图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LM2593HVS-5.0/NOPB
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LM2593HVS-5.0/NOPB产品简介:

ICGOO电子元器件商城为您提供LM2593HVS-5.0/NOPB由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LM2593HVS-5.0/NOPB价格参考¥25.21-¥46.83。Texas InstrumentsLM2593HVS-5.0/NOPB封装/规格:PMIC - 稳压器 - DC DC 开关稳压器, 固定 降压 开关稳压器 IC 正 5V 1 输出 2A TO-263-8,D²Pak(7 引线+接片),TO-263CA。您可以下载LM2593HVS-5.0/NOPB参考资料、Datasheet数据手册功能说明书,资料中有LM2593HVS-5.0/NOPB 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC REG BUCK 5V 2A TO263-7稳压器—开关式稳压器 PWR CONVERTER 150KHz 2A ST-DOWN VLTG REG

DevelopmentKit

LM2593HVEVAL

产品分类

PMIC - 稳压器 - DC DC 开关稳压器

品牌

Texas Instruments

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS含铅 / 不受限制有害物质指令(RoHS)规范要求限制

产品系列

电源管理 IC,稳压器—开关式稳压器,Texas Instruments LM2593HVS-5.0/NOPBSIMPLE SWITCHER®

数据手册

点击此处下载产品Datasheet

产品型号

LM2593HVS-5.0/NOPB

PWM类型

-

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30128

产品目录页面

点击此处下载产品Datasheet

产品种类

稳压器—开关式稳压器

供应商器件封装

DDPAK/TO-263-7

其它名称

*LM2593HVS-5.0/NOPB
LM2593HVS50NOPB

制造商产品页

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&orderablePartNumber=LM2593HVS-5.0/NOPB

包装

管件

同步整流器

商标

Texas Instruments

安装类型

表面贴装

安装风格

SMD/SMT

封装

Tube

封装/外壳

TO-263-8,D²Pak(7 引线+接片),TO-263CA

封装/箱体

TO-263-7

工作温度

-40°C ~ 125°C

工作温度范围

- 40 C to + 85 C

工厂包装数量

45

开关频率

173 kHz

最大输入电压

60 V

最小工作温度

- 40 C

标准包装

45

电压-输入

4.5 V ~ 60 V

电压-输出

5V

电流-输出

2A

类型

Step Down

系列

LM2593HV

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

输出数

1

输出电压

5 V

输出电流

2 A

输出端数量

1 Output

输出类型

固定

配用

/product-detail/zh/LM2593HVEVAL/LM2593HVEVAL-ND/1640593

频率-开关

150kHz

推荐商品

型号:LM2833XMYX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TPS61006DGS

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MPQ4559DQ-LF-P

品牌:Monolithic Power Systems Inc.

产品名称:集成电路(IC)

获取报价

型号:TC7660HCOA713

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:LTC3562EUD#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2575T-5.0/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TPS62410DRCT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TPS630252YFFT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LM2593HVS-5.0/NOPB 相关产品

MAX653ESA+T

品牌:Maxim Integrated

价格:

ISL9104AIRUAZ-T7A

品牌:Renesas Electronics America Inc.

价格:¥11.44-¥15.86

LTC3637MPDHC#TRPBF

品牌:Linear Technology/Analog Devices

价格:

LM2594HVMX-3.3/NOPB

品牌:Texas Instruments

价格:¥24.97-¥40.09

MAX1790EUA

品牌:Maxim Integrated

价格:¥19.40-¥19.40

TPS62170DSGR

品牌:Texas Instruments

价格:

MP2303DN-LF-Z

品牌:Monolithic Power Systems Inc.

价格:

LTC3111MPMSE#PBF

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 ® LM2593HV SIMPLE SWITCHER Power Converter 150-kHz, 2-A Step-Down Voltage Regulator 1 Features This series of switching regulators is similar to the LM2592HV with additional supervisory and • 3.3-V,5-V,andAdjustableOutputVersions 1 performancefeatures. • AdjustableVersionOutputVoltageRange:1.2V Requiring a minimum number of external to57V±4%MaximumOverLineandLoad components, these regulators are simple to use and Conditions include internal frequency compensation, improved • Ensured2-AOutputLoadCurrent lineandloadspecifications,fixed-frequencyoscillator, • Availablein7-PinTO-220andTO-263(Surface- Shutdown/Soft-start,outputerrorflag,andflagdelay. Mount)Package The LM2593HV operates at a switching frequency of • InputVoltageRangeupto60V 150 kHz, thus allowing smaller sized filter • 150-kHzFixedFrequencyInternalOscillator components than what would be needed with lower frequency switching regulators. Available in a • ShutdownandSoft-Start standard 7-pin TO-220 package with several different • Out-of-RegulationErrorFlag leadbendoptions,anda7-pinTO-263surface-mount • ErrorFlagDelay package. • LowPowerStandbyMode:IQ,Typically90μA Other features include a specified ±4% tolerance on • HighEfficiency output voltage under all conditions of input voltage and output load conditions, and ±15% on the • ThermalShutdownandCurrent-LimitProtection oscillator frequency. External shutdown is included, featuring typically 90-μA standby current. Self- 2 Applications protection features include a two stage current limit • SimpleHigh-EfficiencyStep-Down(Buck) for the output switch and an overtemperature Regulators shutdown for complete protection under fault conditions. • EfficientPreregulatorforLinearRegulators • On-CardSwitchingRegulators DeviceInformation(1) • Positive-to-NegativeConverters PARTNUMBER PACKAGE BODYSIZE(NOM) TO-263(7) 10.10mm×8.89mm 3 Description LM2593HV TO-220(7) 14.99mm×10.16mm The LM2593HV series of regulators are monolithic integrated circuits that provide all the active functions (1) For all available packages, see the orderable addendum at theendofthedatasheet. for a step-down (buck) switching regulator, capable of driving a 2-A load with excellent line and load regulation.Thesedevicesareavailableinfixedoutput voltages of 3.3-V, 5-V, and an adjustable output version. TypicalApplication(FixedOutputVoltageVersions) Copyright © 2016,Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com Table of Contents 1 Features.................................................................. 1 8.1 Overview.................................................................12 2 Applications........................................................... 1 8.2 FunctionalBlockDiagram.......................................12 3 Description............................................................. 1 8.3 FeatureDescription.................................................12 8.4 DeviceFunctionalModes........................................15 4 RevisionHistory..................................................... 2 9 ApplicationandImplementation........................ 16 5 PinConfigurationandFunctions......................... 3 9.1 ApplicationInformation............................................16 6 Specifications......................................................... 4 9.2 TypicalApplication..................................................18 6.1 AbsoluteMaximumRatings......................................4 10 PowerSupplyRecommendations..................... 22 6.2 ESDRatings..............................................................4 11 Layout................................................................... 22 6.3 RecommendedOperatingConditions.......................4 6.4 ThermalInformation..................................................5 11.1 LayoutGuidelines.................................................22 6.5 ElectricalCharacteristics...........................................5 11.2 LayoutExample....................................................22 6.6 ElectricalCharacteristics–3.3-VVersion.................6 11.3 ThermalConsiderations........................................23 6.7 ElectricalCharacteristics–5-VVersion....................6 12 DeviceandDocumentationSupport................. 24 6.8 ElectricalCharacteristics–AdjustableVoltage 12.1 DocumentationSupport........................................24 Version....................................................................... 6 12.2 CommunityResources..........................................24 6.9 TypicalCharacteristics..............................................7 12.3 Trademarks...........................................................24 7 ParameterMeasurementInformation................11 12.4 ElectrostaticDischargeCaution............................24 7.1 TestCircuits............................................................11 12.5 Glossary................................................................24 8 DetailedDescription............................................ 12 13 Mechanical,Packaging,andOrderable Information........................................................... 24 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionD(December2011)toRevisionE Page • AddedESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementation section,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,and Mechanical,Packaging,andOrderableInformationsection.................................................................................................. 1 2 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 5 Pin Configuration and Functions NDZPackage 7-PinTO-220 KTWPackage TopView 7-PinTO-263 TopView Not to scale 7 SD/SS 6 Feedback 5 Delay Thermal 4 Ground Pad 3 Flag 2 Output 1 VIN Not to scale 1 2 3 4 5 6 7 VIN Output Flag Ground Delay Feedback SD/SS PinFunctions PIN TYPE(1) DESCRIPTION NO. NAME ThisisthepositiveinputsupplyfortheICswitchingregulator.Asuitableinputbypasscapacitormust 1 V I bepresentatthispintominimizevoltagetransientsandtosupplytheswitchingcurrentsneededby IN theregulator. Internalswitch.Thevoltageatthispinswitchesbetweenapproximately(+V −V )and 2 Output O IN SAT approximately−0.5V,withadutycycleofV /V . OUT IN Errorflag:Open-collectoroutputthatgoesactivelow(≤1V)whentheoutputoftheswitching regulatorisoutofregulation(lessthan95%ofitsnominalvalue).Inthisstateitcansinkmaximum3 mA.Whennotlow,itcanbepulledhightosignalthattheoutputoftheregulatorisinregulation 3 Flag O (powergood).Duringpower-up,itcanbeprogrammedtogohighafteracertaindelayassetbythe Delaypin(Pin5).Themaximumratingofthispinmustnotbeexceeded,soiftherailtowhichitwill bepulleduptoishigherthan45V,aresistivedividermustbeusedinsteadofasinglepullupresistor, asindicatedinTestCircuits. 4 Ground — Circuitground. Thissetsaprogrammablepower-updelayfromthemomentthattheoutputreachesregulation,tothe highsignaloutput(powergood)onPin3.Acapacitoronthispinstartschargingupbymeansonan internal(3μA)currentsourcewhentheregulatedoutputrisestowithin5%ofitsnominalvalue.Pin3 5 Delay O goeshigh(withanexternalpullup)whenthevoltageonthecapacitoronPin5exceeds1.3V.The voltageonthispinisclampedinternallytoabout1.7V.Iftheregulatedoutputdropsoutofregulation (lessthan95%ofitsnominalvalue),thecapacitoronPin5israpidlydischargedinternallyandPin3 isforcedlowinabout1/1000thofthesetpower-updelaytime.(2) Sensestheregulatedoutputvoltagetocompletethefeedbackloop.Thispinisdirectlyconnectedto theOutputforthefixedvoltageversions,butissetto1.23Vbymeansofaresistivedividerfromthe outputfortheadjustableversion.Ifafeedforwardcapacitorisused(adjustableversion),thena negativevoltagespikeisgeneratedonthispinwhenevertheoutputisshorted.Thishappens becausethefeedforwardcapacitorcannotdischargefastenough,andbecauseoneendofitis 6 Feedback I draggedtoGround,theotherendgoesmomentarilynegative.Topreventtheenergyratingofthispin frombeingexceeded,asmall-signalSchottkydiodetoGroundisrecommendedforDCinputvoltages above40Vwheneverafeedforwardcapacitorispresent(seeTestCircuits).Feedforwardcapacitor valueslargerthan0.1μFarenotrecommendedforthesamereason,whateverbetheDCinput voltage.(2) (1) G=Ground,I=Input,O=Output (2) Ifanyofthesepinsarenotused,therespectivepincanbeleftopen. Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com PinFunctions(continued) PIN TYPE(1) DESCRIPTION NO. NAME Shutdown/Soft-start:Theregulatorisinshutdownmode,drawingabout90μA,whenthispinisdriven toalowlevel(≤0.6V),andisinnormaloperationwhenthisPinisleftfloating(internalpull-up)or driventoahighlevel(≥2V).Thetypicalvalueofthethresholdis1.3Vandthepinisinternally clampedtoamaximumofabout7V.Ifitisdrivenhigherthantheclampvoltage,itmustbeensured bymeansofanexternalresistorthatthecurrentintothepindoesnotexceed1mA.Thedutycycleis 7 SD/SS I minimum(0%)ifthisPinisbelow1.8V,andincreasesasthevoltageonthepinisincreased.The maximumdutycycle(100%)occurswhenthispinisat2.8Vorhigher.Soaddingacapacitortothis pinproducesasoft-startfeature.Aninternalcurrentsourcechargesthecapacitorfromzerotoits internallyclampedvalue.Thechargingcurrentisabout5μAwhenthepinisbelow1.3Vbutis reducedtoonly1.6μAabove1.3V,soastoallowtheuseofsmallersoft-startcapacitors.(2) 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN MAX UNIT Maximumsupplyvoltage,V 63 V IN SD/SSpininputvoltage(2) 6 V Delaypinvoltage(2) 1.5 V Flagpinvoltage –0.3 45 V Feedbackpinvoltage –0.3 25 V Outputvoltagetoground,steady-state –1 V Powerdissipation Internallylimited Vaporphase(60s) 215 Spackage Leadtemperature Infrared(10s) 245 °C Tpackage,soldering(10s) 260 Maximumjunctiontemperature 150 °C Storagetemperature,T –65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Voltageinternallyclamped.Ifclampvoltageisexceeded,limitcurrenttoamaximumof1mA. 6.2 ESD Ratings VALUE UNIT V Electrostaticdischarge Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1)(2) ±2000 V (ESD) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) Thehumanbodymodelisa100-pFcapacitordischargedthrougha1.5-kresistorintoeachpin. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN MAX UNIT Supplyvoltage 4.5 60 V T Temperature –40 125 °C J 4 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 6.4 Thermal Information LM2593HV THERMALMETRIC(1) NDZ(TO-220) KTW(TO-263) UNIT 7PINS 7PINS 50(3) R Junction-to-ambientthermalresistance 50(2) 30(4) °C/W θJA 20(5) R Junction-to-case(top)thermalresistance 2 2 °C/W θJC(top) R Junction-to-boardthermalresistance — — °C/W θJB ψ Junction-to-topcharacterizationparameter — — °C/W JT ψ Junction-to-boardcharacterizationparameter — — °C/W JB R Junction-to-case(bottom)thermalresistance — — °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. (2) Junctiontoambientthermalresistance(noexternalheatsink)forthepackagemountedTO-220packagemountedvertically,withthe leadssolderedtoaprinted-circuitboardwith(1oz)copperareaofapproximately1in2. (3) JunctiontoambientthermalresistancewiththeTO-263packagetabsolderedtoasingle-sidedprinted-circuitboardwith0.5in2of(1oz) copperarea. (4) JunctiontoambientthermalresistancewiththeTO-263packagetabsolderedtoasingle-sidedprinted-circuitboardwith2.5in2of(1oz) copperarea. (5) JunctiontoambientthermalresistancewiththeTO-263packagetabsolderedtoadouble-sidedprinted-circuitboardwith3in2of(1oz) copperareaontheLM2593HVSsideoftheboard,andapproximately16in2ofcopperontheothersideoftheprinted-circuitboard. 6.5 Electrical Characteristics T =25°C,V =12Vforthe3.3-V,5-V,andadjustableversions,andI =500mA(unlessotherwisenoted) J IN LOAD PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT Ib Feedbackbiascurrent Adjustableversiononly,VFB=1.3V 50 10 100 nA fO Oscillatorfrequency(3) TJ=25°C 127 150 173 kHz TJ=–40°Cto125°C 110 173 IOUT=2A;nodiode,inductor TJ=25°C 1.1 1.3 orcapacitorconnectedto outputpin(4);Feedbackpin VSAT Saturationvoltage rceomnnoevcetdedfrotom0oVuttpoutfoarncedthe TJ=–40°Cto125°C 1.4 V outputtransistorswitchON(5) Feedbackpinremovedfromoutputandconnectedto0 Maxdutycycle(ON) 100% VtoforcetheoutputtransistorswitchON DC Feedbackpinremovedfromoutputandconnectedto Mindutycycle(OFF) 12Vforthe3.3-V,5-V,andtheadjustableversionsto 0% forcetheoutputtransistorswitchOFF Peakcurrent;nodiode, TJ=25°C 2.4 3 3.7 inductororcapacitorconnected tooutputpin;Feedbackpin ICLIM Switchcurrentlimit rceomnnoevcetdedfrotom0oVuttpoutfoarncedthe TJ=–40°Cto125°C 2.3 4 A outputtransistorswitchON Feedbackpinremovedfromoutputandconnectedto 12Vforthe3.3-V,5-V,andtheadjustableversionto IL Outputleakagecurrent forcetheoutputtransistorswitchOFF;VIN=60V, 50 5 30 mA output=0V, output=−1V SDandSSpinopen,Feedbackpinremovedfrom outputandconnectedto12Vforthe3.3-V,5-V,and IQ Operatingquiescentcurrent theadjustableversiontoforcetheoutputtransistor 5 10 mA switchOFF (1) Alllimitsspecifiedatroomtemperatureunlessotherwisenoted.Allroomtemperaturelimitsare100%productiontested.Alllimitsat temperatureextremesareensuredviacorrelationusingstandardStatisticalQualityControl(SQC)methods.Alllimitsareusedto calculateAverageOutgoingQualityLevel(AOQL). (2) Typicalnumbersareat25°Candrepresentthemostlikelynorm. (3) Theswitchingfrequencyisreducedwhenthesecondstagecurrentlimitisactivated.Theamountofreductionisdeterminedbythe severityofcurrentoverload. (4) Nodiode,inductororcapacitorconnectedtooutputpin. (5) Feedbackpinremovedfromoutputandconnectedto0VtoforcetheoutputtransistorswitchON. Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com Electrical Characteristics (continued) T =25°C,V =12Vforthe3.3-V,5-V,andadjustableversions,andI =500mA(unlessotherwisenoted) J IN LOAD PARAMETER TESTCONDITIONS MIN(1) TYP(2) MAX(1) UNIT SDandSSpin=0V, TJ=25°C 90 200 ISTBY Standbyquiescentcurrent VIN=60V TJ=–40°Cto125°C 250 µA SHUTDOWNANDSOFT-STARTCONTROL Low(shutdownmode) 1.3 0.6 VSD Shutdownthresholdvoltage V High(soft-startmode) 2 VOUT=20%ofnominaloutputvoltage 2 VSS Soft-startvoltage V VOUT=100%ofnominaloutputvoltage 3 ISD Shutdowncurrent VSHUTDOWN=0.5V 5 10 µA ISS Soft-startcurrent VSoft-start=2.5V 1.5 5 µA Regulatordropoutdetector Low(flagON) 96% Thresholdvoltage Low(flagON) 92% 98% VFSAT Flagoutputsaturationvoltage ISINK=3mA,VDELAY=0.5V 0.3 µA IFL Flagoutputleakagecurrent VFLAG=60V 0.7 0.3 1 V Delaypinthresholdvoltage Low(flagON),high(flagOFF)andVOUTregulated 1.21 1.25 1.29 V Delaypinsourcecurrent VDELAY=0.5V 3 6 µA Delaypinsaturation Low(flagON) 350 70 400 mV 6.6 Electrical Characteristics – 3.3-V Version T =25°C(unlessotherwisenoted) J PARAMETER TESTCONDITIONS MIN TYP MAX UNIT SYSTEMPARAMETERS VOUT Outputvoltage 40..725AV≤≤ILVOIAND≤≤620AV, TTJJ==–2450°C°Cto125°C 33..116385 3.3 33..443625 V η Efficiency VIN=12V,ILOAD=2A 76% 6.7 Electrical Characteristics – 5-V Version T =25°C(unlessotherwisenoted) J PARAMETER TESTCONDITIONS MIN TYP MAX UNIT V Outputvoltage 7V≤VIN≤60V, TJ=25°C 4.8 5 5.2 V 0.2A≤ILOAD≤2A TJ=–40°Cto125°C 4.75 5.25 η Efficiency VIN=12V,ILOAD=2A 81% 6.8 Electrical Characteristics – Adjustable Voltage Version T =25°C(unlessotherwisenoted) J PARAMETER TESTCONDITIONS MIN TYP MAX UNIT 4.5V≤VIN≤60V, TJ=25°C 1.193 1.23 1.267 VFB Feedbackvoltage 0.2A≤ILOAD≤2A, V V(sOeUeTTperosgtrCaimrcmuietsd)for3V TJ=–40°Cto125°C 1.18 1.28 η Efficiency VIN=12V,VOUT=3V,ILOAD=2A 75% 6 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 6.9 Typical Characteristics Figure1.NormalizedOutputVoltage Figure2.LineRegulation Figure3.Efficiency Figure4.SwitchSaturationVoltage Figure5.SwitchCurrentLimit Figure6.DropoutVoltage Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com Typical Characteristics (continued) Figure7.OperatingQuiescentCurrent Figure8.ShutdownQuiescentCurrent Figure9.MinimumOperatingSupplyVoltage Figure10.FeedbackPinBiasCurrent Figure11.FlagSaturationVoltage Figure12.SwitchingFrequency 8 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 Typical Characteristics (continued) Figure13.Soft-Start Figure14.Shutdown/Soft-StartCurrent Figure15.DelayPinCurrent Figure16.Soft-StartResponse Figure17.Shutdown/Soft-StartThresholdVoltage Figure18.InternalGain-PhaseCharacteristics Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com Typical Characteristics (continued) HorizontalTimeBase:2µs/div. HorizontalTimeBase:2µs/div. V =20V,V =5V,I =2A, V =20V,V =5V,I =500mA, IN OUT LOAD IN OUT LOAD L=32µH,C =220µF,C ESR=50mΩ L=10µH,C =330µF,C ESR=50mΩ OUT OUT OUT OUT OutputPinVoltage,10V/div. OutputPinVoltage,10V/div. InductorCurrent,1A/div. InductorCurrent,0.5A/div. OutputRippleVoltage,50mV/div. OutputRippleVoltage,100mV/div. Figure19.ContinuousModeSwitchingWaveforms Figure20.DiscontinuousModeSwitchingWaveforms HorizontalTimeBase:50µs/div. HorizontalTimeBase:200µs/div. VIN=20V,VOUT=5V,ILOAD=500mAto2A, VIN=20V,VOUT=5V,ILOAD=500mAto2A, L=32µH,COUT=220µF,COUTESR=50mΩ L=10µH,COUT=330µF,COUTESR=50mΩ OutputVoltage,100mV/div.(AC) OutputVoltage,100mV/div.(AC) 500-mAto2-ALoadPulse 500-mAto2-ALoadPulse Figure21.LoadTransientResponse Figure22.LoadTransientResponse forContinuousMode forDiscontinuousMode 10 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 7 Parameter Measurement Information 7.1 Test Circuits ComponentValuesshownareforV =15V, IN V =5V,I =2A. OUT LOAD C —470-µF,50-ValuminumelectrolyticNichiconPMSeries IN C —220-µF,25-ValuminumelectrolyticNichconPMSeries OUT D1—3.3-A,60-VSchottkyRectifier,21DQ06(internationalrectifier) L1—33µH,seeInductorsSelectionProcedure Figure23. FixedOutputVoltageVersions SelectR tobeapproximately1kΩ,usea1%resistorforbeststability. 1 ComponentvaluesshownareforV =20V, IN V =10V,I =2A. OUT LOAD C —470-µF,35-ValuminumelectrolyticNichiconPMSeries IN C —220-µF,35-ValuminumelectrolyticNichiconPMSeries OUT D1—3.3-A,60-VSchottkyRectifier,21DQ06(internationalrectifier) L1—47µH,seeInductorsSelectionProcedure R —1kΩ,1% 1 R —7.15k,1% 2 C —3.3nF FF TypicalValues C —0.1µF SS C —0.1µF DELAY R —4.7k(use22kifV is≥45V) PULLUP OUT †Resistivedividerisrequiredtoavoidexceedingmaximumratingof45V,3mAonorintoflagpin. ††SmallsignalSchottkydiodetopreventdamagetofeedbackpinbynegativespikewhenoutputisshorted(C not FF beingabletodischargeimmediatelywilldragfeedbackpinbelowground).RequiredifV >40V. IN Figure24. AdjustableOutputVoltageVersions Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com 8 Detailed Description 8.1 Overview The LM2593HV SIMPLE SWITCHER® regulator is an easy-to-use, non-synchronous, step-down DC-DC converter with a wide input voltage range up to 60 V. It is capable of delivering up to 2-A DC load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3-V, 5-V, and an adjustable output version. The family requires few external components and the pin arrangement was designed forsimple,optimumPCBlayout. 8.2 Functional Block Diagram Copyright © 2016,Texas Instruments Incorporated 8.3 Feature Description 8.3.1 UndervoltageLockout Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. Figure 25 contains a undervoltage lockout circuit for a buck configuration, while Figure 26 and Figure 27 are for the inverting types (only the circuitry pertaining to the undervoltage lockout is shown). Figure 25 uses a Zener diode to establish the threshold voltage when the switcher begins operating. When the input voltage is less than the Zener voltage, resistors R1 and R2 hold the Shutdown/Soft-Start pin low, keeping the regulator in the shutdown mode. As the input voltage exceeds the Zener voltage, the Zener conducts, pulling the Shutdown/Soft- Start pin high, allowing the regulator to begin switching. The threshold voltage for the undervoltage lockout featureisapproximately1.5VgreaterthantheZenervoltage. 12 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 Feature Description (continued) Copyright © 2016,Texas Instruments Incorporated Figure25. UndervoltageLockoutforaBuckRegulator Figure 26 and Figure 27 apply the same feature to an inverting circuit. Figure 26 features a constant threshold voltage for turnon and turnoff (Zener voltage plus approximately 1 V). If hysteresis is needed, the circuit in Figure 27 has a turnon voltage which is different than the turnoff voltage. The amount of hysteresis is approximately equal to the value of the output voltage. Because the SD/SS pin has an internal 7-V Zener clamp, R2isneededtolimitthecurrentintothispintoapproximately1mAwhenQ1ison. Copyright © 2016,Texas Instruments Incorporated Figure26. UndervoltageLockoutWithoutHysteresisforanInvertingRegulator Copyright © 2016,Texas Instruments Incorporated Figure27. UndervoltageLockoutWithHysteresisforanInvertingRegulator Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com Feature Description (continued) 8.3.2 NegativeVoltageChargePump Occasionally a low current negative voltage is needed for biasing parts of a circuit. A simple method of generating a negative voltage using a charge pump technique is shown in Figure 28. This unregulated negative voltageisapproximatelyequaltothepositiveinputvoltage(minusafewvolts),andcansupplyuptoa600mAof output current. There is a requirement however, that there be a minimum load of 1.2 A on the regulated positive output for the charge pump to work correctly. Also, resistor R1 is required to limit the charging current of C1 to some value less than the LM2593HV current limit. This method of generating a negative output voltage without an additional inductor can be used with other members of the SIMPLE SWITCHER® family, using either the buck orboosttopology. Copyright © 2016,Texas Instruments Incorporated Figure28. ChargePumpforGeneratingaLow-Current,NegativeOutputVoltage 8.3.3 Shutdown/Soft-Start This reduction in start-up current is useful in situations where the input power source is limited in the amount of current it can deliver. In some applications, soft-start can be used to replace undervoltage lockout or delayed start-up functions. If a very slow output voltage ramp is desired, the soft-start capacitor can be made much larger. Many seconds or even minutes are possible. If only the shutdown feature is needed, the soft-start capacitorcanbeeliminated. Figure29. TypicalCircuitUsing Shutdown/Soft-StartandErrorFlagFeatures 14 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 Feature Description (continued) 10133331 Figure30. Soft-Start,Delay,ErrorOutput 8.4 Device Functional Modes 8.4.1 ShutdownMode The Shutdown/Soft-start pin provides electrical ON and OFF control for the LM2593HV. When the voltage of this pinislessthan0.6V,thedeviceisinshutdownmode.Thetypicalstandbycurrentinthismodeis90 μA. 8.4.2 ActiveMode When the Shutdown/Soft-start pin is left floating or pull above 2 V, the device starts switching and the output voltagerisesuntilitreachesanormalregulationvoltage. Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 9.1 Application Information 9.1.1 FeedforwardCapacitor,C FF (Adjustableoutputvoltageversiononly) AfeedforwardcapacitorshownacrossR2inTestCircuitsisusedwhentheoutputvoltageisgreaterthan10Vor when C has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the OUT phasemarginforbetterloopstability.Iftheoutputvoltagerippleislarge(>5%ofthenominaloutputvoltage),this ripple can be coupled to the feedback pin through the feedforward capacitor and cause the error comparator to trigger the error flag. In this situation, adding a resistor, R , in series with the feedforward capacitor, FF approximately3timesR1,attenuatestheripplevoltageatthefeedbackpin. 9.1.2 InputCapacitor,C IN A low-ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be placed near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on. The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator’s input capacitor, this capacitor must be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating. The voltage rating of the capacitor and its RMS ripple current capabilitymustneverbeexceeded. 9.1.3 OutputCapacitor,C OUT Anoutputcapacitorisrequiredtofiltertheoutputandprovideregulatorloopstability.LowimpedanceorlowESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100-kHz Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The ESR must generally not be less than 100 mW or there will be loop instability. If the ESR is too large, efficiency and output voltage ripple are effected. So ESR must be chosen carefully. 9.1.4 CatchDiode Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be placed close to the LM2593HV using short leads and short printed-circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5 V and lower). Ultra-fast recovery, or high-efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. The diode must be chosen for its average or RMS current rating and maximum voltage rating. The voltage rating of the diode mustbegreaterthantheDCinputvoltage(nottheoutputvoltage). 16 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 Application Information (continued) 9.1.5 lnvertingRegulator ThecircuitinFigure31convertsapositiveinputvoltagetoanegativeoutputvoltagewithacommonground.The circuit operates by bootstrapping the regulator’s ground pin to the negative output voltage, then grounding the feedback pin, the regulator senses the inverted output voltage and regulates it. This example uses the LM2593HV 5-V to generate a −5-V output, but other output voltages are possible by selecting other output voltageversions,includingtheadjustableversion.Becausethisregulatortopologycanproduceanoutputvoltage thatiseithergreaterthanorlessthantheinputvoltage,themaximumoutputcurrentgreatlydependsonboththe input and output voltage. To determine how much load current is possible before the internal device current limit is reached (and power limiting occurs), the system must be evaluated as a buck-boost configuration rather than asabuck.Thepeakswitchcurrentinamperes,forsuchaconfigurationisgivenasEquation1. æV +V ö V ´V ´106 IPEAK=ILOAD´çè IN VINOUT ÷ø+ 2´LIN´f´(OVUINT +VOUT) where • LisinμH • fisinHz (1) The maximum possible load current I is limited by the requirement that I ≤ I . While checking for this, LOAD PEAK CLIM take I to be the lowest possible current limit value (minimum across tolerance and temperature is 2.3 A for CLIM the LM2593HV). Also to account for inductor tolerances, take the minimum value of Inductance for L in Equation 1 (typically 20% less than the nominal value). Further, the above equation disregards the drop across the switch and the diode. This is equivalent to assuming 100% efficiency, which is never so. Therefore expect I to be an additional 10-20% higher than calculated from Equation 1. See also Application Note AN-1197 PEAK Selecting Inductors for Buck Converters (SNVA038) for examples based on positive to negative configuration. The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. This must be limited to a maximum of 60 V. In this example, when converting 20 V to −5 V, the regulator would see 25 V between the input pin and ground pin. The LM2593HV has a maximum input voltage rating of 60 V. An additional diode is required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the CIN capacitor to the output, under light or no load conditions. Also, this diode isolation changes the topology to closely resemble a buck configuration thus providing good closed-loop stability. A Schottky diode is recommended for low input voltages, (because of its lower voltage drop) but for higher input voltages, a IN5400 diode could be used. Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a 33-μH, 4-A inductor is the best choice. Capacitor selection can also be narrowed down to just a few values. This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2593HV current limit (approximately 4 A) are needed for 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high start-up currents required by the inverting topology, the soft-start feature shown in Figure 31 is recommended. Also shown in Figure 31 are several shutdown methods for the inverting configuration. With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now at the negative output voltage.Theshutdownmethodsshownacceptgroundreferencedshutdownsignals. Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com Application Information (continued) Figure31. Inverting −5VRegulatorWithShutdownandSoft-Start 9.2 Typical Application Copyright © 2016,Texas Instruments Incorporated Figure32. LM2593HV5-VApplicationSchematic 9.2.1 DesignRequirements Table1liststheexamplevaluesforthistypicalapplication. Table1.ApplicationExampleParameters DESIGNPARAMETER EXAMPLEVALUE Regulatedoutputvoltage(3.3V,5V,oradjustable),V 5V OUT Maximuminputvoltage,V 24V IN(max) Maximumloadcurrent,I 1A LOAD(max) Switchingfrequency,F Fixedatanominal150kHz 18 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 9.2.2 DetailedDesignProcedure 9.2.2.1 InductorsSelectionProcedure See application note AN-1197 Selecting Inductors for Buck Converters (SNVA038) for detailed information on inductor selection. For a quick-start, see the nomographs provided in Figure 33 to Figure 35. To widen the choices to a more general selection of available inductors, the nomographs provide the required inductance and also the energy in the core expressed in microjoules (μJ), as an alternative to just prescribing custom parts. The followingpointsmustbehighlighted: 1. The energy values shown on the nomographs apply to steady operation at the corresponding x-coordinate (rated maximum load current). However under start-up, without soft-start, or a short-circuit on the output, the current in the inductor momentarily and repetitively hits the current limit I of the device, and this current CLIM could be much higher than the rated load, I . This represents an overload situation, and can cause the LOAD inductor to saturate (if it has been designed only to handle the energy of steady operation). However most types of core structures used for such applications have a large inherent air gap (for example powdered iron types or ferrite rod inductors), and so the inductance does not fall off too sharply under an overload. The device is usually able to protect itself by not allowing the current to ever exceed I . But if the DC input CLIM voltage to the regulator is over 40 V, the current can slew up so fast under core saturation, that the device may not be able to act fast enough to restrict the current. The current can then rise without limit till destruction of the device takes place. Therefore to ensure reliability, TI recommends, that if the DC input voltage exceeds 40 V, the inductor must always be sized to handle an instantaneous current equal to I CLIM withoutsaturating,irrespectiveofthetypeofcorestructureormaterial. 2. UseEquation2tocalculatetheenergyundersteadyoperation. 1 e= ´L´I 2 mJ 2 PEAK where • LisinμH • I isthepeakoftheinductorcurrentwaveformwiththeregulatordeliveringI (2) PEAK LOAD Thesearetheenergyvaluesshowninthenomographs.SeeExample1. 3. TheenergyunderoverloadisEquation3. 1 e= ´L´I 2 mJ 2 CLIM where • LisinμH • I isthepeakoftheinductorcurrentwaveformwiththeregulatordeliveringI (3) PEAK LOAD If V > 40 V, the inductor must be sized to handle e instead of the steady energy values. The worst case IN CLIM I fortheLM2593HVis4A.Theenergyratingdependsontheinductance.SeeExample2. CLIM 4. The nomographs were generated by allowing a greater amount of percentage current ripple in the inductor as the maximum rated load decreases (see Figure 36). This was done to permit the use of smaller inductors at light loads. However, Figure 36 shows only the median value of the current ripple. In reality there may be a great spread around this because the nomographs approximate the exact calculated inductance to standard available values. It is a good idea to refer to AN-1197 Selecting Inductors for Buck Converters (SNVA038) for detailed calculations if a certain maximum inductor current ripple is required for various possible reasons. Also consider the rather wide tolerance on the nominal inductance of commercial inductors. 5. Figure 35 shows the inductor selection curves for the adjustable version. The y-axis is Et, in Vμs. It is the applied volts across the inductor during the ON time of the switch (V -V -V ) multiplied by the time for IN SAT OUT whichtheswitchisoninμs.SeeExample3. 9.2.2.1.1 Example1:V ≤40V,5-VVersion,V =24V,Output=5Vat1A IN IN 1. A first pass inductor selection is based upon inductance and rated maximum load current. Choose an inductor with the inductance value indicated by the nomograph (see Figure 34) and a current rating equal to the maximum load current. Therefore, quick-select a 68-μH, 1-A inductor (designed for 150-kHz operation) forthisapplication. Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com 2. Confirm that it is rated to handle 50 μJ (see Figure 34) by either estimating the peak current or by a detailed calculation as shown in AN-1197 Selecting Inductors for Buck Converters (SNVA038), and also that the lossesareacceptable. 9.2.2.1.2 Example2:V >40V,5-Vversion,V =48V,Output=5Vat1.5A IN IN 1. A first pass inductor selection is based upon inductance and the switch currrent limit. Choose an inductor with the inductance value indicated by the nomograph (see Figure 34) and a current rating equal to I . CLIM Therefore,quick-selecta68-μH,4-Ainductor(designedfor150-kHzoperation)forthisapplication. 2. Confirm that it is rated to handle e by the procedure shown in AN-1197 Selecting Inductors for Buck CLIM Converters (SNVA038)andthatthelossesareacceptable.Heree isEquation4. CLIM 1 e = ´68´42 =544mJ CLIM 2 (4) 9.2.2.1.3 Example3:V ≤40V,AdjustableVersion,V =20V,Output=10Vat2A IN IN 1. Because input voltage is less than 40 V, a first pass inductor selection is based upon inductance and rated maximum load current. Choose an inductor with the inductance value indicated by the nomograph Figure 35 and a current rating equal to the maximum load. But first calculate Et for the given application. The duty cycleisEquation5. V +V D= OUT D V -V +V IN SAT D where • V isthedropacrossthecatchdiode(0.5VforaSchottky) D • V thedropacrosstheswitch(1.5V) (5) SAT SothisyieldsEquation6. 10+0.5 D= =0.55 20-1.5+0.5 (6) 2. TheswitchONtimeiscalculatedwithEquation7. D t = ´106 ms ON f where • fistheswitchingfrequencyinHz (7) SothisyieldsEquation8. Et =(V -V -V )´t IN SAT OUT ON 0.55 =(20-1.5-10)´ ´106 Vmsecs 150000 =31.3 Vmsecs (8) 3. Therefore, looking at Figure 33, quick-select a 47-μH, 2-A inductor (designed for 150-kHz operation) for this application. 4. Confirm that it is rated to handle 200 μJ (see Figure 35) by the procedure shown in AN-1197 Selecting Inductors for Buck Converters (SNVA038) and that the losses are acceptable. (If the DC input voltage had beengreaterthan40V,considere asinExample2). CLIM This completes the simplified inductor selection procedure. For more general applications and better optimization,referto AN-1197SelectingInductorsforBuckConverters (SNVA038). 20 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 9.2.3 ApplicationCurves Forcontinuousmodeoperation Figure33.LM2593HV3.3-V Figure34.LM2593HV5-V Figure35.LM2593HVAdjustableVoltage Figure36.CurrentRippleRatio Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com 10 Power Supply Recommendations The LM2593HV is designed to operate from an input voltage supply up to 60 V. This input supply must be well regulatedandabletowithstandmaximuminputcurrentandmaintainastablevoltage. 11 Layout 11.1 Layout Guidelines As in any switching regulator, layout is very important. Rapid switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops,withreferencetoFunctionalBlockDiagram,thewiresindicatedbyheavylinesmustbewideprinted-circuit traces and must be kept as short as possible. For best results, external components must be placed as close to theswitcherlCaspossibleusinggroundplaneconstructionorsingle-pointgrounding. If open core inductors are used, take special care as to the location and positioning of this type of inductor. Allowingtheinductorfluxtointersectsensitivefeedback,lCgroundpathandC wiringcancauseproblems. OUT When using the adjustable version, take special care as to the location of the feedback resistors and the associated wiring. Physically place both resistors near the IC, and route the wiring away from the inductor, especiallyanopencoretypeofinductor. 11.2 Layout Example Figure37. TopSide(ComponentSide)ofPCB 22 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

LM2593HV www.ti.com SNVS082E–DECEMBER2001–REVISEDMAY2016 11.3 Thermal Considerations The LM2593HV is available in two packages, a 5-pin TO-220 (T) and a 5-pin surface-mount TO-263 (S). The TO-220 package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current, and the ambient temperature. Higher ambient temperatures require more heat sinking. The TO-263 surface-mount package tab is designed to be soldered to the copper on a printed-circuit board. The copper and the board are the heat sink for this package and the other heat-producing components, such as the catch diode and inductor. The PCB copper area that the package is soldered to must be at least 0.4 in2, and ideally must have 2 or more square inches of 2-oz. (0.0028 in) copper. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in2, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double-sided, multilayer PCB with large copper areas or airflow are recommended. The curves shown in Figure 38 show the LM2593HVS (TO-263 package) junction temperature rise above ambient temperature with a 2-A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PCB to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2 A are used, double-sided or multilayer PCBs with large copper areas or airflow might be required, especially for high ambient temperatures and high output voltages. For the best thermal performance, wide copper traces and generous amounts of printed-circuit board copper must be used in the board layout. (One exception to this is the output (switch) pin, which must not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further. Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed-circuit copper area, copper thickness, single- or double-sided, multilayer board, and the amount of solder on the board. The effectiveness of the PCB to dissipate heat also depends on the size, quantity, and spacing of other components on the board, as wellaswhetherthesurroundingairisstillormoving.Furthermore,someofthesecomponents,suchasthecatch diode will add heat to the PCB and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material, and the DC resistance, it could either act as a heat sink taking heat awayfromtheboard,oritcouldaddheattotheboard. Figure38. JunctionTemperatureRise,TO-263 Copyright©2001–2016,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:LM2593HV

LM2593HV SNVS082E–DECEMBER2001–REVISEDMAY2016 www.ti.com 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 RelatedDocumentation Forrelateddocumentationseethefollowing: AN-1197SelectingInductorsforBuckConverters,SNVA038 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 12.3 Trademarks E2EisatrademarkofTexasInstruments. SIMPLESWITCHERisaregisteredtrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 12.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 12.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 24 SubmitDocumentationFeedback Copyright©2001–2016,TexasInstrumentsIncorporated ProductFolderLinks:LM2593HV

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LM2593HVS-3.3/NOPB ACTIVE DDPAK/ KTW 7 45 Pb-Free (RoHS SN Level-3-245C-168 HR -40 to 125 LM2593HVS TO-263 Exempt) -3.3 P+ LM2593HVS-5.0/NOPB ACTIVE DDPAK/ KTW 7 45 Pb-Free (RoHS SN Level-3-245C-168 HR -40 to 125 LM2593HVS TO-263 Exempt) -5.0 P+ LM2593HVS-ADJ NRND DDPAK/ KTW 7 45 TBD Call TI Call TI -40 to 125 LM2593HVS TO-263 -ADJ P+ LM2593HVS-ADJ/NOPB ACTIVE DDPAK/ KTW 7 45 Pb-Free (RoHS SN Level-3-245C-168 HR -40 to 125 LM2593HVS TO-263 Exempt) -ADJ P+ LM2593HVSX-3.3/NOPB ACTIVE DDPAK/ KTW 7 500 Pb-Free (RoHS SN Level-3-245C-168 HR -40 to 125 LM2593HVS TO-263 Exempt) -3.3 P+ LM2593HVSX-5.0/NOPB ACTIVE DDPAK/ KTW 7 500 Pb-Free (RoHS SN Level-3-245C-168 HR -40 to 125 LM2593HVS TO-263 Exempt) -5.0 P+ LM2593HVSX-ADJ/NOPB ACTIVE DDPAK/ KTW 7 500 Pb-Free (RoHS SN Level-3-245C-168 HR -40 to 125 LM2593HVS TO-263 Exempt) -ADJ P+ LM2593HVT-5.0/NOPB ACTIVE TO-220 NDZ 7 45 Green (RoHS SN Level-1-NA-UNLIM -40 to 125 LM2593HVT & no Sb/Br) -5.0 P+ LM2593HVT-ADJ/NOPB ACTIVE TO-220 NDZ 7 45 Green (RoHS SN Level-1-NA-UNLIM -40 to 125 LM2593HVT & no Sb/Br) -ADJ P+ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 25-Jan-2016 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LM2593HVSX-3.3/NOPB DDPAK/ KTW 7 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 TO-263 LM2593HVSX-5.0/NOPB DDPAK/ KTW 7 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 TO-263 LM2593HVSX-ADJ/NOPB DDPAK/ KTW 7 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 TO-263 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 25-Jan-2016 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LM2593HVSX-3.3/NOPB DDPAK/TO-263 KTW 7 500 367.0 367.0 45.0 LM2593HVSX-5.0/NOPB DDPAK/TO-263 KTW 7 500 367.0 367.0 45.0 LM2593HVSX-ADJ/NOPB DDPAK/TO-263 KTW 7 500 367.0 367.0 45.0 PackMaterials-Page2

MECHANICAL DATA NDZ0007B TA07B (Rev E) www.ti.com

MECHANICAL DATA KTW0007B TS7B (Rev E) BOTTOM SIDE OF PACKAGE www.ti.com

IMPORTANTNOTICEANDDISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated