图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LIS3DHTR
  • 制造商: STMicroelectronics
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LIS3DHTR产品简介:

ICGOO电子元器件商城为您提供LIS3DHTR由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LIS3DHTR价格参考。STMicroelectronicsLIS3DHTR封装/规格:运动传感器 - 加速计, Accelerometer X, Y, Z Axis ±2g, 4g, 8g, 16g 0.5Hz ~ 625Hz 16-LGA (3x3)。您可以下载LIS3DHTR参考资料、Datasheet数据手册功能说明书,资料中有LIS3DHTR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

传感器,变送器

描述

ACCELEROMETER 3AXIS MEMS 16-LGA加速计 MEMS Ultra Low-Power 3-Axes "Nano"

产品分类

加速计运动与定位传感器

品牌

STMicroelectronics

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

加速计,STMicroelectronics LIS3DHTR-

数据手册

点击此处下载产品Datasheet

产品型号

LIS3DHTR

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30339

产品目录页面

点击此处下载产品Datasheet

产品种类

加速计

传感轴

X, Y, Z

供应商器件封装

16-LGA(3x3)

其它名称

497-10613-2

其它有关文件

http://www.st.com/web/catalog/sense_power/FM89/SC444/PF250725?referrer=70071840

分辨率

16 bit

加速

16 g

加速度范围

±2g, 4g, 8g, 16g

商标

STMicroelectronics

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

16-VFLGA

封装/箱体

LGA-16

工厂包装数量

4000

带宽

5kHz

接口

I²C, SPI

数字输出-位数

16 bit

数字输出-总线接口

I2C, SPI

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

4,000

灵敏度

1mg/位数,2mg/位数,4mg/位数,12mg/位数

电压-电源

1.71 V ~ 3.6 V

电源电压-最大

3.6 V

电源电压-最小

1.71 V

电源电流

6 uA to 11 uA

系列

LIS3DH

X,Y,Z

输出类型

I²C, SPI

推荐商品

型号:MMA2240KEG

品牌:NXP USA Inc.

产品名称:传感器,变送器

获取报价

型号:ADXL337BCPZ-RL7

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:3255-100

品牌:TE Connectivity Measurement Specialties

产品名称:传感器,变送器

获取报价

型号:MMA7341LR1

品牌:NXP USA Inc.

产品名称:传感器,变送器

获取报价

型号:ADXL345BCCZ-RL

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:MMA7456LT

品牌:NXP USA Inc.

产品名称:传感器,变送器

获取报价

型号:ADXL326BCPZ-RL7

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:ADXL213AE

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

样品试用

万种样品免费试用

去申请
LIS3DHTR 相关产品

MMA7361LR1

品牌:NXP USA Inc.

价格:

ADXL325BCPZ

品牌:Analog Devices Inc.

价格:

MMA2301D

品牌:NXP USA Inc.

价格:

MMA7455LT

品牌:NXP USA Inc.

价格:

MMA7331LCR1

品牌:NXP USA Inc.

价格:

MMA3202KEGR2

品牌:NXP USA Inc.

价格:

MMA8452QR1

品牌:NXP USA Inc.

价格:

MMA7455LR1

品牌:NXP USA Inc.

价格:

PDF Datasheet 数据手册内容提取

LIS3DH MEMS digital output motion sensor: ultra-low-power high-performance 3-axis "nano" accelerometer Datasheet - production data  Display orientation  Gaming and virtual reality input devices  Impact recognition and logging  Vibration monitoring and compensation Description (cid:47)(cid:42)(cid:36)(cid:16)(cid:20)(cid:25)(cid:3)(cid:11)(cid:22)(cid:91)(cid:22)(cid:91)(cid:20)(cid:3)(cid:80)(cid:80)(cid:12) The LIS3DH is an ultra-low-power high- Features performance three-axis linear accelerometer belonging to the “nano” family, with digital I2C/SPI  Wide supply voltage, 1.71 V to 3.6 V serial interface standard output. The device features ultra-low-power operational modes that  Independent IO supply (1.8 V) and supply allow advanced power saving and smart voltage compatible embedded functions.  Ultra-low-power mode consumption The LIS3DH has dynamically user-selectable full down to 2 μA scales of 2g/±4g/8g/16g and is capable of  2g/±4g/8g/16g dynamically selectable full measuring accelerations with output data rates scale from 1 Hz to 5.3 kHz. The self-test capability  I2C/SPI digital output interface allows the user to check the functioning of the sensor in the final application. The device may be  16-bit data output configured to generate interrupt signals using two  2 independent programmable interrupt independent inertial wake-up/free-fall events as generators for free-fall and motion detection well as by the position of the device itself.  6D/4D orientation detection Thresholds and timing of interrupt generators are programmable by the end user on the fly. The  Free-fall detection LIS3DH has an integrated 32-level first-in, first-  Motion detection out (FIFO) buffer allowing the user to store data in  Embedded temperature sensor order to limit intervention by the host processor. The LIS3DH is available in small thin plastic land  Embedded self-test grid array package (LGA) and is guaranteed to  Embedded 32 levels of 16-bit data output FIFO operate over an extended temperature range  10000 g high shock survivability from -40 °C to +85 °C.  ECOPACK®, RoHS and “Green” compliant Table 1. Device summary Applications Temp. Order codes Package Packaging range [C]  Motion activated functions LIS3DHTR -40 to +85 LGA-16 Tape and reel  Free-fall detection  Click/double-click recognition  Intelligent power saving for handheld devices  Pedometers December 2016 DocID17530 Rev 2 1/54 This is information on a product in full production. www.st.com

Contents LIS3DH Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.4.2 I2C - Inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 3.1.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 High-resolution, normal mode, low-power mode . . . . . . . . . . . . . . . . . .16 3.2.2 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3.2.3 6D / 4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 3.2.4 “Sleep-to-wake” and “Return-to-sleep” . . . . . . . . . . . . . . . . . . . . . . . . .18 3.3 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Auxiliary ADC and temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2/54 DocID17530 Rev 2

LIS3DH Contents 5.1.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 5.1.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 5.1.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 5.1.4 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 5.1.5 Retrieving data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 6 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 6.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 6.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 7 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8 Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.1 STATUS_REG_AUX (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.2 OUT_ADC1_L (08h), OUT_ADC1_H (09h) . . . . . . . . . . . . . . . . . . . . . . . 33 8.3 OUT_ADC2_L (0Ah), OUT_ADC2_H (0Bh) . . . . . . . . . . . . . . . . . . . . . . . 33 8.4 OUT_ADC3_L (0Ch), OUT_ADC3_H (0Dh) . . . . . . . . . . . . . . . . . . . . . . 33 8.5 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.6 CTRL_REG0 (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.7 TEMP_CFG_REG (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.8 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.9 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.10 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.11 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.12 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.13 CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.14 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.15 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.16 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.17 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.18 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DocID17530 Rev 2 3/54 54

Contents LIS3DH 8.19 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.20 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.21 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.22 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.23 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.24 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.25 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.26 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.27 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.28 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.29 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.30 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.31 CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.32 TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.33 TIME_LATENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.34 TIME WINDOW (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.35 ACT_THS (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.36 ACT_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9.1 LGA-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.2 LGA-16 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4/54 DocID17530 Rev 2

LIS3DH List of tables List of tables Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Table 3. Internal pull-up values (typ.) for SDO/SA0 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Table 4. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Table 5. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Table 6. Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Table 7. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 8. I2C slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 10. Operating mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Table 11. Turn-on time for operating mode transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 12. Current consumption of operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 13. Internal pin status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Table 14. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 15. I2C terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 16. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 17. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 18. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 19. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . .26 Table 20. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . .26 Table 21. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 22. STATUS_REG_AUX register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 23. STATUS_REG_AUX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 24. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 25. CTRL_REG0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 26. CTRL_REG0 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 27. TEMP_CFG_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 28. TEMP_CFG_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 29. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Table 30. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Table 31. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Table 32. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 33. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 34. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 35. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 36. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 37. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Table 38. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Table 39. Self-test mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Table 40. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 41. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 42. CTRL_REG6 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 43. CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 44. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Table 45. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Table 46. STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Table 47. STATUS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Table 48. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DocID17530 Rev 2 5/54 54

List of tables LIS3DH Table 49. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Table 50. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Table 51. FIFO_SRC_REG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 52. FIFO_SRC_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 53. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 54. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 55. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Table 56. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Table 57. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Table 58. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Table 59. INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Table 60. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Table 61. INT1_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Table 62. INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 63. INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 64. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 65. INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Table 66. INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Table 67. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Table 68. INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Table 69. INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Table 70. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Table 71. CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Table 72. CLICK_CFG description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Table 73. CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 74. CLICK_SRC description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 75. CLICK_THS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 76. CLICK_SRC description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 77. TIME_LIMIT register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 78. TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 79. TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 80. TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 81. TIME_WINDOW register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 82. TIME_WINDOW description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 83. ACT_THS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 84. ACT_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 85. ACT_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 86. ACT_DUR description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 87. Reel dimensions for carrier tape of LGA-16 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Table 88. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 6/54 DocID17530 Rev 2

LIS3DH List of figures List of figures Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Figure 5. LIS3DH electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Figure 8. Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Figure 10. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Figure 12. LGA-16 package outline and mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Figure 13. Carrier tape information for LGA-16 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Figure 14. LGA-16 package orientation in carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Figure 15. Reel information for carrier tape of LGA-16 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 DocID17530 Rev 2 7/54 54

Block diagram and pin description LIS3DH 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram (cid:59)(cid:14) (cid:60)(cid:14) (cid:38)(cid:43)(cid:36)(cid:53)(cid:42)(cid:40) (cid:61)(cid:14) (cid:36)(cid:48)(cid:51)(cid:47)(cid:44)(cid:41)(cid:44)(cid:40)(cid:53) (cid:68) (cid:36)(cid:18)(cid:39) (cid:48)(cid:56)(cid:59) (cid:38)(cid:50)(cid:49)(cid:57)(cid:40)(cid:53)(cid:55)(cid:40)(cid:3)(cid:53)(cid:20) (cid:38)(cid:54) (cid:61)(cid:16) (cid:60)(cid:16) (cid:38)(cid:50)(cid:49)(cid:55)(cid:53)(cid:50)(cid:3)(cid:47) (cid:44)(cid:3)(cid:21)(cid:3)(cid:38) (cid:54)(cid:38)(cid:47)(cid:18)(cid:54)(cid:51)(cid:38) (cid:59)(cid:16) (cid:47)(cid:50)(cid:42)(cid:44)(cid:38) (cid:54)(cid:39)(cid:36)(cid:18)(cid:54)(cid:39)(cid:50)(cid:18)(cid:54)(cid:39)(cid:44) (cid:54)(cid:51)(cid:44) (cid:36)(cid:39)(cid:38)(cid:3)(cid:16)(cid:3)(cid:36)(cid:39)(cid:38)(cid:3)(cid:44)(cid:81)(cid:83)(cid:88)(cid:87)(cid:20) (cid:54)(cid:39)(cid:50)(cid:18)(cid:54)(cid:36)(cid:19) (cid:36)(cid:39)(cid:38)(cid:3)(cid:16)(cid:3)(cid:36)(cid:39)(cid:38)(cid:3)(cid:44)(cid:81)(cid:83)(cid:88)(cid:87)(cid:21) (cid:36)(cid:39)(cid:38)(cid:3)(cid:16)(cid:3)(cid:36)(cid:39)(cid:38)(cid:3)(cid:44)(cid:81)(cid:83)(cid:88)(cid:87)(cid:22) (cid:38)(cid:50)(cid:49)(cid:57)(cid:36)(cid:40)(cid:18)(cid:39)(cid:53)(cid:55)(cid:40)(cid:53)(cid:21) (cid:55)(cid:40)(cid:48)(cid:51)(cid:40)(cid:53)(cid:36)(cid:55)(cid:56)(cid:3)(cid:53)(cid:40) (cid:54)(cid:40)(cid:49)(cid:54)(cid:50)(cid:53) (cid:54)(cid:40)(cid:47)(cid:41)(cid:16)(cid:55)(cid:40)(cid:54)(cid:55) (cid:53)(cid:40)(cid:41)(cid:40)(cid:53)(cid:40)(cid:49)(cid:38)(cid:40) (cid:55)(cid:38)(cid:53)(cid:44)(cid:53)(cid:44)(cid:48)(cid:38)(cid:48)(cid:56)(cid:44)(cid:44)(cid:49)(cid:55)(cid:54)(cid:42) (cid:38)(cid:47)(cid:50)(cid:38)(cid:46) (cid:22)(cid:21)(cid:41)(cid:3)(cid:47)(cid:44)(cid:41)(cid:72)(cid:50)(cid:89)(cid:72)(cid:79) (cid:44)(cid:38)(cid:49)(cid:50)(cid:55)(cid:49)(cid:40)(cid:53)(cid:55)(cid:53)(cid:53)(cid:50)(cid:56)(cid:9)(cid:3)(cid:47)(cid:51)(cid:3)(cid:3)(cid:55)(cid:47)(cid:3)(cid:50)(cid:42)(cid:42)(cid:40)(cid:44)(cid:49)(cid:38)(cid:17) (cid:44)(cid:44)(cid:49)(cid:49)(cid:55)(cid:55)(cid:3)(cid:3)(cid:20)(cid:21)(cid:3)(cid:3) 1.2 Pin description Figure 2. Pin connections (cid:61) (cid:21) (cid:20) (cid:71)(cid:71) (cid:39)(cid:38) (cid:39)(cid:38) (cid:51)(cid:76)(cid:81)(cid:3)(cid:20)(cid:3)(cid:76)(cid:81)(cid:71)(cid:76)(cid:70)(cid:68)(cid:87)(cid:82)(cid:85) (cid:57) (cid:36) (cid:36) (cid:20) (cid:59) (cid:36)(cid:39)(cid:38)(cid:22) (cid:20)(cid:22) (cid:20) (cid:57)(cid:71)(cid:71)(cid:66)(cid:44)(cid:50) (cid:42)(cid:49)(cid:39) (cid:49)(cid:38)(cid:3) (cid:44)(cid:49)(cid:55)(cid:20) (cid:49)(cid:38)(cid:3) (cid:53)(cid:40)(cid:54) (cid:54)(cid:38)(cid:47)(cid:18)(cid:54)(cid:51)(cid:38) (cid:44)(cid:49)(cid:55)(cid:21) (cid:28) (cid:24) (cid:42)(cid:49)(cid:39) (cid:60) (cid:54) (cid:19) (cid:50) (cid:39)(cid:44)(cid:11)(cid:53)(cid:55)(cid:50)(cid:40)(cid:38)(cid:51)(cid:55)(cid:3)(cid:57)(cid:44)(cid:50)(cid:44)(cid:40)(cid:3)(cid:49)(cid:58)(cid:3)(cid:50)(cid:12)(cid:41)(cid:3)(cid:55)(cid:3)(cid:43)(cid:40) (cid:38) (cid:54)(cid:39)(cid:50)(cid:18)(cid:54)(cid:36) (cid:36)(cid:18)(cid:54)(cid:39)(cid:44)(cid:18)(cid:54)(cid:39) (cid:39)(cid:40)(cid:55)(cid:40)(cid:38)(cid:55)(cid:36)(cid:37)(cid:47)(cid:3)(cid:40) (cid:39) (cid:54) (cid:36)(cid:38)(cid:38)(cid:40)(cid:47)(cid:40)(cid:53)(cid:36)(cid:55)(cid:44)(cid:50)(cid:49)(cid:54) (cid:11)(cid:37)(cid:50)(cid:55)(cid:55)(cid:50)(cid:48)(cid:3) (cid:3)(cid:57)(cid:44)(cid:40)(cid:58)(cid:12) 8/54 DocID17530 Rev 2

LIS3DH Block diagram and pin description Table 2. Pin description Pin# Name Function 1 Vdd_IO Power supply for I/O pins 2 NC Not connected 3 NC Not connected SCL I2C serial clock (SCL) 4 SPC SPI serial port clock (SPC) 5 GND 0 V supply SDA I2C serial data (SDA) 6 SDI SPI serial data input (SDI) SDO 3-wire interface serial data output (SDO) SDO SPI serial data output (SDO) 7(1) SA0 I2C less significant bit of the device address (SA0) SPI enable I2C/SPI mode selection: 8 CS 1: SPI idle mode / I2C communication enabled 0: SPI communication mode / I2C disabled 9 INT2 Inertial interrupt 2 10 RES Connect to GND 11 INT1 Inertial interrupt 1 12 GND 0 V supply 13 ADC3 Analog-to-digital converter input 3 14 Vdd Power supply 15 ADC2 Analog-to-digital converter input 2 16 ADC1 Analog-to-digital converter input 1 1. SDO/SA0 pin is internally pulled up. Refer to Table 3 for the internal pull-up values (typ.). Table 3. Internal pull-up values (typ.) for SDO/SA0 pin Resistor value for SDO/SA0 pin Vdd_IO Typ. (kΩ) 1.7 V 54.4 1.8 V 49.2 2.5 V 30.4 3.6 V 20.4 DocID17530 Rev 2 9/54 54

Mechanical and electrical specifications LIS3DH 2 Mechanical and electrical specifications 2.1 Mechanical characteristics Vdd = 2.5 V, T = 25 °C unless otherwise noted (a) Table 4. Mechanical characteristics Symbol Parameter Test conditions Min. Typ.(1) Max. Unit FS bit set to 00 ±2.0 FS bit set to 01 ±4.0 FS Measurement range(2) FS bit set to 10 ±8.0 FS bit set to 11 ±16.0 g FS bit set to 00; 1 High-resolution mode FS bit set to 00; 4 mg/digit Normal mode FS bit set to 00; 16 Low-power mode FS bit set to 01; 2 High-resolution mode FS bit set to 01; 8 mg/digit Normal mode FS bit set to 01; 32 Low-power mode So Sensitivity FS bit set to 10; 4 High-resolution mode FS bit set to 10; 16 mg/digit Normal mode FS bit set to 10; 64 Low-power mode FS bit set to 11; 12 High-resolution mode FS bit set to 11; 48 mg/digit Normal mode FS bit set to 11; 192 Low-power mode Sensitivity change vs TCSo FS bit set to 00 0.01 %/°C temperature Typical zero-g level TyOff FS bit set to 00 ±40 mg offset accuracy(3),(4) a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V. 10/54 DocID17530 Rev 2

LIS3DH Mechanical and electrical specifications Table 4. Mechanical characteristics Symbol Parameter Test conditions Min. Typ.(1) Max. Unit Zero-g level change TCOff Max delta from 25 °C ±0.5 mg/°C vs temperature Acceleration noise FS bit set to 00, High-Resolution mode An 220 μg/√Hz density (Table 10), ODR > 1300 Hz FS bit set to 00 17 360 LSb X-axis; Normal mode Self-test FS bit set to 00 Vst 17 360 LSb output change(5)(6)(7) Y-axis; Normal mode FS bit set to 00 17 360 LSb Z-axis; Normal mode Operating Top -40 +85 °C temperature range 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Typical zero-g level offset value after MSL3 preconditioning. 4. Offset can be eliminated by enabling the built-in high-pass filter. 5. The sign of “Self-test output change” is defined by the ST bits in CTRL_REG4 (23h), for all axes. 6. “Self-test output change” is defined as the absolute value of: OUTPUT[LSb] - OUTPUT[LSb] . 1LSb = 4 mg at 10-bit representation, ±2 g full scale. (Self test enabled) (Self test disabled) 7. After enabling the self-test, correct data is obtained after two samples (low-power mode / normal mode) or after eight samples (high-resolution mode). DocID17530 Rev 2 11/54 54

Mechanical and electrical specifications LIS3DH 2.2 Temperature sensor characteristics Vdd = 2.5 V, T = 25 °C unless otherwise noted (b) Table 5. Temperature sensor characteristics Symbol Parameter Test condition Min. Typ.(1) Max. Unit Temperature sensor output change vs TSDr 1 digit/°C(2) temperature TODR Temperature refresh rate ODR Hz Top Operating temperature range -40 +85 °C 1. Typical specifications are not guaranteed. 2. 8-bit resolution. 2.3 Electrical characteristics Vdd = 2.5 V, T = 25 °C unless otherwise noted (c) Table 6. Electrical characteristics Symbol Parameter Test conditions Min. Typ.(1) Max. Unit Vdd Supply voltage 1.71 2.5 3.6 V Vdd_IO I/O pins supply voltage(2) 1.71 Vdd+0.1 V Idd Current consumption in normal mode 50 Hz ODR 11 μA Idd Current consumption in normal mode 1 Hz ODR 2 μA IddLP Current consumption in low-power mode 50 Hz ODR 6 μA Current consumption in power-down IddPdn 0.5 μA mode VIH Digital high-level input voltage 0.8*Vdd_IO V VIL Digital low-level input voltage 0.2*Vdd_IO V VOH High-level output voltage 0.9*Vdd_IO V VOL Low-level output voltage 0.1*Vdd_IO V BW System bandwidth(3) ODR/2 Hz Top Operating temperature range -40 +85 °C 1. Typical specification are not guaranteed. 2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off. 3. Refer to Table 25 for the ODR value and configuration. b. The product is factory calibrated at 2.5 V. Temperature sensor operation is guaranteed in the range 2 V - 3.6 V. c. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V. 12/54 DocID17530 Rev 2

LIS3DH Mechanical and electrical specifications 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 7. SPI slave timing values Value (1) Symbol Parameter Unit Min Max t SPI clock cycle 100 ns c(SPC) f SPI clock frequency 10 MHz c(SPC) tsu(CS) CS setup time 5 t CS hold time 20 h(CS) t SDI input setup time 5 su(SI) t SDI input hold time 15 ns h(SI) t SDO valid output time 50 v(SO) t SDO output hold time 5 h(SO) t SDO output disable time 50 dis(SO) 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 3. SPI slave timing diagram CS (1) (1) tsu(CS) tc(SPC) th(CS) SPC (1) (1) t t su(SI) h(SI) SDI (1) MSB IN LSB IN (1) t t t v(SO) h(SO) dis(SO) SDO (1) MSB OUT LSB OUT (1) 1. When no communication is ongoing, data on SDO is driven by internal pull-up resistors. Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. DocID17530 Rev 2 13/54 54

Mechanical and electrical specifications LIS3DH 2.4.2 I2C - Inter IC control interface Subject to general operating conditions for Vdd and top. Table 8. I2C slave timing values I2C standard I2C fast mode (1) Symbol Parameter Unit Min Max Min Max f SCL clock frequency 0 100 0 400 kHz (SCL) t SCL clock low time 4.7 1.3 w(SCLL) μs t SCL clock high time 4.0 0.6 w(SCLH) t SDA setup time 250 100 ns su(SDA) t SDA data hold time 0 3.45 0 0.9 μs h(SDA) t START condition hold time 4 0.6 h(ST) t Repeated START condition setup time 4.7 0.6 su(SR) t STOP condition setup time 4 0.6 μs su(SP) Bus free time between STOP and t 4.7 1.3 w(SP:SR) START condition 1. Data based on standard I2C protocol requirement, not tested in production. Figure 4. I2C slave timing diagram REPEATED START START tsu(SR) SDA tw(SP:SR) START tsu(SDA) th(SDA) tsu(SP) STOP SCL th(ST) tw(SCLL) tw(SCLH) Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. 14/54 DocID17530 Rev 2

LIS3DH Mechanical and electrical specifications 2.5 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 9. Absolute maximum ratings Symbol Ratings Maximum value Unit Vdd Supply voltage -0.3 to 4.8 V Vdd_IO I/O pins Supply voltage -0.3 to 4.8 V Input voltage on any control pin Vin -0.3 to Vdd_IO +0.3 V (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) 3000 g for 0.5 ms A Acceleration (any axis, powered, Vdd = 2.5 V) POW 10000 g for 0.2 ms 3000 g for 0.5 ms A Acceleration (any axis, unpowered) UNP 10000 g for 0.2 ms T Operating temperature range -40 to +85 °C OP T Storage temperature range -40 to +125 °C STG ESD Electrostatic discharge protection 2 (HBM) kV Note: Supply voltage on any pin should never exceed 4.8 V This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part. DocID17530 Rev 2 15/54 54

Terminology and functionality LIS3DH 3 Terminology and functionality 3.1 Terminology 3.1.1 Sensitivity Sensitivity describes the gain of the sensor and can be determined, for example, by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors. 3.1.2 Zero-g level The zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface measures 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis measures 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see Table 4 “Zero-g level change vs. temperature” (TCOff). The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors. 3.2 Functionality 3.2.1 High-resolution, normal mode, low-power mode LIS3DH provides three different operating modes: high-resolution mode, normal mode and low-power mode. The table below summarizes how to select the operating mode. Table 10. Operating mode selection CTRL_REG1[3] CTRL_REG4[3] Turn-on So @ ±2g Operating mode BW [Hz] (LPen bit) (HR bit) time [ms] [mg/digit] Low-power mode 1 0 ODR/2 1 16 (8-bit data output) Normal mode 0 0 ODR/2 1.6 4 (10-bit data output) High-resolution mode 0 1 ODR/9 7/ODR 1 (12-bit data output) Not allowed 1 1 -- -- -- 16/54 DocID17530 Rev 2

LIS3DH Terminology and functionality The turn-on time to transition to another operating mode is given in Table 11. Table 11. Turn-on time for operating mode transition Turn-on time Operating mode change [ms] 12-bit mode to 8-bit mode 1/ODR 12-bit mode to 10-bit mode 1/ODR 10-bit mode to 8-bit mode 1/ODR 10-bit mode to 12-bit mode 7/ODR 8-bit mode to 10-bit mode 1/ODR 8-bit mode to 12-bit mode 7/ODR Table 12. Current consumption of operating modes Low-power mode Normal mode High resolution Operating mode [Hz] (8-bit data output) (10-bit data output) (12-bit data output) [μA] [μA] [μA] 1 2 2 2 10 3 4 4 25 4 6 6 50 6 11 11 100 10 20 20 200 18 38 38 400 36 73 73 1344 -- 185 185 1620 100 -- -- 5376 185 -- -- 3.2.2 Self-test The self-test allows the user to check the sensor functionality without moving it. The self-test function is off when the self-test bit (ST) is programmed to ‘0‘. When the self-test bit is programmed to ‘1‘, an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs exhibit a change in their DC levels which are related to the selected full scale through the device sensitivity. When the self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified inside Table 4, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. DocID17530 Rev 2 17/54 54

Terminology and functionality LIS3DH 3.2.3 6D / 4D orientation detection The LIS3DH provides the capability to detect the orientation of the device in space, enabling easy implementation of energy-saving procedures and automatic image rotation for mobile devices. The 4D detection is a subset of the 6D function especially defined to be implemented in mobile devices for portrait and landscape computation. In 4D configuration, the Z-axis position detection is disabled. 3.2.4 “Sleep-to-wake” and “Return-to-sleep” The LIS3DH can be programmed to automatically switch to low-power mode upon recognition of a determined event. Once the event condition is over, the device returns back to the preset normal or high- resolution mode. To enable this function the desired threshold value must be stored inside the ACT_THS (3Eh) register while the duration value is written inside the ACT_DUR (3Fh) register. When the acceleration falls below the threshold value, the device automatically switches to low-power mode (10 Hz ODR). During this condition, the ODR[3:0] bits and the LPen bit inside CTRL_REG1 (20h) and the HR bit in CTRL_REG4 (23h) are not considered. As soon as the acceleration rises above threshold, the module restores the operating mode and ODRs as determined by the CTRL_REG1 (20h) and CTRL_REG4 (23h) settings. 3.3 Sensing element A proprietary process is used to create a surface micro-machined accelerometer. The technology allows carrying out suspended silicon structures which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. To be compatible with the traditional packaging techniques a cap is placed on top of the sensing element to avoid blocking the moving parts during the moulding phase of the plastic encapsulation. When an acceleration is applied to the sensor the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady state the nominal value of the capacitors are few pF and when an acceleration is applied the maximum variation of the capacitive load is in the fF range. 3.4 IC interface The complete measurement chain is composed by a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is finally available to the user by an analog-to-digital converter. The acceleration data may be accessed through an I2C/SPI interface thus making the device particularly suitable for direct interfacing with a microcontroller. 18/54 DocID17530 Rev 2

LIS3DH Terminology and functionality The LIS3DH features a Data-Ready signal (DRDY) which indicates when a new set of measured acceleration data is available, thus simplifying data synchronization in the digital system that uses the device. The LIS3DH may also be configured to generate an inertial wake-up and free-fall interrupt signal accordingly to a programmed acceleration event along the enabled axes. Both free- fall and wake-up can be available simultaneously on two different pins. 3.5 Factory calibration The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff). The trim values are stored inside the device in non-volatile memory. Any time the device is turned on, these values are downloaded into the registers to be used during active operation. This allows using the device without further calibration. 3.6 FIFO The LIS3DH contains a 10-bit, 32-level FIFO. Buffered output allows 4 operation modes: FIFO, Stream, Stream-to-FIFO and FIFO bypass. When FIFO bypass mode is activated, FIFO is not operating and remains empty. In FIFO mode, measurement data from acceleration detection on the x, y, and z axes are stored in the FIFO buffer. 3.7 Auxiliary ADC and temperature sensor The LIS3DH contains an auxiliary ADC with 3 separate dedicated inputs: pins ADC1, ADC2, ADC3. The user can retrieve the converted data from registers OUT_ADC1_L (08h), OUT_ADC1_H (09h), OUT_ADC2_L (0Ah), OUT_ADC2_H (0Bh) and OUT_ADC3_L (0Ch), OUT_ADC3_H (0Dh). In order to use the auxiliary ADC, the user must set the BDU bit (bit 7) to 1 in CTRL_REG4 (23h) and the ADC_EN bit (bit 7) to 1 in TEMP_CFG_REG (1Fh). The ADC sampling frequency is the same as that of the ODR in CTRL_REG1 (20h). The input range is 1200 mv ±400 mV and the data output is expressed in 2's complement left-aligned. The ADC resolution is 10 bits if the LPen (bit 3) in CTRL_REG1 (20h) is cleared (high- resolution / normal mode), otherwise, in low-power mode, the ADC resolution is 8-bit. Channel 3 of the ADC can be connected to the temperature sensor by setting the TEMP_EN bit (bit 6) to 1 in TEMP_CFG_REG (1Fh). Refer to Table 5: Temperature sensor characteristics for the conversion factor. DocID17530 Rev 2 19/54 54

Application hints LIS3DH 4 Application hints Figure 5. LIS3DH electrical connections (cid:36)(cid:39)(cid:38)(cid:20) (cid:36)(cid:39)(cid:38)(cid:21) (cid:57)(cid:71)(cid:71) (cid:20)(cid:25) (cid:20)(cid:23) (cid:20)(cid:19)(cid:151)(cid:41) (cid:57)(cid:71)(cid:71)(cid:66)(cid:44)(cid:50) (cid:20) (cid:20)(cid:22) (cid:36)(cid:39)(cid:38)(cid:22) (cid:55)(cid:50)(cid:51)(cid:3)(cid:57)(cid:44)(cid:40)(cid:58) (cid:44)(cid:49)(cid:55)(cid:20) (cid:20)(cid:19)(cid:19)(cid:81)(cid:41) (cid:24)(cid:24) (cid:28)(cid:28) (cid:25) (cid:27) (cid:44)(cid:49)(cid:55)(cid:21) (cid:57)(cid:71)(cid:71)(cid:66)(cid:44)(cid:50) (cid:39)(cid:50) (cid:53)(cid:83)(cid:88)(cid:3)(cid:32)(cid:3)(cid:20)(cid:19)(cid:3)(cid:78)(cid:525) (cid:53)(cid:83)(cid:88)(cid:3)(cid:3)(cid:32)(cid:3)(cid:20)(cid:19)(cid:3)(cid:78)(cid:525) (cid:54) (cid:51)(cid:38) (cid:39)(cid:44)(cid:18) (cid:36)(cid:19) (cid:47)(cid:18)(cid:54) (cid:36)(cid:18)(cid:54) (cid:50)(cid:18)(cid:54) (cid:38) (cid:39) (cid:39) (cid:54) (cid:54) (cid:54) (cid:54) (cid:38) (cid:42)(cid:49)(cid:39) (cid:51)(cid:88)(cid:79)(cid:79)(cid:16)(cid:88)(cid:83)(cid:3)(cid:87)(cid:82)(cid:3)(cid:69)(cid:72)(cid:3)(cid:68)(cid:71)(cid:71)(cid:72)(cid:71) (cid:90)(cid:75)(cid:72)(cid:81)(cid:3)(cid:44)(cid:3)(cid:21)(cid:3)(cid:38)(cid:3)(cid:3)(cid:76)(cid:81)(cid:87)(cid:72)(cid:85)(cid:73)(cid:68)(cid:70)(cid:72)(cid:3)(cid:76)(cid:86)(cid:3)(cid:88)(cid:86)(cid:72)(cid:71) (cid:39)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:3)(cid:86)(cid:76)(cid:74)(cid:81)(cid:68)(cid:79)(cid:3)(cid:73)(cid:85)(cid:82)(cid:80)(cid:18)(cid:87)(cid:82)(cid:3)(cid:86)(cid:76)(cid:74)(cid:81)(cid:68)(cid:79)(cid:3)(cid:70)(cid:82)(cid:81)(cid:87)(cid:85)(cid:82)(cid:79)(cid:79)(cid:72)(cid:85)(cid:17)(cid:3)(cid:3)(cid:54)(cid:76)(cid:74)(cid:81)(cid:68)(cid:79)(cid:3)(cid:79)(cid:72)(cid:89)(cid:72)(cid:79)(cid:86)(cid:3)(cid:68)(cid:85)(cid:72)(cid:3)(cid:71)(cid:72)(cid:73)(cid:76)(cid:81)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:83)(cid:85)(cid:82)(cid:83)(cid:72)(cid:85)(cid:3)(cid:86)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:73)(cid:3)(cid:57)(cid:71)(cid:71)(cid:66)(cid:44)(cid:50)(cid:17) The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should be placed as near as possible to pin 14 of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data is selectable and accessible through the I2C or SPI interfaces.When using the I2C, CS must be tied high. ADC1, ADC2 & ADC3 if not used can be left floating or connected to Vdd or GND. The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I2C/SPI interface. 20/54 DocID17530 Rev 2

LIS3DH Application hints Table 13. Internal pin status Pin# Name Function Pin status 1 Vdd_IO Power supply for I/O pins 2 NC Not connected 3 NC Not connected SCL I2C serial clock (SCL) 4 Default: input high impedance SPC SPI serial port clock (SPC) 5 GND 0 V supply SDA I2C serial data (SDA) 6 SDI SPI serial data input (SDI) Default: (SDA) input high impedance SDO 3-wire interface serial data output (SDO) SDO SPI serial data output (SDO) 7 Default: input with internal pull-up(1) SA0 I2C less significant bit of the device address (SA0) SPI enable I2C/SPI mode selection: 8 CS Default: input high impedance 1: SPI idle mode / I2C communication enabled 0: SPI communication mode / I2C disabled 9 INT2 Inertial interrupt 2 Default: push-pull output forced to GND 10 RES Connect to GND 11 INT1 Inertial interrupt 1 Default: push-pull output forced to GND 12 GND 0 V supply 13 ADC3 Analog-to-digital converter input 3 Default: input high impedance 14 Vdd Power supply 15 ADC2 Analog-to-digital converter input 2 Default: input high impedance 16 ADC1 Analog-to-digital converter input 1 Default: input high impedance 1. In order to disable the internal pull-up on the SDO/SA0 pin, write 90h in CTRL_REG0 (1Eh). 4.1 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. DocID17530 Rev 2 21/54 54

Digital main blocks LIS3DH 5 Digital main blocks 5.1 FIFO The LIS3DH embeds a 32-level FIFO for each of the three output channels, X, Y and Z. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. In order to enable the FIFO buffer, the FIFO_EN bit in CTRL_REG5 (24h) must be set to ‘1’. This buffer can work according to the following different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is selected by the FM [1:0] bits in FIFO_CTRL_REG (2Eh). Programmable FIFO watermark level, FIFO empty or FIFO overrun events can be enabled to generate dedicated interrupts on the INT1 pin (configuration through CTRL_REG3 (22h)). In the FIFO_SRC_REG (2Fh) register the EMPTY bit is equal to ‘1’ when all FIFO samples are ready and FIFO is empty. In the FIFO_SRC_REG (2Fh) register the WTM bit goes to ‘1’ if new data is written in the buffer and FIFO_SRC_REG (2Fh) (FSS [4:0]) is greater than or equal to FIFO_CTRL_REG (2Eh) (FTH [4:0]). FIFO_SRC_REG (2Fh) (WTM) goes to ‘0’ if reading an X, Y, Z data slot from FIFO and FIFO_SRC_REG (2Fh) (FSS [4:0]) is less than or equal to FIFO_CTRL_REG (2Eh) (FTH [4:0]). In the FIFO_SRC_REG (2Fh) register the OVRN_FIFO bit is equal to ‘1’ if the FIFO slot is overwritten. 5.1.1 Bypass mode In Bypass mode the FIFO is not operational and for this reason it remains empty. For each channel only the first address is used. The remaining FIFO levels are empty. Bypass mode must be used in order to reset the FIFO buffer when a different mode is operating (i.e. FIFO mode). 5.1.2 FIFO mode In FIFO mode, the buffer continues filling data from the X, Y and Z accelerometer channels until it is full (a set of 32 samples stored). When the FIFO is full, it stops collecting data from the input channels and the FIFO content remains unchanged. An overrun interrupt can be enabled, I1_OVERRUN = '1' in the CTRL_REG3 (22h) register, in order to be raised when the FIFO stops collecting data. When the overrun interrupt occurs, the first data has been overwritten and the FIFO stops collecting data from the input channels. After the last read it is necessary to exit Bypass mode in order to reset the FIFO content. After this reset command, it is possible to restart FIFO mode just by selecting the FIFO mode configuration (FM[1:0] bits) in register FIFO_CTRL_REG (2Eh). 22/54 DocID17530 Rev 2

LIS3DH Digital main blocks 5.1.3 Stream mode In Stream mode the FIFO continues filling data from the X, Y, and Z accelerometer channels until the buffer is full (a set of 32 samples stored) at which point the FIFO buffer index restarts from the beginning and older data is replaced by the current data. The oldest values continue to be overwritten until a read operation frees the FIFO slots. An overrun interrupt can be enabled, I1_OVERRUN = '1' in the CTRL_REG3 (22h) register, in order to read the entire contents of the FIFO at once. If, in the application, it is mandatory not to lose data and it is not possible to read at least one sample for each axis within one ODR period, a watermark interrupt can be enabled in order to read partially the FIFO and leave memory slots free for incoming data. Setting the FTH [4:0] bit in the FIFO_CTRL_REG (2Eh) register to an N value, the number of X, Y and Z data samples that should be read at the rise of the watermark interrupt is up to (N+1). 5.1.4 Stream-to-FIFO mode In Stream-to-FIFO mode, data from the X, Y and Z accelerometer channels are collected in a combination of Stream mode and FIFO mode. The FIFO buffer starts operating in Stream mode and switches to FIFO mode when the selected interrupt occurs. The FIFO operating mode changes according to the INT1 pin value if the TR bit is set to ‘0’ in the FIFO_CTRL_REG (2Eh) register or the INT2 pin value if the TR bit is set to‘1’ in the FIFO_CTRL_REG (2Eh) register. When the interrupt pin is selected and the interrupt event is configured on the corresponding pin, the FIFO operates in Stream mode if the pin value is equal to ‘0’ and it operates in FIFO mode if the pin value is equal to ‘1’. Switching modes is dynamically performed according to the pin value. Stream-to-FIFO can be used in order to analyze the sampling history that generates an interrupt. The standard operation is to read the contents of FIFO when the FIFO mode is triggered and the FIFO buffer is full and stopped. 5.1.5 Retrieving data from FIFO FIFO data is read from OUT_X_L (28h), OUT_X_H (29h), OUT_Y_L (2Ah), OUT_Y_H (2Bh) and OUT_Z_L (2Ch), OUT_Z_H (2Dh). When the FIFO is in Stream, Stream-to-FIFO or FIFO mode, a read operation from the OUT_X_L (28h), OUT_X_H (29h), OUT_Y_L (2Ah), OUT_Y_H (2Bh) or OUT_Z_L (2Ch), OUT_Z_H (2Dh) registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are placed in the OUT_X_L (28h), OUT_X_H (29h), OUT_Y_L (2Ah), OUT_Y_H (2Bh) and OUT_Z_L (2Ch), OUT_Z_H (2Dh) registers and both single read and read burst operations can be used. The address to be read is automatically updated by the device and it rolls back to 0x28 when register 0x2D is reached. In order to read all FIFO levels in a multiple byte read, 192 bytes (6 output registers of 32 levels) have to be read. DocID17530 Rev 2 23/54 54

Digital interfaces LIS3DH 6 Digital interfaces The registers embedded inside the LIS3DH may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 14. Serial interface pin description Pin name Pin description SPI enable I2C/SPI mode selection: CS 1: SPI idle mode / I2C communication enabled 0: SPI communication mode / I2C disabled SCL I2C serial clock (SCL) SPC SPI serial port clock (SPC) SDA I2C serial data (SDA) SDI SPI serial data input (SDI) SDO 3-wire interface serial data output (SDO) SA0 I2C less significant bit of the device address (SA0) SDO SPI serial data output (SDO) 2 6.1 I C serial interface The LIS3DH I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 15. I2C terminology Term Description Transmitter The device which sends data to the bus Receiver The device which receives data from the bus The device which initiates a transfer, generates clock signals and terminates a Master transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistor. When the bus is free both the lines are high. The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal mode. 24/54 DocID17530 Rev 2

LIS3DH Digital interfaces 6.1.1 I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH-to-LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the Master. The Slave ADdress (SAD) associated to the LIS3DH is 001100xb. The SDO/SA0 pad can be used to modify the less significant bit of the device address. If the SA0 pad is connected to the voltage supply, LSb is ‘1’ (address 0011001b) else if SA0 pad is connected to ground, the LSb value is ‘0’ (address 0011000b). This solution permits to connect and address two different accelerometers to the same I2C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the LIS3DH behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/writes. The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the Master transmit to the slave with direction unchanged. Table 16 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 16. SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Table 17. Transfer when master is writing one byte to slave Master ST SAD + W SUB DATA SP Slave SAK SAK SAK Table 18. Transfer when master is writing multiple bytes to slave Master ST SAD + W SUB DATA DATA SP Slave SAK SAK SAK SAK DocID17530 Rev 2 25/54 54

Digital interfaces LIS3DH Table 19. Transfer when master is receiving (reading) one byte of data from slave Master ST SAD + W SUB SR SAD + R NMAK SP Slave SAK SAK SAK DATA Table 20. Transfer when master is receiving (reading) multiple bytes of data from slave Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP Slave SAK SAK SAK DATA DATA DATA Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW-to-HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the sub- address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read. In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge. 26/54 DocID17530 Rev 2

LIS3DH Digital interfaces 6.2 SPI bus interface The LIS3DH SPI is a bus slave. The SPI allows writing to and reading from the registers of the device. The serial interface interacts with the application using 4 wires: CS, SPC, SDI and SDO. Figure 6. Read and write protocol (cid:38)(cid:54) (cid:54)(cid:51)(cid:38) (cid:54)(cid:39)(cid:44) (cid:53)(cid:58) (cid:39)(cid:44)(cid:26) (cid:39)(cid:44)(cid:25) (cid:39)(cid:44)(cid:24) (cid:39)(cid:44)(cid:23) (cid:39)(cid:44)(cid:22) (cid:39)(cid:44)(cid:21) (cid:39)(cid:44)(cid:20) (cid:39)(cid:44)(cid:19) (cid:48)(cid:54) (cid:36)(cid:39)(cid:24) (cid:36)(cid:39)(cid:23) (cid:36)(cid:39)(cid:22)(cid:36)(cid:39)(cid:21) (cid:36)(cid:39)(cid:20)(cid:36)(cid:39)(cid:19) (cid:54)(cid:39)(cid:50) (cid:39)(cid:50)(cid:26)(cid:39)(cid:50)(cid:25) (cid:39)(cid:50)(cid:24)(cid:39)(cid:50)(cid:23)(cid:39)(cid:50)(cid:22)(cid:39)(cid:50)(cid:21) (cid:39)(cid:50)(cid:20)(cid:39)(cid:50)(cid:19) CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods are added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. DocID17530 Rev 2 27/54 54

Digital interfaces LIS3DH 6.2.1 SPI read Figure 7. SPI read protocol (cid:38)(cid:54) (cid:54)(cid:51)(cid:38) (cid:54)(cid:39)(cid:44) (cid:53)(cid:58) (cid:48)(cid:54) (cid:36)(cid:39)(cid:24)(cid:36)(cid:39)(cid:23)(cid:36)(cid:39)(cid:22)(cid:36)(cid:39)(cid:21) (cid:36)(cid:39)(cid:20)(cid:36)(cid:39)(cid:19) (cid:54)(cid:39)(cid:50) (cid:39)(cid:50)(cid:26)(cid:39)(cid:50)(cid:25)(cid:39)(cid:50)(cid:24)(cid:39)(cid:50)(cid:23)(cid:39)(cid:50)(cid:22)(cid:39)(cid:50)(cid:21)(cid:39)(cid:50)(cid:20)(cid:39)(cid:50)(cid:19) The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reads. Figure 8. Multiple byte SPI read protocol (2-byte example) (cid:38)(cid:54) (cid:54)(cid:51)(cid:38) (cid:54)(cid:39)(cid:44) (cid:53)(cid:58) (cid:48)(cid:54)(cid:36)(cid:39)(cid:24)(cid:36)(cid:39)(cid:23)(cid:36)(cid:39)(cid:22)(cid:36)(cid:39)(cid:21)(cid:36)(cid:39)(cid:20)(cid:36)(cid:39)(cid:19) (cid:54)(cid:39)(cid:50) (cid:39)(cid:50)(cid:26)(cid:39)(cid:50)(cid:25)(cid:39)(cid:50)(cid:24)(cid:39)(cid:50)(cid:23)(cid:39)(cid:50)(cid:22)(cid:39)(cid:50)(cid:21)(cid:39)(cid:50)(cid:20)(cid:39)(cid:50)(cid:19)(cid:39)(cid:50)(cid:20)(cid:24)(cid:3)(cid:39)(cid:50)(cid:20)(cid:23)(cid:39)(cid:3)(cid:50)(cid:20)(cid:22)(cid:39)(cid:3)(cid:50)(cid:20)(cid:21)(cid:3)(cid:39)(cid:50)(cid:20)(cid:20)(cid:39)(cid:50)(cid:20)(cid:19)(cid:3)(cid:39)(cid:50)(cid:28)(cid:39)(cid:50)(cid:27) 28/54 DocID17530 Rev 2

LIS3DH Digital interfaces 6.2.2 SPI write Figure 9. SPI write protocol (cid:38)(cid:54) (cid:54)(cid:51)(cid:38) (cid:54)(cid:39)(cid:44) (cid:53)(cid:58) (cid:39)(cid:44)(cid:26) (cid:39)(cid:44)(cid:25) (cid:39)(cid:44)(cid:24) (cid:39)(cid:44)(cid:23) (cid:39)(cid:44)(cid:22) (cid:39)(cid:44)(cid:21) (cid:39)(cid:44)(cid:20) (cid:39)(cid:44)(cid:19) (cid:48)(cid:54) (cid:36)(cid:39)(cid:24) (cid:36)(cid:39)(cid:23) (cid:36)(cid:39)(cid:22) (cid:36)(cid:39)(cid:21) (cid:36)(cid:39)(cid:20) (cid:36)(cid:39)(cid:19) The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple writes. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writes. Figure 10. Multiple byte SPI write protocol (2-byte example) (cid:38)(cid:54) (cid:54)(cid:51)(cid:38) (cid:54)(cid:39)(cid:44) (cid:39)(cid:44)(cid:26) (cid:39)(cid:44)(cid:25) (cid:39)(cid:44)(cid:24) (cid:39)(cid:44)(cid:23) (cid:39)(cid:44)(cid:22) (cid:39)(cid:44)(cid:21) (cid:39)(cid:44)(cid:20) (cid:39)(cid:44)(cid:19) (cid:39)(cid:44)(cid:20)(cid:24)(cid:3)(cid:39)(cid:44)(cid:20)(cid:23)(cid:3)(cid:39)(cid:44)(cid:20)(cid:22)(cid:3)(cid:39)(cid:44)(cid:20)(cid:21)(cid:3)(cid:39)(cid:44)(cid:20)(cid:20)(cid:3)(cid:39)(cid:44)(cid:20)(cid:19)(cid:3)(cid:39)(cid:44)(cid:28) (cid:39)(cid:44)(cid:27) (cid:53)(cid:58) (cid:48)(cid:54)(cid:36)(cid:39)(cid:24)(cid:36)(cid:39)(cid:23)(cid:36)(cid:39)(cid:22)(cid:36)(cid:39)(cid:21)(cid:36)(cid:39)(cid:20)(cid:36)(cid:39)(cid:19) DocID17530 Rev 2 29/54 54

Digital interfaces LIS3DH 6.2.3 SPI read in 3-wire mode 3-wire mode is entered by setting the bit SIM (SPI serial interface mode selection) to ‘1’ in CTRL_REG4 (23h). Figure 11. SPI read protocol in 3-wire mode (cid:38)(cid:54) (cid:54)(cid:51)(cid:38) (cid:54)(cid:39)(cid:44)(cid:18)(cid:50) (cid:53)(cid:58) (cid:39)(cid:50)(cid:26) (cid:39)(cid:50)(cid:25) (cid:39)(cid:50)(cid:24) (cid:39)(cid:50)(cid:23) (cid:39)(cid:50)(cid:22) (cid:39)(cid:50)(cid:21) (cid:39)(cid:50)(cid:20) (cid:39)(cid:50)(cid:19) (cid:48)(cid:54) (cid:36)(cid:39)(cid:24) (cid:36)(cid:39)(cid:23) (cid:36)(cid:39)(cid:22) (cid:36)(cid:39)(cid:21) (cid:36)(cid:39)(cid:20) (cid:36)(cid:39)(cid:19) The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). The multiple read command is also available in 3-wire mode. 30/54 DocID17530 Rev 2

LIS3DH Register mapping 7 Register mapping The table given below provides a list of the 8-bit registers embedded in the device and the corresponding addresses. Table 21. Register address map Register address Name Type Default Comment Hex Binary Reserved (do not modify) 00 - 06 Reserved STATUS_REG_AUX r 07 000 0111 Output OUT_ADC1_L r 08 000 1000 Output OUT_ADC1_H r 09 000 1001 Output OUT_ADC2_L r 0A 000 1010 Output OUT_ADC2_H r 0B 000 1011 Output OUT_ADC3_L r 0C 000 1100 Output OUT_ADC3_H r 0D 000 1101 Output Reserved (do not modify) 0E Reserved WHO_AM_I r 0F 000 1111 00110011 Dummy register Reserved (do not modify) 10 - 1D Reserved CTRL_REG0 rw 1E 001 1110 00010000 TEMP_CFG_REG rw 1F 001 1111 00000000 CTRL_REG1 rw 20 010 0000 00000111 CTRL_REG2 rw 21 010 0001 00000000 CTRL_REG3 rw 22 010 0010 00000000 CTRL_REG4 rw 23 010 0011 00000000 CTRL_REG5 rw 24 010 0100 00000000 CTRL_REG6 rw 25 010 0101 00000000 REFERENCE rw 26 010 0110 00000000 STATUS_REG r 27 010 0111 Output OUT_X_L r 28 010 1000 Output OUT_X_H r 29 010 1001 Output OUT_Y_L r 2A 010 1010 Output OUT_Y_H r 2B 010 1011 Output OUT_Z_L r 2C 010 1100 Output OUT_Z_H r 2D 010 1101 Output FIFO_CTRL_REG rw 2E 010 1110 00000000 FIFO_SRC_REG r 2F 010 1111 Output DocID17530 Rev 2 31/54 54

Register mapping LIS3DH Table 21. Register address map Register address Name Type Default Comment Hex Binary INT1_CFG rw 30 011 0000 00000000 INT1_SRC r 31 011 0001 Output INT1_THS rw 32 011 0010 00000000 INT1_DURATION rw 33 011 0011 00000000 INT2_CFG rw 34 011 0100 00000000 INT2_SRC r 35 011 0101 Output INT2_THS rw 36 011 0110 00000000 INT2_DURATION rw 37 011 0111 00000000 CLICK_CFG rw 38 011 1000 00000000 CLICK_SRC r 39 011 1001 Output CLICK_THS rw 3A 011 1010 00000000 TIME_LIMIT rw 3B 011 1011 00000000 TIME_LATENCY rw 3C 011 1100 00000000 TIME_WINDOW rw 3D 011 1101 00000000 ACT_THS rw 3E 011 1110 00000000 ACT_DUR rw 3F 011 1111 00000000 Registers marked as Reserved or not listed in the table above must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. The boot procedure is complete about 5 milliseconds after device power-up. 32/54 DocID17530 Rev 2

LIS3DH Registers description 8 Registers description 8.1 STATUS_REG_AUX (07h) Table 22. STATUS_REG_AUX register 321OR 3OR 2OR 1OR 321DA 3DA 2DA 1DA Table 23. STATUS_REG_AUX description 321OR 1, 2 and 3-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous set) 3OR 3-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the 3-axis has overwritten the previous data) 2OR 2-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the 2-axis has overwritten the previous data) 1OR 1-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the 1-axis has overwritten the previous data) 321DA 1, 2 and 3-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) 3DA 3-axis new data available. Default value: 0 (0: new data for the 3-axis is not yet available; 1: new data for the 3-axis is available) 2DA 2 -axis new data available. Default value: 0 (0: new data for the 2-axis is not yet available; 1: new data for the 2-axis is available) 1DA 1-axis new data available. Default value: 0 (0: new data for the 1-axis is not yet available; 1: new data for the 1-axis is available) 8.2 OUT_ADC1_L (08h), OUT_ADC1_H (09h) Auxiliary 10-bit ADC channel 1 conversion. For auxiliary ADC setting refer to Section 3.7: Auxiliary ADC and temperature sensor. 8.3 OUT_ADC2_L (0Ah), OUT_ADC2_H (0Bh) Auxiliary 10-bit ADC channel 2 conversion. For auxiliary ADC setting refer to Section 3.7: Auxiliary ADC and temperature sensor. 8.4 OUT_ADC3_L (0Ch), OUT_ADC3_H (0Dh) Auxiliary 10-bit ADC channel 3 conversion or temperature sensor data output. Refer to Section 3.7: Auxiliary ADC and temperature sensor. DocID17530 Rev 2 33/54 54

Registers description LIS3DH 8.5 WHO_AM_I (0Fh) Table 24. WHO_AM_I register 0 0 1 1 0 0 1 1 Device identification register. 8.6 CTRL_REG0 (1Eh) Table 25. CTRL_REG0 register SDO_PU_DISC 0(1) 0(1) 1(2) 0(1) 0(1) 0(1) 0(1) 1. This bit must be set to 0 for correct operation of the device. 2. This bit must be set to 1 for correct operation of the device. Table 26. CTRL_REG0 description Disconnect SDO/SA0 pull-up. Default value: 00010000 SDO_PU_DISC (0: pull-up connected to SDO/SA0 pin; 1: pull-up disconnected to SDO/SA0 pin) Note: Leave bits 0 through 6 at the default value in order to ensure correct operation of the device. 8.7 TEMP_CFG_REG (1Fh) Table 27. TEMP_CFG_REG register ADC_EN TEMP_EN 0 0 0 0 0 0 Table 28. TEMP_CFG_REG description Temperature sensor (T) enable. Default value: 0 TEMP_EN (0: T disabled; 1: T enabled) ADC enable. Default value: 0 ADC_EN (0: ADC disabled; 1: ADC enabled) 34/54 DocID17530 Rev 2

LIS3DH Registers description 8.8 CTRL_REG1 (20h) Table 29. CTRL_REG1 register ODR3 ODR2 ODR1 ODR0 LPen Zen Yen Xen Table 30. CTRL_REG1 description Data rate selection. Default value: 0000 ODR[3:0] (0000: power-down mode; others: Refer to Table 31: Data rate configuration) Low-power mode enable. Default value: 0 LPen (0: high-resolution mode / normal mode, 1: low-power mode) (Refer to section Section 3.2.1: High-resolution, normal mode, low-power mode) Z-axis enable. Default value: 1 Zen (0: Z-axis disabled; 1: Z-axis enabled) Y-axis enable. Default value: 1 Yen (0: Y-axis disabled; 1: Y-axis enabled) X-axis enable. Default value: 1 Xen (0: X-axis disabled; 1: X-axis enabled) ODR[3:0] is used to set the power mode and ODR selection. The following table indicates the frequency of each combination of ODR[3:0]. Table 31. Data rate configuration ODR3 ODR2 ODR1 ODR0 Power mode selection 0 0 0 0 Power-down mode 0 0 0 1 HR / Normal / Low-power mode (1 Hz) 0 0 1 0 HR / Normal / Low-power mode (10 Hz) 0 0 1 1 HR / Normal / Low-power mode (25 Hz) 0 1 0 0 HR / Normal / Low-power mode (50 Hz) 0 1 0 1 HR / Normal / Low-power mode (100 Hz) 0 1 1 0 HR / Normal / Low-power mode (200 Hz) 0 1 1 1 HR / Normal / Low-power mode (400 Hz) 1 0 0 0 Low power mode (1.60 kHz) 1 0 0 1 HR / normal (1.344 kHz); Low-power mode (5.376 kHz) DocID17530 Rev 2 35/54 54

Registers description LIS3DH 8.9 CTRL_REG2 (21h) Table 32. CTRL_REG2 register HPM1 HPM0 HPCF2 HPCF1 FDS HPCLICK HP_IA2 HP_IA1 Table 33. CTRL_REG2 description HPM[1:0] High-pass filter mode selection. Default value: 00 Refer to Table 34: High-pass filter mode configuration HPCF[2:1] High-pass filter cutoff frequency selection Filtered data selection. Default value: 0 FDS (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) High-pass filter enabled for CLICK function. HPCLICK (0: filter bypassed; 1: filter enabled) HP_IA2 High-pass filter enabled for AOI function on interrupt 2, (0: filter bypassed; 1: filter enabled) HP_IA1 High-pass filter enabled for AOI function on interrupt 1, (0: filter bypassed; 1: filter enabled) Table 34. High-pass filter mode configuration HPM1 HPM0 High-pass filter mode 0 0 Normal mode (reset by reading REFERENCE (26h)) 0 1 Reference signal for filtering 1 0 Normal mode 1 1 Autoreset on interrupt event 8.10 CTRL_REG3 (22h) Table 35. CTRL_REG3 register I1_CLICK I1_IA1 I1_IA2 I1_ZYXDA I1_321DA I1_WTM I1_OVERRUN -- Table 36. CTRL_REG3 description I1_CLICK Click interrupt on INT1. Default value: 0 (0: disable; 1: enable) I1_IA1 IA1 interrupt on INT1. Default value: 0 (0: disable; 1: enable) I1_IA2 IA2 interrupt on INT1. Default value: 0 (0: disable; 1: enable) I1_ZYXDA ZYXDA interrupt on INT1. Default value: 0 (0: disable; 1: enable) I1_321DA 321DA interrupt on INT1. Default value: 0 (0: disable; 1: enable) I1_WTM FIFO watermark interrupt on INT1. Default value: 0 (0: disable; 1: enable) I1_OVERRUN FIFO overrun interrupt on INT1. Default value: 0 (0: disable; 1: enable) 36/54 DocID17530 Rev 2

LIS3DH Registers description 8.11 CTRL_REG4 (23h) Table 37. CTRL_REG4 register BDU BLE(1) FS1 FS0 HR ST1 ST0 SIM 1. The BLE function can be activated only in high-resolution mode. Table 38. CTRL_REG4 description BDU Block data update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB reading) BLE Big/little endian data selection. Default value 0. (0: Data LSB @ lower address; 1: Data MSB @ lower address) FS[1:0] Full-scale selection. default value: 00 (00: ±2 g; 01: ±4 g; 10: ±8 g; 11: ±16 g) HR High-resolution output mode: Default value: 0 (0: high-resolution disabled; 1: high-resolution enabled) ST[1:0] Self-test enable. Default value: 00 (00: self-test disabled; other: See Table 39) SIM SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface) Table 39. Self-test mode configuration ST1 ST0 Self test mode 0 0 Normal mode 0 1 Self-test 0 1 0 Self-test 1 1 1 -- DocID17530 Rev 2 37/54 54

Registers description LIS3DH 8.12 CTRL_REG5 (24h) Table 40. CTRL_REG5 register BOOT FIFO_EN -- -- LIR_INT1 D4D_INT1 LIR_INT2 D4D_INT2 Table 41. CTRL_REG5 description BOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) FIFO_EN FIFO enable. Default value: 0 (0: FIFO disable; 1: FIFO enable) LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC (31h) register cleared by reading INT1_SRC (31h) itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) D4D_INT1 4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set to 1. LIR_INT2 Latch interrupt request on INT2_SRC (35h) register, with INT2_SRC (35h) register cleared by reading INT2_SRC (35h) itself. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) D4D_INT2 4D enable: 4D detection is enabled on INT2 pin when 6D bit on INT2_CFG (34h) is set to 1. 8.13 CTRL_REG6 (25h) Table 42. CTRL_REG6 register I2_CLICK I2_IA1 I2_IA2 I2_BOOT I2_ACT - - INT_POLARITY - Table 43. CTRL_REG6 description I2_CLICK Click interrupt on INT2 pin. Default value: 0 (0: disabled; 1: enabled) I2_IA1 Enable interrupt 1 function on INT2 pin. Default value: 0 (0: function disabled; 1: function enabled) I2_IA2 Enable interrupt 2 function on INT2 pin. Default value: 0 (0: function disabled; 1: function enabled) I2_BOOT Enable boot on INT2 pin. Default value: 0 (0: disabled; 1:enabled) I2_ACT Enable activity interrupt on INT2 pin. Default value: 0 (0: disabled; 1:enabled) INT_POLARITY INT1 and INT2 pin polarity. Default value: 0 (0: active-high; 1: active-low) 38/54 DocID17530 Rev 2

LIS3DH Registers description 8.14 REFERENCE (26h) Table 44. REFERENCE register Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0 Table 45. REFERENCE register description Ref[7:0] Reference value for Interrupt generation. Default value: 0000 0000 8.15 STATUS_REG (27h) Table 46. STATUS register ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA Table 47. STATUS register description ZYXOR X, Y and Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous set) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous data) YOR Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X, Y and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) DocID17530 Rev 2 39/54 54

Registers description LIS3DH 8.16 OUT_X_L (28h), OUT_X_H (29h) X-axis acceleration data. The value is expressed as two’s complement left-justified. Please refer to Section 3.2.1: High-resolution, normal mode, low-power mode. 8.17 OUT_Y_L (2Ah), OUT_Y_H (2Bh) Y-axis acceleration data. The value is expressed as two’s complement left-justified. Please refer to Section 3.2.1: High-resolution, normal mode, low-power mode. 8.18 OUT_Z_L (2Ch), OUT_Z_H (2Dh) Z-axis acceleration data. The value is expressed as two’s complement left-justified. Please refer to Section 3.2.1: High-resolution, normal mode, low-power mode. 8.19 FIFO_CTRL_REG (2Eh) Table 48. REFERENCE register FM1 FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0 Table 49. REFERENCE register description FM[1:0] FIFO mode selection. Default value: 00 (see Table 50) TR Trigger selection. Default value: 0 (0: trigger event allows triggering signal on INT1 1: trigger event allows triggering signal on INT2) FTH[4:0] Default value: 00000 Table 50. FIFO mode configuration FM1 FM0 Self test mode 0 0 Bypass mode 0 1 FIFO mode 1 0 Stream mode 1 1 Stream-to-FIFO 40/54 DocID17530 Rev 2

LIS3DH Registers description 8.20 FIFO_SRC_REG (2Fh) Table 51. FIFO_SRC_REG register WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0 Table 52. FIFO_SRC_REG description WTM WTM bit is set high when FIFO content exceeds watermark level OVRN_FIFO OVRN bit is set high when FIFO buffer is full; this means that the FIFO buffer contains 32 unread samples. At the following ODR a new sample set replaces the oldest FIFO value. The OVRN bit is set to 0 when the first sample set has been read EMPTY EMPTY flag is set high when all FIFO samples have been read and FIFO is empty FSS [4:0] FSS [4:0] field always contains the current number of unread samples stored in the FIFO buffer. When FIFO is enabled, this value increases at ODR frequency until the buffer is full, whereas, it decreases every time one sample set is retrieved from FIFO. 8.21 INT1_CFG (30h) Table 53. INT1_CFG register AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE Table 54. INT1_CFG description AOI And/Or combination of Interrupt events. Default value: 0 Refer to Table 55: Interrupt mode 6D 6 direction detection function enabled. Default value: 0Refer to Table 55: Interrupt mode ZHIE Enable interrupt generation on Z high event or on Direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) ZLIE Enable interrupt generation on Z low event or on Direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) YHIE Enable interrupt generation on Y high event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) YLIE Enable interrupt generation on Y low event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XHIE Enable interrupt generation on X high event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XLIE Enable interrupt generation on X low event or on Direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) Content of this register is loaded at boot. DocID17530 Rev 2 41/54 54

Registers description LIS3DH Write operation at this address is possible only after system boot. Table 55. Interrupt mode AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’. AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation moves from an unknown zone to known zone. The interrupt signal remains for a duration ODR. AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is inside a known zone. The interrupt signal remains until the orientation is inside the zone. 8.22 INT1_SRC (31h) Table 56. INT1_SRC register 0 IA ZH ZL YH YL XH XL Table 57. INT1_SRC description Interrupt active. Default value: 0 IA (0: no interrupt has been generated; 1: one or more interrupts have been generated) Z high. Default value: 0 ZH (0: no interrupt, 1: Z high event has occurred) Z low. Default value: 0 ZL (0: no interrupt; 1: Z low event has occurred) Y high. Default value: 0 YH (0: no interrupt, 1: Y high event has occurred) Y low. Default value: 0 YL (0: no interrupt, 1: Y low event has occurred) X high. Default value: 0 XH (0: no interrupt, 1: X high event has occurred) X low. Default value: 0 XL (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read-only register. Reading at this address clears the INT1_SRC (31h) IA bit (and the interrupt signal on the INT 1 pin) and allows the refresh of data in INT1_SRC (31h) if the latched option was chosen. 42/54 DocID17530 Rev 2

LIS3DH Registers description 8.23 INT1_THS (32h) Table 58. INT1_THS register 0 THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 59. INT1_THS description Interrupt 1 threshold. Default value: 000 0000 1 LSb = 16 mg @ FS = ±2 g THS[6:0] 1 LSb = 32 mg @ FS = ±4 g 1 LSb = 62 mg @ FS = ±8 g 1 LSb = 186 mg @ FS = ±16 g 8.24 INT1_DURATION (33h) Table 60. INT1_DURATION register 0 D6 D5 D4 D3 D2 D1 D0 Table 61. INT1_DURATION description Duration value. Default value: 000 0000 D[6:0] 1 LSb = 1/ODR The D[6:0] bits set the minimum duration of the Interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen. Duration time is measured in N/ODR, where N is the content of the duration register. DocID17530 Rev 2 43/54 54

Registers description LIS3DH 8.25 INT2_CFG (34h) Table 62. INT2_CFG register AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE Table 63. INT2_CFG description AND/OR combination of interrupt events. Default value: 0 AOI (see Table 64) 6D 6-direction detection function enabled. Default value: 0. Refer to Table 64. Enable interrupt generation on Z high event. Default value: 0 ZHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Z low event. Default value: 0 ZLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on Y high event. Default value: 0 YHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Y low event. Default value: 0 YLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on X high event. Default value: 0 XHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on X low event. Default value: 0 XLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) The content of this register is loaded at boot. A write operation to this address is possible only after system boot. Table 64. Interrupt mode AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’. AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation moves from an unknown zone to a known zone. The interrupt signal remains for a duration ODR. AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is inside a known zone. The interrupt signal remains while the orientation is inside the zone. 44/54 DocID17530 Rev 2

LIS3DH Registers description 8.26 INT2_SRC (35h) Table 65. INT2_SRC register 0 IA ZH ZL YH YL XH XL Table 66. INT2_SRC description Interrupt active. Default value: 0 IA (0: no interrupt has been generated; 1: one or more interrupts have been generated) Z high. Default value: 0 ZH (0: no interrupt, 1: Z high event has occurred) Z low. Default value: 0 ZL (0: no interrupt; 1: Z low event has occurred) Y high. Default value: 0 YH (0: no interrupt, 1: Y high event has occurred) Y low. Default value: 0 YL (0: no interrupt, 1: Y low event has occurred) X high. Default value: 0 XH (0: no interrupt, 1: X high event has occurred) X low. Default value: 0 XL (0: no interrupt, 1: X low event has occurred) Interrupt 2 source register. Read-only register. Reading at this address clears the INT2_SRC (35h) IA bit (and the interrupt signal on the INT2 pin) and allows the refresh of data in the INT2_SRC (35h) register if the latched option was chosen. 8.27 INT2_THS (36h) Table 67. INT2_THS register 0 THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 68. INT2_THS description Interrupt 2 threshold. Default value: 000 0000 1 LSb = 16 mg @ FS = ±2 g THS[6:0] 1 LSb = 32 mg @ FS = ±4 g 1 LSb = 62 mg @ FS = ±8 g 1 LSb = 186 mg @ FS = ±16 g DocID17530 Rev 2 45/54 54

Registers description LIS3DH 8.28 INT2_DURATION (37h) Table 69. INT2_DURATION register 0 D6 D5 D4 D3 D2 D1 D0 Table 70. INT2_DURATION description Duration value. Default value: 000 0000 D[6:0] 1 LSb = 1/ODR(1) 1. Duration time is measured in N/ODR, where N is the content of the duration register. The D[6:0] bits set the minimum duration of the Interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen. 8.29 CLICK_CFG (38h) Table 71. CLICK_CFG register -- -- zd zs yd ys xd xs Table 72. CLICK_CFG description ZD Enable interrupt double click on Z-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZS Enable interrupt single click on Z-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YD Enable interrupt double click on Y-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YS Enable interrupt single click on Y-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XD Enable interrupt double click on X-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XS Enable interrupt single click on X-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) 46/54 DocID17530 Rev 2

LIS3DH Registers description 8.30 CLICK_SRC (39h) Table 73. CLICK_SRC register IA DCLICK SCLICK Sign Z Y X Table 74. CLICK_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) DCLICK Double-click enable. Default value: 0 (0:double-click detection disabled, 1: double-click detection enabled) SCLICK Single-click enable. Default value: 0 (0: Single-click detection disabled, 1: single-click detection enabled) Sign Click sign. (0: positive detection, 1: negative detection) Z Z click detection. Default value: 0 (0: no interrupt, 1: Z high event has occurred) Y Y click detection. Default value: 0 (0: no interrupt, 1: Y high event has occurred) X X click detection. Default value: 0 (0: no interrupt, 1: X high event has occurred) 8.31 CLICK_THS (3Ah) Table 75. CLICK_THS register LIR_Click Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 Ths0 Table 76. CLICK_SRC description LIR_Click If the LIR_Click bit is not set, the interrupt is kept high for the duration of the latency window. If the LIR_Click bit is set, the interrupt is kept high until the CLICK_SRC (39h) register is read. Ths[6:0] Click threshold. Default value: 000 0000 8.32 TIME_LIMIT (3Bh) Table 77. TIME_LIMIT register - TLI6 TLI5 TLI4 TLI3 TLI2 TLI1 TLI0 Table 78. TIME_LIMIT description TLI[6:0] Click time limit. Default value: 000 0000 DocID17530 Rev 2 47/54 54

Registers description LIS3DH 8.33 TIME_LATENCY (3Ch) Table 79. TIME_LATENCY register TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0 Table 80. TIME_LATENCY description TLA[7:0] Click time latency. Default value: 0000 0000 8.34 TIME WINDOW (3Dh) Table 81. TIME_WINDOW register TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0 Table 82. TIME_WINDOW description TW[7:0] Click time window 8.35 ACT_THS (3Eh) Table 83. ACT_THS register -- Acth6 Acth5 Acth4 Acth3 Acth2 Acth1 Acth0 Table 84. ACT_THS description Acth[6:0] Sleep-to-wake, return-to-sleep activation threshold in low-power mode 1 LSb = 16 mg @ FS = ±2 g 1 LSb = 32 mg @ FS = ±4 g 1 LSb = 62 mg @ FS = ±8 g 1 LSb = 186 mg @ FS = ±16 g 8.36 ACT_DUR (3Fh) Table 85. ACT_DUR register ActD7 ActD6 ActD5 ActD4 ActD3 ActD2 ActD1 ActD0 Table 86. ACT_DUR description ActD[7:0] Sleep-to-wake, return-to-sleep duration 1 LSb = (8*1[LSb]+1)/ODR 48/54 DocID17530 Rev 2

LIS3DH Package information 9 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID17530 Rev 2 49/54 54

Package information LIS3DH 9.1 LGA-16 package information Figure 12. LGA-16 package outline and mechanical dimensions (cid:39)(cid:76)(cid:80)(cid:72)(cid:81)(cid:86)(cid:76)(cid:82)(cid:81)(cid:86)(cid:3)(cid:68)(cid:85)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3)(cid:80)(cid:76)(cid:79)(cid:79)(cid:76)(cid:80)(cid:72)(cid:87)(cid:72)(cid:85)(cid:3)(cid:88)(cid:81)(cid:79)(cid:72)(cid:86)(cid:86)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:90)(cid:76)(cid:86)(cid:72)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:73)(cid:76)(cid:72)(cid:71)(cid:3) (cid:42)(cid:72)(cid:81)(cid:72)(cid:85)(cid:68)(cid:79)(cid:3)(cid:55)(cid:82)(cid:79)(cid:72)(cid:85)(cid:68)(cid:81)(cid:70)(cid:72)(cid:3)(cid:76)(cid:86)(cid:3)(cid:14)(cid:18)(cid:16)(cid:19)(cid:17)(cid:20)(cid:80)(cid:80)(cid:3)(cid:88)(cid:81)(cid:79)(cid:72)(cid:86)(cid:86)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:90)(cid:76)(cid:86)(cid:72)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:73)(cid:76)(cid:72)(cid:71)(cid:3) (cid:50)(cid:56)(cid:55)(cid:40)(cid:53)(cid:3)(cid:39)(cid:44)(cid:48)(cid:40)(cid:49)(cid:54)(cid:44)(cid:50)(cid:49)(cid:54) (cid:44)(cid:55)(cid:40)(cid:48) (cid:39)(cid:44)(cid:48)(cid:40)(cid:49)(cid:54)(cid:44)(cid:50)(cid:49)(cid:3)(cid:62)(cid:80)(cid:80)(cid:64) (cid:55)(cid:50)(cid:47)(cid:40)(cid:53)(cid:36)(cid:49)(cid:38)(cid:40)(cid:3)(cid:62)(cid:80)(cid:80)(cid:64) (cid:47)(cid:72)(cid:81)(cid:74)(cid:87)(cid:75)(cid:3)(cid:62)(cid:47)(cid:64)(cid:3) (cid:22)(cid:3) (cid:147)(cid:19)(cid:17)(cid:20)(cid:24)(cid:3) (cid:58)(cid:76)(cid:71)(cid:87)(cid:75)(cid:3)(cid:62)(cid:58)(cid:64)(cid:3) (cid:22)(cid:3) (cid:147)(cid:19)(cid:17)(cid:20)(cid:24)(cid:3) (cid:43)(cid:72)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:62)(cid:43)(cid:64)(cid:3) (cid:20)(cid:3)(cid:80)(cid:68)(cid:91)(cid:3) (cid:18)(cid:3) (cid:26)(cid:28)(cid:27)(cid:22)(cid:21)(cid:22)(cid:20)(cid:66)(cid:20)(cid:22) 50/54 DocID17530 Rev 2

LIS3DH Package information 9.2 LGA-16 packing information Figure 13. Carrier tape information for LGA-16 package Figure 14. LGA-16 package orientation in carrier tape DocID17530 Rev 2 51/54 54

Package information LIS3DH Figure 15. Reel information for carrier tape of LGA-16 package (cid:55) (cid:23)(cid:19)(cid:80)(cid:80)(cid:3)(cid:80)(cid:76)(cid:81)(cid:17) (cid:36)(cid:70)(cid:70)(cid:72)(cid:86)(cid:86)(cid:3)(cid:75)(cid:82)(cid:79)(cid:72)(cid:3)(cid:68)(cid:87)(cid:3) (cid:86)(cid:79)(cid:82)(cid:87)(cid:3)(cid:79)(cid:82)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3) (cid:37) (cid:38) (cid:39) (cid:49) (cid:36) (cid:42)(cid:3)(cid:80)(cid:72)(cid:68)(cid:86)(cid:88)(cid:85)(cid:72)(cid:71)(cid:3)(cid:68)(cid:87)(cid:3)(cid:75)(cid:88)(cid:69)(cid:3) (cid:41)(cid:88)(cid:79)(cid:79)(cid:3)(cid:85)(cid:68)(cid:71)(cid:76)(cid:88)(cid:86)(cid:3) (cid:55)(cid:68)(cid:83)(cid:72)(cid:3)(cid:86)(cid:79)(cid:82)(cid:87)(cid:3) (cid:76)(cid:81)(cid:3)(cid:70)(cid:82)(cid:85)(cid:72)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3) (cid:87)(cid:68)(cid:83)(cid:72)(cid:3)(cid:86)(cid:87)(cid:68)(cid:85)(cid:87) (cid:21)(cid:17)(cid:24)(cid:80)(cid:80)(cid:3)(cid:80)(cid:76)(cid:81)(cid:17)(cid:3)(cid:90)(cid:76)(cid:71)(cid:87)(cid:75)(cid:3) Table 87. Reel dimensions for carrier tape of LGA-16 package Reel dimensions (mm) A (max) 330 B (min) 1.5 C 13 ±0.25 D (min) 20.2 N (min) 60 G 12.4 +2/-0 T (max) 18.4 52/54 DocID17530 Rev 2

LIS3DH Revision history 10 Revision history Table 88. Document revision history Date Revision Changes 21-May-2010 1 Initial release Updated Table 1: Device summary Updated Features and Figure 1: Block diagram Updated Table 2: Pin description and Table 14: Serial interface pin description Added Table 3: Internal pull-up values (typ.) for SDO/SA0 pin Updated Table 9: Absolute maximum ratings Updated Section 3.7: Auxiliary ADC and temperature sensor 12-Dec-2016 2 Updated Section 4: Application hints Updated Section 5: Digital main blocks Updated Section 7: Register mapping and Section 8: Registers description Updated Section 9.1: LGA-16 package information Added Section 9.2: LGA-16 packing information Minor textual updates DocID17530 Rev 2 53/54 54

LIS3DH IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2016 STMicroelectronics – All rights reserved 54/54 DocID17530 Rev 2

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: S TMicroelectronics: LIS3DH LIS3DHTR