图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LF356N
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LF356N产品简介:

ICGOO电子元器件商城为您提供LF356N由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LF356N价格参考¥4.38-¥5.72。Texas InstrumentsLF356N封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, J-FET 放大器 1 电路 8-PDIP。您可以下载LF356N参考资料、Datasheet数据手册功能说明书,资料中有LF356N 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)

描述

IC OPAMP JFET 5MHZ 8DIP

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

LF356N

PCN过时产品

点击此处下载产品Datasheet

rohs

含铅 / 不符合限制有害物质指令(RoHS)规范要求

产品系列

BI-FET™

供应商器件封装

8-PDIP

包装

管件

压摆率

12 V/µs

增益带宽积

5MHz

安装类型

通孔

封装/外壳

8-DIP(0.300",7.62mm)

工作温度

0°C ~ 70°C

放大器类型

J-FET

标准包装

40

电压-电源,单/双 (±)

10 V ~ 36 V, ±5 V ~ 18 V

电压-输入失调

3mV

电流-电源

5mA

电流-输入偏置

30pA

电流-输出/通道

-

电路数

1

设计资源

http://www.digikey.com/product-highlights/cn/zh/texas-instruments-webench-design-center/3176

输出类型

-

推荐商品

型号:MCP6492-E/MS

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:AD8279BRZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OP727ARZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:MAX9910EXK+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MAX4236BESA+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:ADL5566ACPZ-R7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OPA2227MDREP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LMV772MA/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LF356N 相关产品

OP284ES-REEL

品牌:Analog Devices Inc.

价格:

INA2126EA/2K5

品牌:Texas Instruments

价格:

AD8574ARU

品牌:Analog Devices Inc.

价格:

TLV2464AQPWRQ1

品牌:Texas Instruments

价格:

THS4022CDRG4

品牌:Texas Instruments

价格:

MAX4213EUA+

品牌:Maxim Integrated

价格:¥21.37-¥21.37

OPA4705UAG4

品牌:Texas Instruments

价格:

LT1494CMS8#TRPBF

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 LFx5x JFET Input Operational Amplifiers 1 Features 2 Applications • Advantages • PrecisionHigh-SpeedIntegrators 1 – ReplaceExpensiveHybridandModuleFET • FastD/AandA/DConverters OpAmps • HighImpedanceBuffers – RuggedJFETsAllowBlow-OutFreeHandling • Wideband,LowNoise,LowDriftAmplifiers ComparedWithMOSFETInputDevices • LogarithmicAmplifiers – ExcellentforLowNoiseApplicationsUsing • PhotocellAmplifiers EitherHighorLowSourceImpedance—Very • SampleandHoldCircuits Low1/fCorner – OffsetAdjustDoesNotDegradeDriftor 3 Description Common-ModeRejectionasinMost The LFx5x devices are the first monolithic JFET input MonolithicAmplifiers operational amplifiers to incorporate well-matched, – NewOutputStageAllowsUseofLarge high-voltage JFETs on the same chip with standard CapacitiveLoads(5,000pF)WithoutStability bipolar transistors (BI-FET™ Technology). These Problems amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, – InternalCompensationandLargeDifferential coupled with offset adjust, which does not degrade InputVoltageCapability drift or common-mode rejection. The devices are also • CommonFeatures designed for high slew rate, wide bandwidth, – LowInputBiasCurrent:30pA extremely fast settling time, low voltage and current noiseandalow1/fnoisecorner. – LowInputOffsetCurrent:3pA – HighInputImpedance:1012Ω DeviceInformation(1) – LowInputNoiseCurrent:0.01pA/√Hz PARTNUMBER PACKAGE BODYSIZE(NOM) – HighCommon-ModeRejectionRatio:100dB SOIC(8) 4.90mm×3.91mm – LargeDCVoltageGain:106dB LFx5x TO-CAN(8) 9.08mm×9.08mm • UncommonFeatures PDIP(8) 9.81mm×6.35mm – ExtremelyFastSettlingTimeto0.01%: (1) For all available packages, see the orderable addendum at theendofthedatasheet. – 4 μsfortheLFx55devices – 1.5 μsfortheLFx56 SimplifiedSchematic – 1.5 μsfortheLFx57(A =5) V – FastSlewRate: – 5V/µsfortheLFx55 – 12V/µsfortheLFx56 – 50V/µsfortheLFx57(A =5) V – WideGainBandwidth: – 2.5MHzfortheLFx55devices – 5MHzfortheLFx56 – 20MHzfortheLFx57(A =5) V – LowInputNoiseVoltage: – 20nV/√HzfortheLFx55 3pFinLF357series – 12nV/√HzfortheLFx56 – 12nV/√HzfortheLFx57(A =5) V 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Table of Contents 1 Features.................................................................. 1 7.2 FunctionalBlockDiagram.......................................15 2 Applications........................................................... 1 7.3 FeatureDescription.................................................16 3 Description............................................................. 1 7.4 DeviceFunctionalModes........................................16 4 RevisionHistory..................................................... 2 8 ApplicationandImplementation........................ 17 8.1 ApplicationInformation............................................17 5 PinConfigurationandFunctions......................... 3 8.2 TypicalApplication..................................................18 6 Specifications......................................................... 4 8.3 SystemExamples...................................................20 6.1 AbsoluteMaximumRatings......................................4 9 PowerSupplyRecommendations...................... 33 6.2 ESDRatings..............................................................4 10 Layout................................................................... 33 6.3 RecommendedOperatingConditions.......................4 6.4 ThermalInformation..................................................5 10.1 LayoutGuidelines.................................................33 6.5 ACElectricalCharacteristics,T =T =25°C,V = 10.2 LayoutExample....................................................34 A J S ±15V.......................................................................... 5 11 DeviceandDocumentationSupport................. 35 6.6 DCElectricalCharacteristics,TA=TJ=25°C,VS= 11.1 RelatedLinks........................................................35 ±15V.......................................................................... 6 11.2 CommunityResources..........................................35 6.7 DCElectricalCharacteristics....................................6 11.3 Trademarks...........................................................35 6.8 PowerDissipationRatings........................................7 11.4 ElectrostaticDischargeCaution............................35 6.9 TypicalCharacteristics..............................................8 11.5 Glossary................................................................35 7 DetailedDescription............................................ 14 12 Mechanical,Packaging,andOrderable 7.1 Overview.................................................................14 Information........................................................... 35 4 Revision History NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionC(March2013)toRevisionD Page • AddedPinConfigurationandFunctionssection,ESDRatingstable,ThermalInformationtable,FeatureDescription section,DeviceFunctionalModes,ApplicationandImplementationsection,PowerSupplyRecommendations section,Layoutsection,DeviceandDocumentationSupportsection,andMechanical,Packaging,andOrderable Informationsection ................................................................................................................................................................ 1 • RemovedT parameterasitisredundanttoT maximum............................................................................................... 4 HIGH A ChangesfromRevisionB(March2013)toRevisionC Page • ChangedlayoutofNationalDataSheettoTIformat........................................................................................................... 31 2 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 5 Pin Configuration and Functions LMCPackage 8-PinTO-99 DorPPackage TopView 8-PinSOICorPDIP TopView AvailableperJM38510/11401or JM38510/11402 PinFunctions PIN I/O DESCRIPTION NAME NO. BALANCE 1,5 I Balanceforinputoffsetvoltage +INPUT 3 I Noninvertinginput –INPUT 2 I Invertinginput NC 8 — Noconnection OUTPUT 6 O Output V+ 7 — Positivepowersupply V– 4 — Negativepowersupply Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings overoperatingfree-airtemperaturerange(unlessotherwisenoted) (1)(2)(3) MIN MAX UNIT LF155x,LF256x,LF356B ±22 Supplyvoltage V LF35x ±18 LF15x,LF25x,LF356B ±40 Differentialinputvoltage V LF35x ±30 LF15x,LF25x,LF356B ±20 Inputvoltage(4) V LF35x ±16 Outputshortcircuitduration Continuous — LF15x 150 LMCpackage LF25x,LF356B,LF35x 115 T °C JMAX Ppackage LF25x,LF356B,LF35x 100 Dpackage LF25x,LF356B,LF35x 100 TO-99package Soldering(10sec.) 300 Soldering information PDIPpackage Soldering(10sec.) 260 °C (leadtemp.) Vaporphase(60sec.) LF25x,LF356B,LF35x 215 SOICpackage Infrared(15sec.) LF25x,LF356B,LF35x 220 Storagetemperature,T −65 150 °C stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) ThemaximumpowerdissipationforthesedevicesmustbederatedatelevatedtemperaturesandisdictatedbyT ,θ ,andthe JMAX JA ambienttemperature,T .ThemaximumavailablepowerdissipationatanytemperatureisP =(T −T )/θ orthe25°CP , A D JMAX A JA dMAX whicheverisless. (3) IfMilitary/Aerospacespecifieddevicesarerequired,contacttheTISalesOffice/Distributorsforavailabilityandspecifications. (4) Unlessotherwisespecifiedtheabsolutemaximumnegativeinputvoltageisequaltothenegativepowersupplyvoltage. 6.2 ESD Ratings VALUE UNIT V Electrostaticdischarge Humanbodymodel(HBM),perANSI/ESDA/JEDECJS-001(1)(2) ±1000 V (ESD) (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) 100pFdischargedthrough1.5-kΩresistor 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT LF15x ±15 V ±20 S LF25x ±15 V ±20 S Supplyvoltage,V V S LF356B ±15 V ±20 S LF35x ±15 LF15x –55 T 125 A LF25x –25 T 85 A T °C A LF356B 0 T 70 A LF35x 0 T 70 A 4 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 6.4 Thermal Information LF155,LF156,LF355,LF357 LF356 THERMALMETRIC(1) P(PDIP) D LMC(TO-99) P(PDIP) UNIT (SOIC) 8PINS 8PINS 8PINS 8PINS Junction-to-ambientthermalresistance 130 195 — 55.2 R StillAir — — 160 — °C/W θJA 400LF/MinAirFlow — — 65 — R Junction-to-case(top)thermalresistance — — 23 44.5 °C/W θJC(top) R Junction-to-boardthermalresistance — — — 32.4 °C/W θJB ψ Junction-to-topcharacterizationparameter — — — 21.7 °C/W JT ψ Junction-to-boardcharacterizationparameter — — — 32.3 °C/W JB (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report,SPRA953. 6.5 AC Electrical Characteristics, T = T = 25°C, V = ±15 V A J S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT LFx55 5 LF15x:A =1 LFx56,LF356B 7.5 V SR SlewRate V/μs LFx56,LF356B 12 LF357:A =5 LFx57 50 V LFx55 2.5 GainBandwidth GBW LFx56,LF356B 5 MHz Product LFx57 20 LFx55 4 SettlingTimeto ts 0.01%(1) LFx56,LF356B 1.5 μs LFx57 1.5 LFx55 25 f=100Hz LFx56,LF356B 15 nV/√Hz EquivalentInput LFx57 15 e R =100Ω n NoiseVoltage S LFx55 20 f=1000Hz LFx56,LF356B 12 nV/√Hz LFx57 12 LFx55 f=100Hz LFx56,LF356B 0.01 pA/√Hz EquivalentInput LFx57 i n CurrentNoise LFx55 f=1000Hz LFx56,LF356B 0.01 pA/√Hz LFx57 LFx55 Input C LFx56,LF356B 3 pF IN Capacitance LFx57 (1) Settlingtimeisdefinedhere,foraunitygaininverterconnectionusing2-kΩresistorsfortheLF15x.Itisthetimerequiredfortheerror voltage(thevoltageattheinvertinginputpinontheamplifier)tosettletowithin0.01%ofitsfinalvaluefromthetimea10-Vstepinputis appliedtotheinverter.FortheLF357,A =−5,thefeedbackresistorfromoutputtoinputis2kΩandtheoutputstepis10V(See V SettlingTimeTestCircuit). Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 6.6 DC Electrical Characteristics, T = T = 25°C, V = ±15 V A J S PARAMETER TESTCONDITIONS MIN TYP MAX UNIT LF155 2 4 LF355 2 4 Supplycurrent LFx56,LF356B 5 7 mA LF356 5 10 LF357 5 10 6.7 DC Electrical Characteristics See (1) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT LF15x,LF25x,LF356B 3 5 TA=25°C LF35x 3 10 VOS Inputoffsetvoltage RS=50Ω LF15x 7 mV Over LF25x,LF356B 6.5 temperature LF35x 13 AverageTCofinput ΔVOS/ΔT offsetvoltage RS=50Ω LF15x,LF25x,LF356B,LF35x 5 μV/°C ΔTC/ΔVOS CwhithanVgOeSinadajuvestrageTC RS=50Ω(2) LF15x,LF25x,LF356B,LF35x 0.5 pμeVr/m°CV LF15x,LF25x,LF356B 3 20 TJ=25°C(1)(3) pA LF35x 3 50 IOS Inputoffsetcurrent LF15x 20 TJ≤THIGH LF25x,LF356B 1 nA LF35x 2 LF15x,LF25x,LF356B 30 100 TJ=25°C(1)(3) pA LF35x 30 200 IB Inputbiascurrent LF15x 50 TJ≤THIGH LF25x,LF356B 5 nA LF35x 8 RIN Inputresistance TJ=25°C LF15x,LF25x,LF356B,LF35x 1012 Ω LF15x,LF25x,LF356B 50 200 VS=±15V, TA=25°C LF35x 25 200 AVOL Largesignalvoltagegain VO=±10V, V/mV RL=2kΩ Over LF15x,LF25x,LF356B 25 temperature LF35x 15 VS=±15V,RL=10kΩ LF15x,LF25x,LF356B,LF35x ±12 ±13 VO Outputvoltageswing V VS=±15V,RL=2kΩ LF15x,LF25x,LF356B,LF35x ±10 ±12 (1) Unlessotherwisestated,thesetestconditionsapply: LF15x LF25x LF356B LF35x SupplyVoltage,V ±15V≤V ≤±20V ±15V≤V ≤±20V ±15V≤V ≤±20V V =±15V S S S S S T −55°C≤T ≤+125°C −25°C≤T ≤+85°C 0°C≤T ≤+70°C 0°C≤T ≤+70°C A A A A A T +125°C +85°C +70°C +70°C HIGH andV ,I andI aremeasuredatV =0. OS B OS CM (2) TheTemperatureCoefficientoftheadjustedinputoffsetvoltagechangesonlyasmallamount(0.5μV/°Ctypically)foreachmVof adjustmentfromitsoriginalunadjustedvalue.Common-moderejectionandopen-loopvoltagegainarealsounaffectedbyoffset adjustment. (3) Theinputbiascurrentsarejunctionleakagecurrentswhichapproximatelydoubleforevery10°Cincreaseinthejunctiontemperature, T.Duetolimitedproductiontesttime,theinputbiascurrentsmeasuredarecorrelatedtojunctiontemperature.Innormaloperationthe J junctiontemperaturerisesabovetheambienttemperatureasaresultofinternalpowerdissipation,Pd.T =T +θ Pdwhereθ is J A JA JA thethermalresistancefromjunctiontoambient.Useofaheatsinkisrecommendedifinputbiascurrentistobekepttoaminimum. 6 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 DC Electrical Characteristics (continued) See(1) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT LF15x,LF25x,LF356B 11 15.1 VCM,High Inputcommon-mode LF35x 10 15.1 VCM voltagerange VS=±15V LF15x,LF25x,LF356B −12 –11 V VCM,Low LF35x −12 –10 Common-moderejection LF15x,LF25x,LF356B 85 100 CMRR dB ratio LF35x 80 100 Supplyvoltagerejection LF15x,LF25x,LF356B 85 100 PSRR ratio(4) LF35x 80 100 dB (4) SupplyVoltageRejectionismeasuredforbothsupplymagnitudesincreasingordecreasingsimultaneously,inaccordancewithcommon practice. 6.8 Power Dissipation Ratings MIN MAX UNIT LF15x 560 LMCPackage(StillAir) LF25x,LF356B,LF35x 400 PowerDissipationat LMCPackage LF15x 1200 mW TA=25°C (1)(2) (400LF/MinAirFlow) LF25x,LF356B,LF35x 1000 PPackage LF25x,LF356B,LF35x 670 DPackage LF25x,LF356B,LF35x 380 (1) ThemaximumpowerdissipationforthesedevicesmustbederatedatelevatedtemperaturesandisdictatedbyT ,θ ,andthe JMAX JA ambienttemperature,T .ThemaximumavailablepowerdissipationatanytemperatureisP =(T −T )/θ orthe25°CP , A D JMAX A JA dMAX whicheverisless. (2) Maximumpowerdissipationisdefinedbythepackagecharacteristics.Operatingthepartnearthemaximumpowerdissipationmay causetheparttooperateoutsidespecifiedlimits. Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 6.9 Typical Characteristics 6.9.1 TypicalDCPerformanceCharacteristics CurvesareforLF155andLF156unlessotherwisespecified. Figure1.InputBiasCurrent Figure2.InputBiasCurrent Figure3.InputBiasCurrent Figure4.VoltageSwing Figure5.SupplyCurrent Figure6.SupplyCurrent 8 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Typical DC Performance Characteristics (continued) CurvesareforLF155andLF156unlessotherwisespecified. Figure7.NegativeCurrentLimit Figure8.PositiveCurrentLimit Figure9.PositiveCommon-ModeInputVoltageLimit Figure10.NegativeCommon-ModeInputVoltageLimit Figure11.Open-LoopVoltageGain Figure12.OutputVoltageSwing Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 6.9.2 TypicalACPerformanceCharacteristics Figure14.GainBandwidth Figure13.GainBandwidth Figure15.NormalizedSlewRate Figure16.OutputImpedance Figure17.OutputImpedance Figure18.LF155SmallSignalPulseResponse,AV=+1 10 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Typical AC Performance Characteristics (continued) Figure19.LF156SmallSignalPulseResponse,AV=+1 Figure20.LF155LargeSignalPulseResponse,AV=+1 Figure21.LF156LargeSignalPulsResponse,AV=+1 Figure22.InverterSettlingTime Figure23.InverterSettlingTime Figure24.Open-LoopFrequencyResponse Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Typical AC Performance Characteristics (continued) Figure25.BodePlot Figure26.BodePlot Figure27.BodePlot Figure28.Common-ModeRejectionRatio Figure29.PowerSupplyRejectionRatio Figure30.PowerSupplyRejectionRatio 12 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Typical AC Performance Characteristics (continued) Figure31.UndistortedOutputVoltageSwing Figure32.EquivalentInputNoiseVoltage Figure33.EquivalentInputNoiseVoltage(ExpandedScale) Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 7 Detailed Description 7.1 Overview These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET Technology). These amplifiers feature low input bias and offset currents, as well as low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. These devices can replace expensive hybrid and module FET operational amplifiers. Designed for low voltage and current noise and a low 1/f noise corner, these devices are excellentforlownoiseapplicationsusingeitherhighorlowsourceimpedance. 14 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 7.2 Functional Block Diagram *C=3pFinLF357series. Figure34. DetailedSchematic Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 7.3 Feature Description 7.3.1 LargeDifferentialInputVoltage These are operational amplifiers with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceedthenegativesupplyasthiswillcauselargecurrentstoflowwhichcanresultinadestroyedunit. 7.3.2 LargeCommon-ModeInputVoltage These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an inputas,forexample,inasupplycurrentmonitorand/orlimiter. 7.4 Device Functional Modes The LFx5x has a single functional mode and operates according to the conditions listed in the Recommended OperatingConditions. 16 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information These are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to sourceanddraineliminatingtheneedforclampsacrosstheinputs.Thereforelargedifferentialinputvoltagescan easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negativesupplyasthiswillcauselargecurrentstoflowwhichcanresultinadestroyedunit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-moderangeagainputstheinputstageandthustheamplifierinanormaloperatingmode. Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if bothinputsexceedthelimit,theoutputoftheamplifierwillbeforcedtoahighstate. These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an inputas,forexample,inasupplycurrentmonitorand/orlimiter. Precautionsshouldbetakentoensurethatthepowersupplyfortheintegratedcircuitneverbecomesreversedin polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers arethereforeessentiallyindependentofsupplyvoltage. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize pick-up and maximize the frequency of the feedback pole by minimizing the capacitance fromtheinputtoground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3-dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3-dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitorandtheresistanceitparallelsisgreaterthanorequaltotheoriginalfeedbackpoletimeconstant. Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 8.2 Typical Application Figure35. SettlingTimeTestCircuit 8.2.1 DesignRequirements SettlingtimeistestedwiththeLF35xconnectedasunitygaininverterandLF357connectedforA =−5 V 8.2.2 DetailedDesignProcedure ConnectthecircuitcomponentsasshowninFigure35.Inparticular,useFETtoisolatetheprobecapacitance. Applya10-Vstepfunctiontotheinput. UseanoscilloscopetoprobethecircuitasshowninFigure35. 18 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Typical Application (continued) 8.2.3 ApplicationCurves LargeSignalInverterOutput,V (fromSettlingTimeCircuit) OUT Figure36.LF355 Figure37.LF356 Figure38.LF357 Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com 8.3 System Examples Figure39. LowDriftAdjustableVoltageReference • ΔV / ΔT=±0.002%/°C OUT • Allresistorsandpotentiometersshouldbewire-wound • P1:driftadjust • P2:V adjust OUT • UseLF155for – LowI B – Lowdrift – Lowsupplycurrent 20 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 System Examples (continued) Figure40. FastLogarithmicConverter • Dynamicrange:100μA ≤ I ≤ 1mA(5decades),|V |=1V/decade i O • Transientresponse:3μsforΔI =1decade i • C1,C2,R2,R3:addeddynamiccompensation • V adjusttheLF156tominimizequiescenterror OS • R :TelLabstypeQ81+0.3%/°C T (1) Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com System Examples (continued) Figure41. PrecisionCurrentMonitor • V =5R1/R2(V/mAofI ) O S • R1,R2,R3:0.1%resistors • UseLF155for – Common-moderangetosupplyrange – LowI B – LowV OS – LowSupplyCurrent 22 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 System Examples (continued) Figure42. 8-BitD/AConverterWithSymmetricalOffsetBinaryOperation • R1,R2shouldbematchedwithin±0.05% • Full-scaleresponsetime:3μs Table1.BitIllustrationofthe8-BitD/AConverter E B1 B2 B3 B4 B5 B6 B7 B8 COMMENTS O +9.920 1 1 1 1 1 1 1 1 PositiveFull-Scale +0.040 1 0 0 0 0 0 0 0 (+)Zero-Scale −0.040 0 1 1 1 1 1 1 1 (−)Zero-Scale −9.920 0 0 0 0 0 0 0 0 NegativeFull-Scale Figure43. WideBWLowNoise,LowDriftAmplifier (2) Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Parasitic input capacitance C1 ≃ (3 pF for LF155, LF156 and LF357 plus any additional layout capacitance) interactswithfeedbackelementsandcreatesundesirablehighfrequencypole.TocompensateaddC2suchthat: R2C2≃ R1C1. Figure44. BoostingtheLF156WithaCurrentAmplifier • I ≃150mA(willdriveR ≥ 100 Ω) OUT(MAX) L (3) • Noadditionalphaseshiftaddedbythecurrentamplifier Figure45. DecadesVCO 24 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 R1,R4matched.Linearity0.1%over2decades. (4) Figure46. IsolatingLargeCapacitiveLoads • Overshoot6% • t 10μs s • WhendrivinglargeC ,theV slewratedeterminedbyC andI : L OUT L OUT(MAX) (5) Figure47. LowDriftPeakDetector • ByaddingD1andR,V =0duringholdmode.LeakageofD2providedbyfeedbackpaththroughR. f D1 f • LeakageofcircuitisessentiallyI (LF155,LF156)pluscapacitorleakageofCp. b • DiodeD3clampsV (A1)toV −V toimprovespeedandtolimitreversebiasofD2. OUT IN D3 • Maximuminputfrequencyshouldbe <<½πRC whereC istheshuntcapacitanceofD2. f D2 D2 Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Figure48. NoninvertingUnityGainOperationforLF157 (6) Figure49. InvertingUnityGainforLF157 (7) 26 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Figure50. HighImpedance,LowDriftInstrumentationAmplifier • SystemV adjustedviaA2V adjust OS OS • Trim R3 to boost up CMRR to 120 dB. Instrumentation amplifier resistor array recommended for best accuracyandlowestdrift (8) Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Figure51. FastSampleandHold • Bothamplifiers(A1,A2)havefeedbackloopsindividuallyclosedwithstableresponses(overshootnegligible) • AcquisitiontimeT ,estimatedby: A (9) • LF156developsfullS outputcapabilityforV ≥1V r IN • AdditionofSW2improvesaccuracybyputtingthevoltagedropacrossSW1insidethefeedbackloop • Overallaccuracyofsystemdeterminedbytheaccuracyofbothamplifiers,A1andA2 28 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Figure52. HighAccuracySampleandHold • ByclosingtheloopthroughA2,theV accuracywillbedetermineduniquelybyA1. OUT – NoV adjustrequiredforA2. OS • T canbeestimatedbysameconsiderationsaspreviouslybut,becauseoftheadded A – propagationdelayinthefeedbackloop(A2)theovershootisnotnegligible. • Overallsystemslowerthanfastsampleandhold • R1,C :additionalcompensation C • UseLF156for – Fastsettlingtime – LowV OS Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Figure53. HighQBandPassFilter • Byaddingpositivefeedback(R2) • Qincreasesto40 • f =100kHz BP (10) • Cleanlayoutrecommended • Responsetoa1-V toneburst:300μs p-p 30 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 Figure54. HighQNotchFilter • 2R1=R=10MΩ – 2C=C1=300pF • CapacitorsshouldbematchedtoobtainhighQ • f =120Hz, notch= −55dB, Q > 100 NOTCH • UseLF155for – LowI B – Lowsupplycurrent Figure55. V Adjustment OS • V isadjustedwitha25-kpotentiometer OS • ThepotentiometerwiperisconnectedtoV+ • Forpotentiometerswithtemperaturecoefficientof100ppm/°Corlesstheadditionaldriftwithadjust is≈ 0.5 μV/°C/mVofadjustment • Typicaloveralldrift:5 μV/°C±(0.5μV/°C/mVofadj.) Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Figure56. DrivingCapacitiveLoads • *LF15xR=5k,LF357R=1.25k • Due to a unique output stage design, these amplifiers have the ability to drive large capacitive loads and still maintainstability.C ≃0.01 μF. L(MAX) • Overshoot≤ 20%,Settlingtime(t )≃5 μs s Figure57. LF357-ALargePowerBWAmplifier Fordistortion≤ 1%anda20Vp-pV swing,powerbandwidthis:500kHz. OUT 32 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 9 Power Supply Recommendations See the Recommended Operating Conditions for the minimum and maximum values for the supply input voltage andoperatingjunctiontemperature. 10 Layout 10.1 Layout Guidelines 10.1.1 Printed-Circuit-BoardLayoutForHigh-ImpedanceWork It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PCB. When one wishes to take advantage of the low input bias current of the LFx5x, typically less than 30 pA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PCB, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surfaceleakagewillbeappreciable. To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the inputs of the LFx5x and the terminals of capacitors, diodes, conductors, resistors, relay terminals, and so forth, connected to the inputs of the op amp, as in Figure 62. To have a significant effect, guard rings must be placed on both the top and bottom of the PCB. This PC foil must then be connected to a voltage that is at the same voltage as the amplifier inputs, because no leakage current can flow between two points at the same potential. For example, a PCB trace-to-pad resistance of 10 TΩ, which is normally considered a very large resistance, could leak 5 pA if thetracewerea5-Vbusadjacenttothepadoftheinput.Ifaguardringisusedandheldclosetothepotentialof theamplifierinputs,itwillsignificantlyreducethisleakagecurrent. Figure58. InvertingAmplifier Figure59. NoninvertingAmplifier Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 33 LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 www.ti.com Layout Guidelines (continued) Figure60. TypicalConnectionsOfGuardRings The designer should be aware that when it is inappropriate to lay out a PCB for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PCB: Do not insert the input pin of the amplifier into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PCB construction, but the advantages aresometimeswellworththeeffortofusingpoint-to-pointup-in-the-airwiring.SeeFigure61. (InputpinsareliftedoutofPCBandsoldereddirectlytocomponents.AllotherpinsconnectedtoPCB). Figure61. AirWiring Another potential source of leakage that might be overlooked is the device package. When the LFx5x is manufactured, the device is always handled with conductive finger cots. This is to assure that salts and skin oils do not cause leakage paths on the surface of the package. We recommend that these same precautions be adheredto,duringallphasesofinspection,testandassembly. 10.2 Layout Example Figure62. ExamplesOfGuard RingInPCBLayout 34 SubmitDocumentationFeedback Copyright©2000–2015,TexasInstrumentsIncorporated LF156 LF256 LF356

LF155,LF156,LF256,LF257 LF355,LF356,LF357 www.ti.com SNOSBH0D–MAY2000–REVISEDNOVEMBER2015 11 Device and Documentation Support 11.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources,toolsandsoftware,andquickaccesstosampleorbuy. Table2.RelatedLinks TECHNICAL TOOLS& SUPPORT& PARTS PRODUCTFOLDER SAMPLE&BUY DOCUMENTS SOFTWARE COMMUNITY LF156 Clickhere Clickhere Clickhere Clickhere Clickhere LF256 Clickhere Clickhere Clickhere Clickhere Clickhere LF356 Clickhere Clickhere Clickhere Clickhere Clickhere 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.3 Trademarks BI-FET,E2EaretrademarksofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.4 Electrostatic Discharge Caution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 11.5 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. Copyright©2000–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 35 LF156 LF256 LF356

PACKAGE OPTION ADDENDUM www.ti.com 12-Jan-2019 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) LF156 MD8 ACTIVE DIESALE Y 0 204 Green (RoHS Call TI Level-1-NA-UNLIM -55 to 125 & no Sb/Br) LF156H ACTIVE TO-99 LMC 8 500 TBD Call TI Call TI -55 to 125 ( LF156H, LF156H) LF156H/NOPB ACTIVE TO-99 LMC 8 500 Green (RoHS Call TI Level-1-NA-UNLIM -55 to 125 ( LF156H, LF156H) & no Sb/Br) LF256H ACTIVE TO-99 LMC 8 500 TBD Call TI Call TI -25 to 85 ( LF256H, LF256H) LF256H/NOPB ACTIVE TO-99 LMC 8 500 Green (RoHS Call TI Level-1-NA-UNLIM -25 to 85 ( LF256H, LF256H) & no Sb/Br) LF356M NRND SOIC D 8 95 TBD Call TI Call TI 0 to 70 LF356 M LF356M/NOPB ACTIVE SOIC D 8 95 Green (RoHS CU SN Level-1-260C-UNLIM 0 to 70 LF356 & no Sb/Br) M LF356MX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS CU SN Level-1-260C-UNLIM 0 to 70 LF356 & no Sb/Br) M LF356N/NOPB ACTIVE PDIP P 8 40 Green (RoHS CU SN Level-1-NA-UNLIM 0 to 70 LF & no Sb/Br) 356N (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 12-Jan-2019 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 15-Sep-2018 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) LF356MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 15-Sep-2018 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) LF356MX/NOPB SOIC D 8 2500 367.0 367.0 35.0 PackMaterials-Page2

None

PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] .004 [0.1] C A PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .189-.197 [4.81-5.00] .150 NOTE 3 [3.81] 4X (0 -15 ) 4 5 8X .012-.020 B .150-.157 [0.31-0.51] .069 MAX [3.81-3.98] .010 [0.25] C A B [1.75] NOTE 4 .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 0 - 8 [0.11-0.25] .016-.050 [0.41-1.27] DETAIL A (.041) TYPICAL [1.04] 4214825/C 02/2019 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com

EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X SOLDER MASK SOLDER MASK METAL OPENING OPENING METAL UNDER SOLDER MASK EXPOSED METAL EXPOSED METAL .0028 MAX .0028 MIN [0.07] [0.07] ALL AROUND ALL AROUND NON SOLDER MASK SOLDER MASK DEFINED DEFINED SOLDER MASK DETAILS 4214825/C 02/2019 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com

EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] SYMM (R.002 ) TYP [0.05] 5 4 6X (.050 ) [1.27] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com

None

IMPORTANTNOTICEANDDISCLAIMER TIPROVIDESTECHNICALANDRELIABILITYDATA(INCLUDINGDATASHEETS),DESIGNRESOURCES(INCLUDINGREFERENCE DESIGNS),APPLICATIONOROTHERDESIGNADVICE,WEBTOOLS,SAFETYINFORMATION,ANDOTHERRESOURCES“ASIS” ANDWITHALLFAULTS,ANDDISCLAIMSALLWARRANTIES,EXPRESSANDIMPLIED,INCLUDINGWITHOUTLIMITATIONANY IMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEORNON-INFRINGEMENTOFTHIRD PARTYINTELLECTUALPROPERTYRIGHTS. TheseresourcesareintendedforskilleddevelopersdesigningwithTIproducts.Youaresolelyresponsiblefor(1)selectingtheappropriate TIproductsforyourapplication,(2)designing,validatingandtestingyourapplication,and(3)ensuringyourapplicationmeetsapplicable standards,andanyothersafety,security,orotherrequirements.Theseresourcesaresubjecttochangewithoutnotice.TIgrantsyou permissiontousetheseresourcesonlyfordevelopmentofanapplicationthatusestheTIproductsdescribedintheresource.Other reproductionanddisplayoftheseresourcesisprohibited.NolicenseisgrantedtoanyotherTIintellectualpropertyrightortoanythird partyintellectualpropertyright.TIdisclaimsresponsibilityfor,andyouwillfullyindemnifyTIanditsrepresentativesagainst,anyclaims, damages,costs,losses,andliabilitiesarisingoutofyouruseoftheseresources. TI’sproductsareprovidedsubjecttoTI’sTermsofSale(www.ti.com/legal/termsofsale.html)orotherapplicabletermsavailableeitheron ti.comorprovidedinconjunctionwithsuchTIproducts.TI’sprovisionoftheseresourcesdoesnotexpandorotherwisealterTI’sapplicable warrantiesorwarrantydisclaimersforTIproducts. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2019,TexasInstrumentsIncorporated