor develops the necessary voltage to turn the switch gate on fully. All applications must use a 0.01-μF,50-Vceramiccapacitor. 9.2.1.3 ApplicationCurves Figure21.LM2675,3.3-VOutput Figure22.LM2675,5-VOutput Figure23.LM2675,12-VOutput 18 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 9.2.2 AdjustableOutputVoltageApplication Copyright © 2016, Texas Instruments Incorporated C =22-μF,50-VTantalum,Sprague199DSeries IN C =47-μF,25-VTantalum,Sprague595DSeries OUT D1=3.3-A,50-VSchottkyRectifier,IR30WQ05F L1=68-μHSumida#RCR110D-680L R1=1.5kΩ,1% C =0.01-μF,50-VCeramic B Figure24. AdjustableOutputVoltageSchematic 9.2.2.1 DesignRequirements Table1liststhedesignrequirementsfortheadjustableoutputvoltageapplication. Table6.DesignParameters PARAMETER VALUE Regulatedoutputvoltage,V 20V OUT Maximuminputvoltage,V (max) 28V IN Maximumloadcurrent,I (max) 1A LOAD Switchingfrequency,F Fixedatanominal260kHz 9.2.2.2 DetailedDesignProcedure 9.2.2.2.1 ProgrammingOutputVoltage SelectingR andR ,asshowninFigure19. 1 2 UseEquation1toselecttheappropriateresistorvalues. § R • V V ¤1(cid:14) 2‚ OUT REF ' R „ 1 where • V =1.21V (1) REF SelectR tobe1kΩ,1%.SolveforR usingEquation2. 1 2 §V • § 20V • R R ¤ OUT (cid:16)1‚ 1k:¤ (cid:16)1‚ 2 1 ' VREF „ '1.23V „ (2) Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com SelectavalueforR between240Ω and1.5kΩ.Thelowerresistorvaluesminimizenoisepickupinthesensitive 1 feedback pin. For the lowest temperature coefficient and the best stability with time, use 1% metal film resistors withEquation3. §V • R R ¤ OUT (cid:16)1‚ 2 1 ' VREF „ (3) R =1k(16.53−1)=15.53kΩ,closest1%valueis15.4kΩ. 2 R =15.4kΩ. 2 9.2.2.2.2 InductorSelection(L1) CalculatetheinductorVolt× microsecondconstantE× T(V ×μs)fromEquation4. V (cid:14)V 1000 EuT (V (cid:16)V (cid:16)V )u OUT D u (VuPs) IN(MAX) OUT SAT V (cid:16)V (cid:14)V 260 IN(MAX) SAT D where • V =internalswitchsaturationvoltage=0.25V SAT • V =diodeforwardvoltagedrop=0.5V (4) D CalculatetheinductorVolt× microsecondconstant(E ×T)withEquation5. 20(cid:14)0.5 1000 EuT (28(cid:16)20(cid:16)0.25)u u (VuPs) 28(cid:16)0.25(cid:14)0.5 260 20.5 EuT (7.75)u u3.85(VuPs) 28.25 (5) Use the E × T value from the previous formula and match it with the E × T number on the vertical axis of the inductorvalueselectionguideinFigure25.E ×T=21.6(V × μs). Onthehorizontalaxis,selectthemaximumloadcurrent(I (max)=1A). LOAD IdentifytheinductanceregionintersectedbytheE ×Tvalueandthemaximumloadcurrentvalue.Eachregionis identified by an inductance value and an inductor code (LXX). From the inductor value selection guide shown in Figure 25, the inductance region intersected by the 21.6 (V × μs) horizontal line and the 1-A vertical line is 68μH,andtheinductorcodeisL30. Selectanappropriateinductorfromthefourmanufacturer'spartnumberslistedinTable2.Forinformationonthe different types of inductors, see the inductor selection in the fixed output voltage design procedure. From Table2,locatelineL30,andselectaninductorpartnumberfromthelistofmanufacturers'partnumbers. 9.2.2.2.3 OutputCapacitorSeIection(C ) OUT Select an output capacitor from the capacitor code selection guide in Table 7. Using the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor code corresponding to the desired output voltage. Use the appropriate row of the capacitor code selection guide, in Table 7. For this example, use the 15Vto20Vrow.Thecapacitorcodecorrespondingtoaninductanceof68 μHisC20. 20 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 Table7.CapacitorCodeSelectionGuide CASE OUTPUT INDUCTANCE(μH) STYLE (1) VOLTAGE(V) 22 33 47 68 100 150 220 SMandTH 1.21to2.5 — — — — C1 C2 C3 SMandTH 2.5to3.75 — — — C1 C2 C3 C3 SMandTH 3.75to5 — — C4 C5 C6 C6 C6 SMandTH 5to6.25 — C4 C7 C6 C6 C6 C6 SMandTH 6.25to7.5 C8 C4 C7 C6 C6 C6 C6 SMandTH 7.5to10 C9 C10 C11 C12 C13 C13 C13 SMandTH 10to12.5 C14 C11 C12 C12 C13 C13 C13 SMandTH 12.5to15 C15 C16 C17 C17 C17 C17 C17 SMandTH 15to20 C18 C19 C20 C20 C20 C20 C20 SMandTH 20to30 C21 C22 C22 C22 C22 C22 C22 TH 30to37 C23 C24 C24 C25 C25 C25 C25 (1) SM=surfacemount,TH=throughhole Select an appropriate capacitor value and voltage rating, using the capacitor code, from the output capacitor selection table in Table 8. There are two solid tantalum (surface mount) capacitor manufacturers and four electrolytic (through hole) capacitor manufacturers to choose from. TI recommends using both the manufacturers and the manufacturer's series that are listed in Table 8. From Table 8, choose a capacitor value (and voltage rating) that intersects the capacitor code(s) selected in section A, C20. The capacitance and voltage rating valuescorrespondingtothecapacitorcodeC20arethesurfacemountandthroughhole. Surfacemount: • 33-μF,25-V Sprague594DSeries • 33-μF,25-V AVXTPSSeries Throughhole: • 33-μF,25-V SanyoOS-CONSCSeries • 120-μF,35-V SanyoMV-GXSeries • 120-μF,35-V NichiconPLSeries • 120-μF,35-V PanasonicHFQSeries Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100-kHz ESR) closely match the characteristics of the capacitors listed in the output capacitor table.Seethecapacitormanufacturers'datasheetforthisinformation. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com Table8.OutputCapacitorSelectionTable OUTPUTCAPACITOR CAP. SURFACEMOUNT THROUGHHOLE REF. SPRAGUE AVXTPS SANYOOS-CON SANYOMV-GX NICHICON PANASONIC DESG. 594DSERIES SERIES SASERIES SERIES PLSERIES HFQSERIES # (μF/V) (μF/V) (μF/V) (μF/V) (μF/V) (μF/V) C1 120/6.3 100/10 100/10 220/35 220/35 220/35 C2 120/6.3 100/10 100/10 150/35 150/35 150/35 C3 120/6.3 100/10 100/35 120/35 120/35 120/35 C4 68/10 100/10 68/10 220/35 220/35 220/35 C5 100/16 100/10 100/10 150/35 150/35 150/35 C6 100/16 100/10 100/10 120/35 120/35 120/35 C7 68/10 100/10 68/10 150/35 150/35 150/35 C8 100/16 100/10 100/10 330/35 330/35 330/35 C9 100/16 100/16 100/16 330/35 330/35 330/35 C10 100/16 100/16 68/16 220/35 220/35 220/35 C11 100/16 100/16 68/16 150/35 150/35 150/35 C12 100/16 100/16 68/16 120/35 120/35 120/35 C13 100/16 100/16 100/16 120/35 120/35 120/35 C14 100/16 100/16 100/16 220/35 220/35 220/35 C15 47/20 68/20 47/20 220/35 220/35 220/35 C16 47/20 68/20 47/20 150/35 150/35 150/35 C17 47/20 68/20 47/20 120/35 120/35 120/35 C18 68/25 (2×)33/25 47/25(1) 220/35 220/35 220/35 C19 33/25 33/25 33/25(1) 150/35 150/35 150/35 C20 33/25 33/25 33/25(1) 120/35 120/35 120/35 C21 33/35 (2×)22/25 See(2) 150/35 150/35 150/35 C22 33/35 22/35 See(2) 120/35 120/35 120/35 C23 See(2) See(2) See(2) 220/50 100/50 120/50 C24 See(2) See(2) See(2) 150/50 100/50 120/50 C25 See(2) See(2) See(2) 150/50 82/50 82/50 (1) TheSCseriesofOs-Concapacitors(othersareSAseries) (2) ThevoltageratingsofthesurfacemounttantalumchipandOs-Concapacitorsaretoolowtoworkatthesevoltages. 9.2.2.2.4 CatchDiodeSelection(D1) In normal operation, the average current of the catch diode is the load current times the catch diode duty cycle, 1-D (D is the switch duty cycle, which is approximately V /V ). The largest value of the catch diode average OUT IN current occurs at the maximum input voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average current. However, if the power supply design must withstand a continuous output short, the diode must have a current rating greater than the maximum current limit of the LM2675. The most stressful condition for this diode is a shorted output condition (see Table 4). Schottky diodes provide the best performance, and in this example a 1-A, 40-V Schottky diode would be a good choice. If the circuit must withstand a continuous shorted output, TI recommends a Schottky diode of higher current (at least2.2A). The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. TheSchottkydiodemustbeplacedclosetotheLM2675usingshortleadsandshortprintedcircuittraces. 22 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 9.2.2.2.5 InputCapacitor(C ) IN A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. This capacitor must be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor must be selected to be at least ½ the DC load current. The capacitor manufacturer data sheet must be checked to assure that this current rating is not exceeded. The curves shown in Figure 20 show typical RMS current ratings for several different aluminum electrolytic capacitor values. A parallel connection of two or more capacitors may be required to increase the total minimum RMS currentratingtosuittheapplicationrequirements. For an aluminum electrolytic capacitor, the voltage rating must be at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating must be twice the maximum input voltage. Table 9 and Table 5 show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. TI recommends that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in serieswiththeinputsupplyline. Table9.AVXTPS RECOMMENDEDAPPLICATIONVOLTAGE VOLTAGERATING 85°CRATING 3.3 6.3 5 10 10 20 12 25 15 35 Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the V IN pin. The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a maximum input voltage of 28 V, an aluminum electrolytic capacitor with a voltage rating of at least 35 V (1.25 × V )wouldbeneeded. IN The RMS current rating requirement for the input capacitor in a buck regulator is approximately ½ the DC load current.Inthisexample,witha1-Aload,acapacitorwithaRMScurrentratingofatleast500mAisneeded.The curvesshowninFigure20canbeusedtoselectanappropriateinputcapacitor.Fromthecurves,locatethe35-V lineandnotewhichcapacitorvalueshaveRMScurrentratingsgreaterthan500mA. Forathroughholedesign,a330-μF,35-Velectrolyticcapacitor(PanasonicHFQseries,NichiconPL,SanyoMV- GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS, and the Nichicon WF or UR and the NIC Components NACZseriescouldbeconsidered. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating and voltage rating. In this example, checking Table 5, and the Sprague 594D seriesdatasheet,aSprague594D15-μF,50-Vcapacitorisadequate. 9.2.2.2.6 BoostCapacitor(C ) B This capacitor develops the necessary voltage to turn the switch gate on fully. All applications must use a 0.01-μF,50-Vceramiccapacitor. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com 9.2.2.3 ApplicationCurve Figure25. LM2675,AdjustableOutput 10 Power Supply Recommendations TheinputvoltageforthepowersupplyisconnectedtotheVINpin.Inadditiontoprovidingenergytotheloadthe input voltage also provides bias for the internal circuitry of the LM2675. For ensured performance, the input voltage must be in the range of 6.5 V to 40 V. The VIN pin must always be bypassed with an input capacitor locatedclosetothispinandGND. 24 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 11 Layout 11.1 Layout Guidelines Layout is very important in switching regulator designs. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines (in Figure 19 and Figure 24) must be wide printed circuit traces and mustbekeptasshortaspossible.Forbestresults,externalcomponentsmustbeplacedasclosetotheswitcher ICaspossibleusinggroundplaneconstructionorsingle-pointgrounding. If open-core inductors are used, take special care as to the location and positioning of this type of inductor. Allowingtheinductorfluxtointersectsensitivefeedback,ICgroundpath,andC wiringcancauseproblems. OUT When using the adjustable version, take special care as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especiallyanopen-coretypeofinductor. 11.1.1 WSONPackageDevices The LM2675 is offered in the 16-pin WSON surface-mount package to allow for increased power dissipation comparedtotheSOICandPDIP. The die attach pad (DAP) can and must be connected to PCB Ground plane or island. For CAD and assembly guidelinesseeAN-1187LeadlessLeadframePackage(LLP). 11.2 Layout Examples C =15-μF,50-V,SolidTantalumSprague594Dseries IN C =68-μF,16-V,SolidTantalumSprague594Dseries OUT D1=1-A,40-VSchottkyRectifier,surfacemount L1=33-μH,L23,CoilcraftDO3316 C =0.01-μF,50-Vceramic B Figure26. TypicalSurfaceMountPCBoardLayout,FixedOutput Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:LM2675
LM2675 SNVS129F–MAY2004–REVISEDJUNE2016 www.ti.com Layout Examples (continued) C =15-μF,50-V,SolidTantalumSprague594Dseries IN C =33-μF,25-V,SolidTantalumSprague594Dseries OUT D1=1-A,40-VSchottkyRectifier,surfacemount L1=68-μH,L30,CoilcraftDO3316 C =0.01-μF,50-Vceramic B R1=1k,1% R2=UseformulainDetailedDesignProcedure Figure27. TypicalSurfaceMountPCBoardLayout,AdjustableOutput 26 SubmitDocumentationFeedback Copyright©2004–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2675
LM2675 www.ti.com SNVS129F–MAY2004–REVISEDJUNE2016 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 RelatedDocumentation Forrelateddocumentationseethefollowing: • AN-1187LeadlessLeadframePackage(LLP) • LM2670SIMPLESWITCHER®HighEfficiency3AStep-DownVoltageRegulatorwithSync 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.4 Trademarks E2EisatrademarkofTexasInstruments. SIMPLESWITCHERisaregisteredtrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.5 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2004–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:LM2675
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM2675LD-5.0/NOPB ACTIVE WSON NHN 16 1000 Green (RoHS SN Level-3-260C-168 HR -40 to 125 S000FB & no Sb/Br) LM2675LD-ADJ/NOPB ACTIVE WSON NHN 16 1000 Green (RoHS SN Level-3-260C-168 HR -40 to 125 S000GB & no Sb/Br) LM2675M-12 NRND SOIC D 8 95 TBD Call TI Call TI -40 to 125 2675 M-12 LM2675M-12/NOPB ACTIVE SOIC D 8 95 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) M-12 LM2675M-3.3/NOPB ACTIVE SOIC D 8 95 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) M3.3 LM2675M-5.0 NRND SOIC D 8 95 TBD Call TI Call TI -40 to 125 2675 M5.0 LM2675M-5.0/NOPB ACTIVE SOIC D 8 95 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) M5.0 LM2675M-ADJ NRND SOIC D 8 95 TBD Call TI Call TI -40 to 125 2675 MADJ LM2675M-ADJ/NOPB ACTIVE SOIC D 8 95 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) MADJ LM2675MX-12/NOPB ACTIVE SOIC D 8 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) M-12 LM2675MX-3.3/NOPB ACTIVE SOIC D 8 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) M3.3 LM2675MX-5.0/NOPB ACTIVE SOIC D 8 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) M5.0 LM2675MX-ADJ/NOPB ACTIVE SOIC D 8 2500 Green (RoHS Call TI | SN Level-1-260C-UNLIM -40 to 125 2675 & no Sb/Br) MADJ LM2675N-12/NOPB ACTIVE PDIP P 8 40 Green (RoHS SN Level-1-NA-UNLIM -40 to 125 LM2675 & no Sb/Br) N-12 LM2675N-3.3/NOPB ACTIVE PDIP P 8 40 Green (RoHS SN Level-1-NA-UNLIM -40 to 125 LM2675 & no Sb/Br) N-3.3 LM2675N-5.0/NOPB ACTIVE PDIP P 8 40 Green (RoHS SN Level-1-NA-UNLIM -40 to 125 LM2675 & no Sb/Br) N-5.0 LM2675N-ADJ/NOPB ACTIVE PDIP P 8 40 Green (RoHS SN Level-1-NA-UNLIM -40 to 125 LM2675 & no Sb/Br) N-ADJ Addendum-Page 1
PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com
None
MECHANICAL DATA NHN0016A LDA16A (REV A) www.ti.com
IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated