ICGOO在线商城 > 集成电路(IC) > 嵌入式 - FPGA(现场可编程门阵列) > LCMXO256C-5TN100C
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
LCMXO256C-5TN100C产品简介:
ICGOO电子元器件商城为您提供LCMXO256C-5TN100C由Lattice设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LCMXO256C-5TN100C价格参考。LatticeLCMXO256C-5TN100C封装/规格:嵌入式 - FPGA(现场可编程门阵列), 。您可以下载LCMXO256C-5TN100C参考资料、Datasheet数据手册功能说明书,资料中有LCMXO256C-5TN100C 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC CPLD 128MC 3.5NS 100TQFPFPGA - 现场可编程门阵列 256 LUTS 78 I/O |
产品分类 | |
I/O数 | 78 |
品牌 | Lattice Semiconductor Corporation |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 嵌入式处理器和控制器,FPGA - 现场可编程门阵列,Lattice LCMXO256C-5TN100CMachXO |
数据手册 | |
产品型号 | LCMXO256C-5TN100C |
PCN组件/产地 | |
PCN设计/规格 | http://www.latticesemi.com/~/media/Documents/ProductChangeNotification/13/PCN03A-13_Alternate_Qualified_Assembly_Test%20Site_Material_Sets_ASE_Taiwan.ashx |
产品 | MachXO |
产品种类 | FPGA - 现场可编程门阵列 |
供应商器件封装 | 100-TQFP(14x14) |
其它名称 | 220-1272 |
分布式RAM | 2 kbit |
包装 | 托盘 |
可编程类型 | 系统内可编程 |
商标 | Lattice |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
宏单元数 | 128 |
封装 | Tray |
封装/外壳 | 100-LQFP |
封装/箱体 | TQFP-100 |
工作温度 | 0°C ~ 85°C |
工作电源电压 | 1.8 V, 2.5 V, 3.3 V |
工作电源电流 | 13 mA |
工厂包装数量 | 90 |
延迟时间tpd(1)最大值 | 3.5ns |
总内存 | 2 kbit |
最大工作温度 | + 85 C |
最小工作温度 | 0 C |
栅极数 | - |
标准包装 | 90 |
电源电压-内部 | 1.71 V ~ 3.465 V |
系列 | LCMXO256C-5TN |
输入/输出端数量 | 78 |
逻辑元件/块数 | - |
逻辑元件数量 | 256 |
逻辑数组块数量——LAB | 32 |
MachXO Family Data Sheet DS1002 Version 3.1, June 2017
MachXO Family Data Sheet Introduction June 2017 Data Sheet DS1002 Features Flexible I/O Buffer (cid:129) Programmable sysIO™ buffer supports wide Non-volatile, Infinitely Reconfigurable range of interfaces: • Instant-on – powers up in microseconds —LVCMOS 3.3/2.5/1.8/1.5/1.2 (cid:129) Single chip, no external configuration memory —LVTTL required —PCI (cid:129) Excellent design security, no bit stream to —LVDS, Bus-LVDS, LVPECL, RSDS intercept sysCLOCK™ PLLs (cid:129) Reconfigure SRAM based logic in milliseconds (cid:129) Up to two analog PLLs per device (cid:129) SRAM and non-volatile memory programmable (cid:129) Clock multiply, divide, and phase shifting through JTAG port (cid:129) Supports background programming of System Level Support non-volatile memory (cid:129) IEEE Standard 1149.1 Boundary Scan (cid:129) Onboard oscillator Sleep Mode (cid:129) Devices operate with 3.3 V, 2.5 V, 1.8 V or 1.2 V (cid:129) Allows up to 100x static current reduction power supply TransFR™ Reconfiguration (TFR) (cid:129) IEEE 1532 compliant in-system programming (cid:129) In-field logic update while system operates High I/O to Logic Density Introduction (cid:129) 256 to 2280 LUT4s The MachXO is optimized to meet the requirements of (cid:129) 73 to 271 I/Os with extensive package options applications traditionally addressed by CPLDs and low (cid:129) Density migration supported capacity FPGAs: glue logic, bus bridging, bus interfac- (cid:129) Lead free/RoHS compliant packaging ing, power-up control, and control logic. These devices Embedded and Distributed Memory bring together the best features of CPLD and FPGA (cid:129) Up to 27.6 Kbits sysMEM™ Embedded Block devices on a single chip. RAM (cid:129) Up to 7.7 Kbits distributed RAM (cid:129) Dedicated FIFO control logic Table 1-1. MachXO Family Selection Guide Device LCMXO256 LCMXO640 LCMXO1200 LCMXO2280 LUTs 256 640 1200 2280 Dist. RAM (Kbits) 2.0 6.1 6.4 7.7 EBR SRAM (Kbits) 0 0 9.2 27.6 Number of EBR SRAM Blocks (9 Kbits) 0 0 1 3 V Voltage 1.2/1.8/2.5/3.3 V 1.2/1.8/2.5/3.3 V 1.2/1.8/2.5/3.3 V 1.2/1.8/2.5/3.3 V CC Number of PLLs 0 0 1 2 Max. I/O 78 159 211 271 Packages 100-pin TQFP (14x14 mm) 78 74 73 73 144-pin TQFP (20x20 mm) 113 113 113 100-ball csBGA (8x8 mm) 78 74 132-ball csBGA (8x8 mm) 101 101 101 256-ball caBGA (14x14 mm) 159 211 211 256-ball ftBGA (17x17 mm) 159 211 211 324-ball ftBGA (19x19 mm) 271 © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1-1 DS1002 Introduction_01.6
Introduction MachXO Family Data Sheet The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flex- ible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, high- security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs. The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification. 1-2
MachXO Family Data Sheet Architecture June 2017 Data Sheet DS1002 Architecture Overview The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members. The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of inter- face standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register func- tions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row. In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on dif- ferent Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast mem- ory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag “hard” control logic to minimize LUT use. The MachXO registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration set- ting, allowing device entering to a known state for predictable system function. The MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks. Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3 V, 2.5 V, 1.8 V, and 1.2 V power supplies, providing easy integration into the overall system. © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 2-1 DS1002 Architecture_01.6
Architecture MachXO Family Data Sheet Figure 2-1. Top View of the MachXO1200 Device1 PIOs Arranged into sysIO Banks Programmable Functional Units with RAM (PFUs) sysMEM Embedded Block RAM (EBR) Programmable Functional Units without RAM (PFFs) sysCLOCK PLL JTAG Port 1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks. Figure 2-2. Top View of the MachXO640 Device PIOs Arranged into sysIO Banks Programmable Function Units without RAM (PFFs) Programmable Function Units with RAM (PFUs) JTAG Port 2-2
Architecture MachXO Family Data Sheet Figure 2-3. Top View of the MachXO256 Device Programmable Function Units without RAM (PFFs) JTAG Port PIOs Arranged into sysIO Banks Programmable Function Units with RAM (PFUs) PFU Blocks The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks. Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-4. PFU Diagram From Routin g LUT4 & LUT4 & LUT4 & LUT4 & LUT4 & LUT4 & LUT4 & LUT4 & FCIN CARRY CARRY CARRY CARRY CARRY CARRY CARRY CARRY FCO Slice 0 Slice 1 Slice 2 Slice 3 D D D D D D D D FF/ FF/ FF/ FF/ FF/ FF/ FF/ FF/ Latch Latch Latch Latch Latch Latch Latch Latch To Routin g Slice Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks. 2-3
Architecture MachXO Family Data Sheet There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the sig- nals associated with each Slice. Figure 2-5. Slice Diagram To Adjacent Slice/PFU Slice OFX1 A1 F1 CO B1 F C1 Fast Connection D1 LUT4 & D to I/O Cell* CARRY SUM FF/ Latch Q1 CI To From M1 Routing Routing M0 OFX0 LUT Expansion Fast Connection Mux A0 CO to I/O Cell* B0 C0 LUT4 & F F0 D0 CARRY SUM OFX0 D FF/ CI Latch Q0 Control Signals CE selected and CLK inverted per LSR Slice in routing From Adjacent Slice/PFU Notes: Some inter-Slice signals are not shown. * Only PFUs at the edges have fast connections to the I/O cell. Table 2-1. Slice Signal Descriptions Function Type Signal Names Description Input Data signal A0, B0, C0, D0 Inputs to LUT4 Input Data signal A1, B1, C1, D1 Inputs to LUT4 Input Multi-purpose M0/M1 Multipurpose Input Input Control signal CE Clock Enable Input Control signal LSR Local Set/Reset Input Control signal CLK System Clock Input Inter-PFU signal FCIN Fast Carry In1 Output Data signals F0, F1 LUT4 output register bypass signals Output Data signals Q0, Q1 Register Outputs Output Data signals OFX0 Output of a LUT5 MUX Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the Slice Output Inter-PFU signal FCO Fast Carry Out1 1. See Figure 2-4 for connection details. 2. Requires two PFUs. 2-4
Architecture MachXO Family Data Sheet Modes of Operation Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks. Table 2-2. Slice Modes Logic Ripple RAM ROM PFU Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit SP 16x2 ROM 16x1 x 2 PFF Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit N/A ROM 16x1 x 2 Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by program- ming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices. Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the fol- lowing functions can be implemented by each Slice: (cid:129) Addition 2-bit (cid:129) Subtraction 2-bit (cid:129) Add/Subtract 2-bit using dynamic control (cid:129) Up counter 2-bit (cid:129) Down counter 2-bit (cid:129) Ripple mode multiplier building block (cid:129) Comparator functions of A and B inputs —A greater-than-or-equal-to B —A not-equal-to B —A less-than-or-equal-to B Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices. RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed. The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet. Table 2-3. Number of Slices Required For Implementing Distributed RAM SPR16x2 DPR16x2 Number of Slices 1 2 Note: SPR = Single Port RAM, DPR = Dual Port RAM 2-5
Architecture MachXO Family Data Sheet Figure 2-6. Distributed Memory Primitives SPR16x2 DPR16x2 AD0 AD1 WAD0 RAD0 AD2 WAD1 RAD1 DO0 AD3 WAD2 RAD2 DI0 DO1 WAD3 RAD3 DI1 DI0 RDO0 WRE DI1 RDO1 CK WCK WDO0 WRE WDO1 ROM16x1 AD0 AD1 AD2 DO0 AD3 ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration. PFU Modes of Operation Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level. Table 2-4. PFU Modes of Operation Logic Ripple RAM ROM LUT 4x8 or SPR16x2 x 4 2-bit Add x 4 ROM16x1 x 8 MUX 2x1 x 8 DPR16x2 x 2 LUT 5x4 or SPR16x4 x 2 2-bit Sub x 4 ROM16x2 x 4 MUX 4x1 x 4 DPR16x4 x 1 LUT 6x 2 or 2-bit Counter x 4 SPR16x8 x 1 ROM16x4 x 2 MUX 8x1 x 2 LUT 7x1 or 2-bit Comp x 4 ROM16x8 x 1 MUX 16x1 x 1 Routing There are many resources provided in the MachXO devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) seg- ments. The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connec- tions in the horizontal and vertical directions. 2-6
Architecture MachXO Family Data Sheet The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design. Clock/Control Distribution Network The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO1200 and MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL out- puts. Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices 12 4 Primary Clock 0 16:1 Primary Clock 1 16:1 Primary Clock 2 16:1 Primary Clock 3 16:1 Routing Clock Pads 2-7
Architecture MachXO Family Data Sheet Figure 2-8. Primary Clocks for MachXO1200 and MachXO2280 Devices Up to 9 Up to 6 4 Primary Clock 0 16:1 Primary Clock 1 16:1 Primary Clock 2 16:1 Primary Clock 3 16:1 Routing Clock PLL Pads Outputs Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing. Figure 2-9. Secondary Clocks for MachXO Devices 12 4 16:1 16:1 Secondary (Control) Clocks 16:1 16:1 Routing Clock Pads 2-8
Architecture MachXO Family Data Sheet sysCLOCK Phase Locked Loops (PLLs) The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram. The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either pro- grammed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t parameter has been satisfied. Additionally, the phase and duty cycle block LOCK allows the user to adjust the phase and duty cycle of the CLKOS output. The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the fre- quency range. The secondary divider is used to derive lower frequency outputs. Figure 2-10. PLL Diagram Dynamic Delay Adjustment LOCK RST Input Clock Post Scalar Phase/Duty Divider Delay Voltage Divider Select CLKOS (CLKI) Adjust ConVtCroOll ed (CLKOP) CLKI Oscillator (from routing or external pin) CLKOP Feedback Secondary C(frLoKmF BPost Scalar (DCiLvKidFeBr) DCivloidcekr CLKOK (CLKOK) Divider output, clock net, routing/external CLKINTFB pin or CLKINTFB (internal feedback) port Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block. Figure 2-11. PLL Primitive RST CLKI CLKOP CLKFB CLKOS DDA MODE EHXPLLC CLKOK DDAIZR LOCK DDAILAG CLKINTFB DDAIDEL[2:0] 2-9
Architecture MachXO Family Data Sheet Table 2-5. PLL Signal Descriptions Signal I/O Description CLKI I Clock input from external pin or routing I PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKFB CLKINTFB port RST I “1” to reset the input clock divider CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) CLKOP O PLL output clock to clock tree (No phase shift) CLKOK O PLL output to clock tree through secondary clock divider LOCK O “1” indicates PLL LOCK to CLKI CLKINTFB O Internal feedback source, CLKOP divider output before CLOCKTREE DDAMODE I Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static) DDAIZR I Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on DDAILAG I Dynamic Delay Lag/Lead. “1”: Lag, “0”: Lead DDAIDEL[2:0] I Dynamic Delay Input For more information on the PLL, please see details of additional technical documentation at the end of this data sheet. sysMEM Memory The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. sysMEM Memory Block The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6. Table 2-6. sysMEM Block Configurations Memory Mode Configurations 8,192 x 1 4,096 x 2 2,048 x 4 Single Port 1,024 x 9 512 x 18 256 x 36 8,192 x 1 4,096 x 2 True Dual Port 2,048 x 4 1,024 x 9 512 x 18 8,192 x 1 4,096 x 2 2,048 x 4 Pseudo Dual Port 1,024 x 9 512 x 18 256 x 36 8,192 x 1 4,096 x 2 2,048 x 4 FIFO 1,024 x 9 512 x 18 256 x 36 2-10
Architecture MachXO Family Data Sheet Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. Memory Cascading Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs. Single, Dual, Pseudo-Dual Port and FIFO Modes Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output. Figure 2-12. sysMEM Memory Primitives AD[12:0] ADA [12:0] ADB[12:0] DIA[17:0] DIB[17:0] DI[35:0] CLKA CEB CLK CEA CLKB CE EBR DO[35:0] EBR RSTA RSTB RST WEA WEB WE CSA[2:0] CSB[2:0] CS[2:0] DOA [17:0] DOB[17:0] Single Po rt RAM Tr ue Dual Po rt RAM ADW [12:0] AD[12:0] DI[35:0] ADR[12:0] CLK CLKW CE EBR DO[35:0] CEW EBR DO[35:0] RST WE CER RST CS[2:0] CLKR CS[2:0] RO M Pseudo-Dual Po rt RAM DO[35:0] CLKR DI[35:0] RSTB CLKW RE RSTA EBR RCE WE FF CEW AF EF AE FIFO 2-11
Architecture MachXO Family Data Sheet The EBR memory supports three forms of write behavior for single or dual port operation: 1. Normal – data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths. 2. Write Through – a copy of the input data appears at the output of the same port. This mode is supported for all data widths. 3. Read-Before-Write – when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths. FIFO Configuration The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7. Table 2-7. Programmable FIFO Flag Ranges Flag Name Programming Range Full (FF) 1 to (up to 2N-1) Almost Full (AF) 1 to Full-1 Almost Empty (AE) 1 to Full-1 Empty (EF) 0 N = Address bit width The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO. Memory Core Reset The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro- nously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respec- tively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13. 2-12
Architecture MachXO Family Data Sheet Figure 2-13. Memory Core Reset Memory Core DSETQ Port A[17:0] LCLR Output Data Latches DSETQ Port B[17:0] LCLR RSTA RSTB GSRN Programmable Disable For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet. EBR Asynchronous Reset EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous. Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram Reset Clock Clock Enable If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f (EBR clock). The reset MAX release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge. If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active. These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR sig- nal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled. 2-13
Architecture MachXO Family Data Sheet PIO Groups On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs. On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins. The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support. Figure 2-15. Group of Four Programmable I/O Cells This structure is used on the left and right of MachXO devices PIO A PADA "T" PIO B PADB "C" Four PIOs PIO C PADC "T" PIO D PADD "C" Figure 2-16. Group of Six Programmable I/O Cells This structure is used on the top and bottom of MachXO devices PIO A PADA "T" PIO B PADB "C" PIO C PADC "T" Six PIOs PIO D PADD "C" PIO E PADE "T" PIO F PADF "C" PIO The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast 2-14
Architecture MachXO Family Data Sheet output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic. The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer. The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times. Figure 2-17. MachXO PIO Block Diagram From Routing TS TSALL From Routing sysIO TO Buffer Fast Output Data signal DO PAD 1 Input Data Signal 2 3 Programmable Delay Elements + 4 - Note: Buffer 1 tracks with VCCAUX Buffer 2 tracks with VCCIO. From Complementary Buffer 3 tracks with internal 1.2V VREF. Pad Buffer 4 is available in MachXO1200 and MachXO2280 devices only. sysIO Buffer Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today’s systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL. In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow- ered using V . In addition to the Bank V supplies, the MachXO devices have a V core logic power supply, CCIO CCIO CC and a V supply that powers up a variety of internal circuits including all the differential and referenced input buf- CCAUX fers. MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks. MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs. 1. Top and Bottom sysIO Buffer Pairs The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom 2-15
Architecture MachXO Family Data Sheet of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V , V , and V are at valid operating levels and the device has been con- CC CCAUX CCIO figured. The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer. 2. Left and Right sysIO Buffer Pairs The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buf- fer. In these Banks the two pads in the pair are described as “true” and “comp”, where the true pad is associ- ated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O. Typical I/O Behavior During Power-up The internal power-on-reset (POR) signal is deactivated when V and V have reached satisfactory levels. CC CCAUX After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure that all V Banks are active with valid input logic levels to properly control the output logic states of all the I/O CCIO Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tristate with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings. The V and V supply the power to the FPGA core fabric, whereas the V supplies power to the I/O buf- CC CCAUX CCIO fers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V supplies should be powered up before or CCIO together with the V and V supplies. CC CCAUX Supported Standards The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family. Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet. 2-16
Architecture MachXO Family Data Sheet Table 2-8. I/O Support Device by Device MachXO256 MachXO640 MachXO1200 MachXO2280 Number of I/O Banks 2 4 8 8 Single-ended Single-ended Single-ended Single-ended (all I/O Banks) (all I/O Banks) (all I/O Banks) (all I/O Banks) Type of Input Buffers Differential Receivers Differential Receivers (all I/O Banks) (all I/O Banks) Single-ended buffers Single-ended buffers Single-ended buffers Single-ended buffers with complementary with complementary with complementary with complementary outputs (all I/O Banks) outputs (all I/O Banks) outputs (all I/O Banks) outputs (all I/O Banks) Types of Output Buffers Differential buffers with Differential buffers with true LVDS outputs (50% true LVDS outputs (50% on left and right side) on left and right side) Differential Output All I/O Banks All I/O Banks All I/O Banks All I/O Banks Emulation Capability PCI Support No No Top side only Top side only Table 2-9. Supported Input Standards VCCIO (Typ.) Input Standard 3.3 V 2.5 V 1.8 V 1.5 V 1.2 V Single Ended Interfaces LVTTL Yes Yes Yes Yes Yes LVCMOS33 Yes Yes Yes Yes Yes LVCMOS25 Yes Yes Yes Yes Yes LVCMOS18 Yes LVCMOS15 Yes LVCMOS12 Yes Yes Yes Yes Yes PCI1 Yes Differential Interfaces BLVDS2, LVDS2, LVPECL2, RSDS2 Yes Yes Yes Yes Yes 1. Top Banks of MachXO1200 and MachXO2280 devices only. 2. MachXO1200 and MachXO2280 devices only. 2-17
Architecture MachXO Family Data Sheet Table 2-10. Supported Output Standards Output Standard Drive V (Typ.) CCIO Single-ended Interfaces LVTTL 4 mA, 8 mA, 12 mA, 16 mA 3.3 LVCMOS33 4 mA, 8 mA, 12 mA, 14 mA 3.3 LVCMOS25 4 mA, 8 mA, 12 mA, 14 mA 2.5 LVCMOS18 4 mA, 8 mA, 12 mA, 14 mA 1.8 LVCMOS15 4 mA, 8 mA 1.5 LVCMOS12 2 mA, 6 mA 1.2 LVCMOS33, Open Drain 4 mA, 8 mA, 12 mA, 14 mA — LVCMOS25, Open Drain 4 mA, 8 mA, 12 mA, 14 mA — LVCMOS18, Open Drain 4 mA, 8 mA, 12 mA, 14 mA — LVCMOS15, Open Drain 4 mA, 8 mA — LVCMOS12, Open Drain 2 mA, 6 mA — PCI333 N/A 3.3 Differential Interfaces LVDS1, 2 N/A 2.5 BLVDS, RSDS2 N/A 2.5 LVPECL2 N/A 3.3 1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers. 2. These interfaces can be emulated with external resistors in all devices. 3. Top Banks of MachXO1200 and MachXO2280 devices only. sysIO Buffer Banks The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks. Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V ) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 CCIO and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices. 2-18
Architecture MachXO Family Data Sheet Figure 2-18. MachXO2280 Banks V G V G OICC DN OICC DN 0 1 1 35 1 36 Bank 0 Bank 1 1 1 V CCIO7 k 7 aB V CCIO2 n n GND a k GND B 2 34 34 1 1 V CCIO6 nk 6 naB V CCIO3 GND Ba 3 k GND 33 33 Bank 5 Bank 4 1 31 1 35 V CCIO5 GND V CCIO4 GND Figure 2-19. MachXO1200 Banks V G V G OICC DN OICC DN 0 1 1 24 1 30 Bank 0 Bank 1 1 1 V CCIO7 k 7 aB V CCIO2 n n GND a k GND B 2 26 26 1 1 V CCIO6 nk 6 naB V CCIO3 GND Ba 3 k GND 28 28 Bank 5 Bank 4 1 20 1 29 V CCIO5 GND V CCIO4 GND 2-19
Architecture MachXO Family Data Sheet Figure 2-20. MachXO640 Banks V C G C N 0O D 1 42 Bank 0 1 1 V CCO3 k 3 aB V CCO1 n n GND Ba 1 k GND 40 40 Bank 2 1 37 O2 D C N V C G Figure 2-21. MachXO256 Banks V CCO0 1 1 Bank 0 GND Bank 1 41 GND 37 V CCO1 Hot Socketing The MachXO devices have been carefully designed to ensure predictable behavior during power-up and power- down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applica- tions. 2-20
Architecture MachXO Family Data Sheet Sleep Mode The MachXO “C” devices (V = 1.8/2.5/3.3 V) have a sleep mode that allows standby current to be reduced dra- CC matically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin. During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2- 11 compares the characteristics of Normal, Off and Sleep modes. Table 2-11. Characteristics of Normal, Off and Sleep Modes Characteristic Normal Off Sleep SLEEPN Pin High — Low Static Icc Typical <10 mA 0 Typical <100 uA I/O Leakage <10 µA <1 mA1 <10 µA Power Supplies VCC/VCCIO/VCCAUX Normal Range 0 Normal Range Logic Operation User Defined Non Operational Non operational I/O Operation User Defined Tristate Tristate JTAG and Programming circuitry Operational Non-operational Non-operational EBR Contents and Registers Maintained Non-maintained Non-maintained 1. Hot-socket leakage I for standard GPIO. True LVDS capable GPIO I is higher. See the MachXO1200 and MachXO2280 Hot DK DK_LVDS Socketing Specifications, , section. SLEEPN Pin Characteristics The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal oper- ation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications por- tion of this data sheet shows a detailed timing diagram. Oscillator Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18 MHz to 26 MHz. Configuration and Testing The following section describes the configuration and testing features of the MachXO family of devices. IEEE 1149.1-Compliant Boundary Scan Testability All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V ; MachXO640: V ; MachXO1200 and MachXO2280: V ) and can CCIO1 CCIO2 CCIO5 operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards. For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet. 2-21
Architecture MachXO Family Data Sheet Device Configuration All MachXO devices contain a test access port that can be used for device configuration and programming. The non-volatile memory in the MachXO can be configured in two different modes: (cid:129) In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers. (cid:129) In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place. The SRAM configuration memory can be configured in three different ways: (cid:129) At power-up via the on-chip non-volatile memory. (cid:129) After a refresh command is issued via the IEEE 1149.1 port. (cid:129) In IEEE 1532 mode via the IEEE 1149.1 port. Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 pro- tocols. Leave Alone I/O When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly. TransFR (Transparent Field Reconfiguration) TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See TN1087, Minimizing System Interruption During Configura- tion Using TransFR Technology for details. Security The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space. For more information on device configuration, please see details of additional technical documentation at the end of this data sheet. 2-22
Architecture MachXO Family Data Sheet Figure 2-22. MachXO Configuration and Programming ISP 1149.1 TAP Port Port Background 1532 Mode Program in seconds Power-up Configure in milliseconds Non-Volatile SRAM Memory Memory Space Space Refresh Download in microseconds Density Shifting The MachXO family has been designed to enable density migration in the same package. Furthermore, the archi- tecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. 2-23
MachXO Family Data Sheet DC and Switching Characteristics June 2017 Data Sheet DS1002 Absolute Maximum Ratings1, 2, 3 LCMXO E (1.2 V) LCMXO C (1.8 V / 2.5 V / 3.3 V) Supply Voltage V . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to 1.32 V. . . . . . . . . . . . .–0.5 V to 3.75 V CC Supply Voltage V . . . . . . . . . . . . . . . . . . . .–0.5 V to 3.75 V. . . . . . . . . . . . .–0.5 V to 3.75 V CCAUX Output Supply Voltage V . . . . . . . . . . . . . . .–0.5 V to 3.75 V. . . . . . . . . . . . .–0.5 V to 3.75 V CCIO I/O Tristate Voltage Applied 4. . . . . . . . . . . . . . . .–0.5 V to 3.75 V. . . . . . . . . . . . .–0.5 V to 3.75 V Dedicated Input Voltage Applied4 . . . . . . . . . . . .–0.5 V to 3.75 V. . . . . . . . . . . . .–0.5 V to 4.25 V Storage Temperature (ambient). . . . . . . . . . . . . .–65 °C to 150 °C . . . . . . . . . . . –65 °C to 150 °C Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . +125 °C. . . . . . . . . . . . . . . . . . .+125 °C 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and undershoot of –2 V to (V + 2) volts is permitted for a duration of <20 ns. IHMAX Recommended Operating Conditions1 Symbol Parameter Min. Max. Units Core Supply Voltage for 1.2 V Devices 1.14 1.26 V V CC Core Supply Voltage for 1.8 V / 2.5 V / 3.3 V Devices 1.71 3.465 V V 3 Auxiliary Supply Voltage 3.135 3.465 V CCAUX V 2 I/O Driver Supply Voltage 1.14 3.465 V CCIO t Junction Temperature Commercial Operation 0 +85 oC JCOM t Junction Temperature Industrial Operation –40 100 oC JIND t Junction Temperature, Flash Programming, Commercial 0 +85 oC JFLASHCOM t Junction Temperature, Flash Programming, Industrial –40 100 oC JFLASHIND 1. Like power supplies must be tied together. For example, if V and V are both 2.5 V, they must also be the same supply. 3.3 V V CCIO CC CCIO and 1.2 V V should be tied to V or 1.2 V V respectively. CCIO CCAUX CC 2. See recommended voltages by I/O standard in subsequent table. 3. V must reach minimum V value before V reaches 2.5 V. CC CC CCAUX MachXO Programming/Erase Specifications Symbol Parameter Min. Max. Units Flash Programming Cycles per t 1,000 Cycles RETENTION N PROGCYC Flash Functional Programming Cycles 10,000 Cycles t Data Retention at 125o Junction Temperature 10 Years RETENTION © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 3-1 DS1002 DC and Switching_01.9
DC and Switching Characteristics MachXO Family Data Sheet MachXO256 and MachXO640 Hot Socketing Specifications1, 2, 3 Symbol Parameter Condition Min. Typ. Max Units I Input or I/O leakage Current 0 V V (MAX) — — +/–1000 µA DK IN IH 1. Insensitive to sequence of V V and V . However, assumes monotonic rise/fall rates for V V and V CC, CCAUX, CCIO CC, CCAUX, CCIO. 2. 0 V V (MAX), 0 V V (MAX) and 0 V V (MAX). CC CC CCIO CCIO CCAUX CCAUX 3. I is additive to I I or I . DK PU, PD BH MachXO1200 and MachXO2280 Hot Socketing Specifications1, 2, 3 Symbol Parameter Condition Min. Typ. Max. Units Non-LVDS General Purpose sysIOs I Input or I/O Leakage Current 0 V V (MAX) — — +/–1000 µA DK IN IH LVDS General Purpose sysIOs V V — — +/–1000 µA IN CCIO I Input or I/O Leakage Current DK_LVDS V > V — 35 — mA IN CCIO 1. Insensitive to sequence of V V and V . However, assumes monotonic rise/fall rates for V V and V CC, CCAUX, CCIO CC, CCAUX, CCIO. 2. 0 V V (MAX), 0 V V (MAX), and 0 V V (MAX). CC CC CCIO CCIO CCAUX CCAUX 3. I is additive to I I or I . DK PU, PD BH DC Electrical Characteristics Over Recommended Operating Conditions Symbol Parameter Condition Min. Typ. Max. Units 0 V (V - 0.2 V) — — 10 µA I I 1, 4, 5 Input or I/O Leakage IN CCIO IL, IH (V - 0.2V) < V 3.6 V — — 40 µA CCIO IN I I/O Active Pull-up Current 0 V 0.7 V –30 — –150 µA PU IN CCIO I I/O Active Pull-down Current V (MAX) V V (MAX) 30 — 150 µA PD IL IN IH I Bus Hold Low sustaining current V = V (MAX) 30 — — µA BHLS IN IL I Bus Hold High sustaining current V = 0.7 V –30 — — µA BHHS IN CCIO I Bus Hold Low Overdrive current 0 V V (MAX) — — 150 µA BHLO IN IH I Bus Hold High Overdrive current 0 V V (MAX) — — –150 µA BHHO IN IH V 3 Bus Hold trip Points 0 V V (MAX) V (MAX) — V (MIN) V BHT IN IH IL IH V = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, C1 I/O Capacitance2 CCIO — 8 — pf V = Typ., V = 0 to V (MAX) CC IO IH V = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, C2 Dedicated Input Capacitance2 CCIO — 8 — pf V = Typ., V = 0 to V (MAX) CC IO IH 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. T 25 °C, f = 1.0 MHz A 3. Please refer to V and V in the sysIO Single-Ended DC Electrical Characteristics table of this document. IL IH 4. Not applicable to SLEEPN pin. 5. When V is higher than V , a transient current typically of 30 ns in duration or less with a peak current of 6 mA can occur on the high-to- IH CCIO low transition. For MachXO1200 and MachXO2280 true LVDS output pins, V must be less than or equal to V . IH CCIO 3-2
DC and Switching Characteristics MachXO Family Data Sheet Supply Current (Sleep Mode)1, 2 Symbol Parameter Device Typ.3 Max. Units LCMXO256C 12 25 µA LCMXO640C 12 25 µA I Core Power Supply CC LCMXO1200C 12 25 µA LCMXO2280C 12 25 µA LCMXO256C 1 15 µA LCMXO640C 1 25 µA I Auxiliary Power Supply CCAUX LCMXO1200C 1 45 µA LCMXO2280C 1 85 µA I Bank Power Supply4 All LCMXO ‘C’ Devices 2 30 µA CCIO 1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND. 2. Frequency = 0 MHz. 3. T = 25 °C, power supplies at nominal voltage. A 4. Per Bank. Supply Current (Standby)1, 2, 3, 4 Over Recommended Operating Conditions Symbol Parameter Device Typ.5 Units LCMXO256C 7 mA LCMXO640C 9 mA LCMXO1200C 14 mA LCMXO2280C 20 mA I Core Power Supply CC LCMXO256E 4 mA LCMXO640E 6 mA LCMXO1200E 10 mA LCMXO2280E 12 mA LCMXO256E/C 5 mA Auxiliary Power Supply LCMXO640E/C 7 mA I CCAUX VCCAUX = 3.3 V LCMXO1200E/C 12 mA LCMXO2280E/C 13 mA I Bank Power Supply6 All devices 2 mA CCIO 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet. 2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V or GND. CCIO 3. Frequency = 0 MHz. 4. User pattern = blank. 5. T = 25 oC, power supplies at nominal voltage. J 6. Per Bank. V = 2.5 V. Does not include pull-up/pull-down. CCIO 3-3
DC and Switching Characteristics MachXO Family Data Sheet Initialization Supply Current1, 2, 3, 4 Over Recommended Operating Conditions Symbol Parameter Device Typ.5 Units LCMXO256C 13 mA LCMXO640C 17 mA LCMXO1200C 21 mA LCMXO2280C 23 mA I Core Power Supply CC LCMXO256E 10 mA LCMXO640E 14 mA LCMXO1200E 18 mA LCMXO2280E 20 mA LCMXO256E/C 10 mA Auxiliary Power Supply LCMXO640E/C 13 mA I CCAUX VCCAUX = 3.3 V LCMXO1200E/C 24 mA LCMXO2280E/C 25 mA I Bank Power Supply6 All devices 2 mA CCIO 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet. 2. Assumes all I/O pins are held at V or GND. CCIO 3. Frequency = 0 MHz. 4. Typical user pattern. 5. T = 25 oC, power supplies at nominal voltage. J 6. Per Bank, V = 2.5 V. Does not include pull-up/pull-down. CCIO Programming and Erase Flash Supply Current1, 2, 3, 4 Symbol Parameter Device Typ.5 Units LCMXO256C 9 mA LCMXO640C 11 mA LCMXO1200C 16 mA LCMXO2280C 22 mA I Core Power Supply CC LCMXO256E 6 mA LCMXO640E 8 mA LCMXO1200E 12 mA LCMXO2280E 14 mA LCMXO256C/E 8 mA Auxiliary Power Supply LCMXO640C/E 10 mA I CCAUX VCCAUX = 3.3 V LCMXO1200/E 15 mA LCMXO2280C/E 16 mA I Bank Power Supply6 All devices 2 mA CCIO 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet. 2. Assumes all I/O pins are held at V or GND. CCIO 3. Typical user pattern. 4. JTAG programming is at 25 MHz. 5. T = 25 °C, power supplies at nominal voltage. J 6. Per Bank. V = 2.5 V. Does not include pull-up/pull-down. CCIO 3-4
DC and Switching Characteristics MachXO Family Data Sheet sysIO Recommended Operating Conditions V (V) CCIO Standard Min. Typ. Max. LVCMOS 3.3 3.135 3.3 3.465 LVCMOS 2.5 2.375 2.5 2.625 LVCMOS 1.8 1.71 1.8 1.89 LVCMOS 1.5 1.425 1.5 1.575 LVCMOS 1.2 1.14 1.2 1.26 LVTTL 3.135 3.3 3.465 PCI3 3.135 3.3 3.465 LVDS1, 2 2.375 2.5 2.625 LVPECL1 3.135 3.3 3.465 BLVDS1 2.375 2.5 2.625 RSDS1 2.375 2.5 2.625 1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers 3. Input on the top bank of the MachXO1200 and MachXO2280 only. sysIO Single-Ended DC Electrical Characteristics V V Input/Output IL IH V Max. V Min. I 1 I 1 OL OH OL OH Standard Min. (V) Max. (V) Min. (V) Max. (V) (V) (V) (mA) (mA) 0.4 V - 0.4 16, 12, 8, 4 –14, –12, –8, –4 CCIO LVCMOS 3.3 –0.3 0.8 2.0 3.6 0.2 V - 0.2 0.1 –0.1 CCIO 0.4 2.4 16 –16 LVTTL –0.3 0.8 2.0 3.6 0.4 V - 0.4 12, 8, 4 –12, –8, –4 CCIO 0.2 V - 0.2 0.1 –0.1 CCIO 0.4 V - 0.4 16, 12, 8, 4 –14, –12, –8, –4 CCIO LVCMOS 2.5 –0.3 0.7 1.7 3.6 0.2 V - 0.2 0.1 –0.1 CCIO 0.4 V - 0.4 16, 12, 8, 4 –14, –12, –8, –4 CCIO LVCMOS 1.8 –0.3 0.35V 0.65V 3.6 CCIO CCIO 0.2 V - 0.2 0.1 –0.1 CCIO 0.4 V - 0.4 8, 4 –8, –4 CCIO LVCMOS 1.5 –0.3 0.35V 0.65V 3.6 CCIO CCIO 0.2 V - 0.2 0.1 –0.1 CCIO LVCMOS 1.2 0.4 VCCIO - 0.4 6, 2 –6, –2 –0.3 0.42 0.78 3.6 (“C” Version) 0.2 V - 0.2 0.1 –0.1 CCIO LVCMOS 1.2 0.4 VCCIO - 0.4 6, 2 –6, –2 –0.3 0.35V 0.65V 3.6 (“E” Version) CC CC 0.2 V - 0.2 0.1 –0.1 CCIO PCI –0.3 0.3V 0.5V 3.6 0.1 V 0.9 V 1.5 –0.5 CCIO CCIO CCIO CCIO 1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8 mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank. 3-5
DC and Switching Characteristics MachXO Family Data Sheet sysIO Differential Electrical Characteristics LVDS Over Recommended Operating Conditions Parameter Symbol Parameter Description Test Conditions Min. Typ. Max. Units V V Input Voltage 0 — 2.4 V INP, INM V Differential Input Threshold +/–100 — — mV THD 100 mV V V /2 1.2 1.8 V THD THD V Input Common Mode Voltage 200 mV V V /2 1.2 1.9 V CM THD THD 350 mV V V /2 1.2 2.0 V THD THD I Input current Power on — — +/–10 µA IN V Output high voltage for V or V R = 100 — 1.38 1.60 V OH OP OM T V Output low voltage for V or V R = 100 0.9 V 1.03 — V OL OP OM T V Output voltage differential (V - V ), R = 100 250 350 450 mV OD OP OM T Change in V between high and V OD — — 50 mV OD low V Output voltage offset (V - V )/2, R = 100 1.125 1.25 1.375 V OS OP OM T V Change in V between H and L — — 50 mV OS OS V = 0V Driver outputs I Output short circuit current OD — — 6 mA OSD shorted LVDS Emulation MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is avail- able on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors. Figure 3-1. LVDS Using External Resistors (LVDS25E) VCCIO = 2.5 158 8 mA Zo = 100 + VCCIO = 2.5 140 100 – 158 8 mA On-chip Off-chip Off-chip On-chip Emulated LVDS Buffer Note: All resistors are ±1%. The LVDS differential input buffers are available on certain devices in the MachXO family. 3-6
DC and Switching Characteristics MachXO Family Data Sheet Table 3-1. LVDS DC Conditions Over Recommended Operating Conditions Parameter Description Typical Units Z Output impedance 20 OUT R Driver series resistor 294 S R Driver parallel resistor 121 P R Receiver termination 100 T V Output high voltage 1.43 V OH V Output low voltage 1.07 V OL V Output differential voltage 0.35 V OD V Output common mode voltage 1.25 V CM Z Back impedance 100 BACK I DC output current 3.66 mA DC BLVDS The MachXO family supports the BLVDS standard through emulation. The output is emulated using complemen- tary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals. Figure 3-2. BLVDS Multi-point Output Example Heavily loaded backplane, effective Zo ~ 45 to 90 Ω differential 2.5 V 2.5 V 80 45-90 Ω 45-90 Ω 16 mA 16 mA 80 2.5 V 2.5 V 80 16 mA 16 mA 80 80 .. .. . . 80 80 + + – – + – + – 2.5 V 2.5V 2.5 V 2.5 V 16 mA 16 mA 16 mA 16 mA 3-7
DC and Switching Characteristics MachXO Family Data Sheet Table 3-2. BLVDS DC Conditions1 Over Recommended Operating Conditions Nominal Symbol Description Zo = 45 Zo = 90 Units Z Output impedance 100 100 OUT R Left end termination 45 90 TLEFT R Right end termination 45 90 TRIGHT V Output high voltage 1.375 1.48 V OH V Output low voltage 1.125 1.02 V OL V Output differential voltage 0.25 0.46 V OD V Output common mode voltage 1.25 1.25 V CM I DC output current 11.2 10.2 mA DC 1. For input buffer, see LVDS table. LVPECL The MachXO family supports the differential LVPECL standard through emulation. This output standard is emu- lated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals. Figure 3-3. Differential LVPECL V = 3.3 V CCIO 100 ohms 16 mA V = 3.3 V + CCIO 150 ohms 100 ohms – 100 ohms 16 mA Transmission line, Zo = 100 ohm differential On-chip Off-chip Off-chip On-chip Table 3-3. LVPECL DC Conditions1 Over Recommended Operating Conditions Symbol Description Nominal Units Z Output impedance 100 OUT R Driver parallel resistor 150 P R Receiver termination 100 T V Output high voltage 2.03 V OH V Output low voltage 1.27 V OL V Output differential voltage 0.76 V OD V Output common mode voltage 1.65 V CM Z Back impedance 85.7 BACK I DC output current 12.7 mA DC 1. For input buffer, see LVDS table. 3-8
DC and Switching Characteristics MachXO Family Data Sheet For further information on LVPECL, BLVDS and other differential interfaces please see details of additional techni- cal documentation at the end of the data sheet. RSDS The MachXO family supports the differential RSDS standard. The output standard is emulated using complemen- tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3- 4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. Figure 3-4. RSDS (Reduced Swing Differential Standard) VCCIO = 2.5 V 294 8 mA Zo = 100 VCCIO = 2.5 V + 121 100 – 294 8 mA On-chip Off-chip Off-chip On-chip Emulated RSDS Buffer Table 3-4. RSDS DC Conditions Parameter Description Typical Units Z Output impedance 20 OUT R Driver series resistor 294 S R Driver parallel resistor 121 P R Receiver termination 100 T V Output high voltage 1.35 V OH V Output low voltage 1.15 V OL V Output differential voltage 0.20 V OD V Output common mode voltage 1.25 V CM Z Back impedance 101.5 BACK I DC output current 3.66 mA DC 3-9
DC and Switching Characteristics MachXO Family Data Sheet Typical Building Block Function Performance1 Pin-to-Pin Performance (LVCMOS25 12 mA Drive) Function –5 Timing Units Basic Functions 16-bit decoder 6.7 ns 4:1 MUX 4.5 ns 16:1 MUX 5.1 ns Register-to-Register Performance Function –5 Timing Units Basic Functions 16:1 MUX 487 MHz 16-bit adder 292 MHz 16-bit counter 388 MHz 64-bit counter 200 MHz Embedded Memory Functions (1200 and 2280 Devices Only) 256x36 Single Port RAM 284 MHz 512x18 True-Dual Port RAM 284 MHz Distributed Memory Functions 16x2 Single Port RAM 434 MHz 64x2 Single Port RAM 320 MHz 128x4 Single Port RAM 261 MHz 32x2 Pseudo-Dual Port RAM 314 MHz 64x4 Pseudo-Dual Port RAM 271 MHz 1. The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Rev. A 0.19 Derating Logic Timing Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage. 3-10
DC and Switching Characteristics MachXO Family Data Sheet MachXO External Switching Characteristics1 Over Recommended Operating Conditions –5 –4 –3 Parameter Description Device Min. Max. Min. Max. Min. Max. Units General I/O Pin Parameters (Using Global Clock without PLL)1 LCMXO256 — 3.5 — 4.2 — 4.9 ns LCMXO640 — 3.5 — 4.2 — 4.9 ns t Best Case t Through 1 LUT PD PD LCMXO1200 — 3.6 — 4.4 — 5.1 ns LCMXO2280 — 3.6 — 4.4 — 5.1 ns LCMXO256 — 4.0 — 4.8 — 5.6 ns LCMXO640 — 4.0 — 4.8 — 5.7 ns t Best Case Clock to Output - From PFU CO LCMXO1200 — 4.3 — 5.2 — 6.1 ns LCMXO2280 — 4.3 — 5.2 — 6.1 ns LCMXO256 1.3 — 1.6 — 1.8 — ns LCMXO640 1.1 — 1.3 — 1.5 — ns t Clock to Data Setup - To PFU SU LCMXO1200 1.1 — 1.3 — 1.6 — ns LCMXO2280 1.1 — 1.3 — 1.5 — ns LCMXO256 –0.3 — –0.3 — –0.3 — ns LCMXO640 –0.1 — –0.1 — –0.1 — ns t Clock to Data Hold - To PFU H LCMXO1200 0.0 — 0.0 — 0.0 — ns LCMXO2280 –0.4 — –0.4 — –0.4 — ns LCMXO256 — 600 — 550 — 500 MHz LCMXO640 — 600 — 550 — 500 MHz f Clock Frequency of I/O and PFU Register MAX_IO LCMXO1200 — 600 — 550 — 500 MHz LCMXO2280 — 600 — 550 — 500 MHz LCMXO256 — 200 — 220 — 240 ps LCMXO640 — 200 — 220 — 240 ps t Global Clock Skew Across Device SKEW_PRI LCMXO1200 — 220 — 240 — 260 ps LCMXO2280 — 220 — 240 — 260 ps 1. General timing numbers based on LVCMOS 2.5 V, 12 mA. Rev. A 0.19 3-11
DC and Switching Characteristics MachXO Family Data Sheet MachXO Internal Timing Parameters1 Over Recommended Operating Conditions –5 –4 –3 Parameter Description Min. Max. Min. Max. Min. Max. Units PFU/PFF Logic Mode Timing t LUT4 delay (A to D inputs to F output) — 0.28 — 0.34 — 0.39 ns LUT4_PFU t LUT6 delay (A to D inputs to OFX output) — 0.44 — 0.53 — 0.62 ns LUT6_PFU t Set/Reset to output of PFU — 0.90 — 1.08 — 1.26 ns LSR_PFU t Clock to Mux (M0,M1) input setup time 0.10 — 0.13 — 0.15 — ns SUM_PFU t Clock to Mux (M0,M1) input hold time –0.05 — –0.06 — –0.07 — ns HM_PFU t Clock to D input setup time 0.13 — 0.16 — 0.18 — ns SUD_PFU t Clock to D input hold time –0.03 — –0.03 — –0.04 — ns HD_PFU t Clock to Q delay, D-type register configuration — 0.40 — 0.48 — 0.56 ns CK2Q_PFU t Clock to Q delay latch configuration — 0.53 — 0.64 — 0.74 ns LE2Q_PFU t D to Q throughput delay when latch is enabled — 0.55 — 0.66 — 0.77 ns LD2Q_PFU PFU Dual Port Memory Mode Timing t Clock to Output — 0.40 — 0.48 — 0.56 ns CORAM_PFU t Data Setup Time –0.18 — –0.22 — –0.25 — ns SUDATA_PFU t Data Hold Time 0.28 — 0.34 — 0.39 — ns HDATA_PFU t Address Setup Time –0.46 — –0.56 — –0.65 — ns SUADDR_PFU t Address Hold Time 0.71 — 0.85 — 0.99 — ns HADDR_PFU t Write/Read Enable Setup Time –0.22 — –0.26 — –0.30 — ns SUWREN_PFU t Write/Read Enable Hold Time 0.33 — 0.40 — 0.47 — ns HWREN_PFU PIO Input/Output Buffer Timing t Input Buffer Delay — 0.75 — 0.90 — 1.06 ns IN_PIO t Output Buffer Delay — 1.29 — 1.54 — 1.80 ns OUT_PIO EBR Timing (1200 and 2280 Devices Only) Clock to output from Address or Data with no output t — 2.24 — 2.69 — 3.14 ns CO_EBR register t Clock to output from EBR output Register — 0.54 — 0.64 — 0.75 ns COO_EBR t Setup Data to EBR Memory –0.26 — –0.31 — –0.37 — ns SUDATA_EBR t Hold Data to EBR Memory 0.41 — 0.49 — 0.57 — ns HDATA_EBR t Setup Address to EBR Memory –0.26 — –0.31 — –0.37 — ns SUADDR_EBR t Hold Address to EBR Memory 0.41 — 0.49 — 0.57 — ns HADDR_EBR t Setup Write/Read Enable to EBR Memory –0.17 — –0.20 — –0.23 — ns SUWREN_EBR t Hold Write/Read Enable to EBR Memory 0.26 — 0.31 — 0.36 — ns HWREN_EBR t Clock Enable Setup Time to EBR Output Register 0.19 — 0.23 — 0.27 — ns SUCE_EBR t Clock Enable Hold Time to EBR Output Register –0.13 — –0.16 — –0.18 — ns HCE_EBR Reset To Output Delay Time from EBR Output Regis- t — 1.03 — 1.23 — 1.44 ns RSTO_EBR ter PLL Parameters (1200 and 2280 Devices Only) t Reset Recovery to Rising Clock 1.00 — 1.00 — 1.00 — ns RSTREC t Reset Signal Setup Time 1.00 — 1.00 — 1.00 — ns RSTSU 1. Internal parameters are characterized but not tested on every device. Rev. A 0.19 3-12
DC and Switching Characteristics MachXO Family Data Sheet MachXO Family Timing Adders1, 2, 3 Over Recommended Operating Conditions Buffer Type Description –5 –4 –3 Units Input Adjusters LVDS254 LVDS 0.44 0.53 0.61 ns BLVDS254 BLVDS 0.44 0.53 0.61 ns LVPECL334 LVPECL 0.42 0.50 0.59 ns LVTTL33 LVTTL 0.01 0.01 0.01 ns LVCMOS33 LVCMOS 3.3 0.01 0.01 0.01 ns LVCMOS25 LVCMOS 2.5 0.00 0.00 0.00 ns LVCMOS18 LVCMOS 1.8 0.07 0.08 0.10 ns LVCMOS15 LVCMOS 1.5 0.14 0.17 0.19 ns LVCMOS12 LVCMOS 1.2 0.40 0.48 0.56 ns PCI334 PCI 0.01 0.01 0.01 ns Output Adjusters LVDS25E LVDS 2.5 E –0.13 –0.15 –0.18 ns LVDS254 LVDS 2.5 –0.21 –0.26 –0.30 ns BLVDS25 BLVDS 2.5 –0.03 –0.03 –0.04 ns LVPECL33 LVPECL 3.3 0.04 0.04 0.05 ns LVTTL33_4mA LVTTL 4 mA drive 0.04 0.04 0.05 ns LVTTL33_8mA LVTTL 8 mA drive 0.06 0.07 0.08 ns LVTTL33_12mA LVTTL 12 mA drive –0.01 –0.01 –0.01 ns LVTTL33_16mA LVTTL 16 mA drive 0.50 0.60 0.70 ns LVCMOS33_4mA LVCMOS 3.3 4 mA drive 0.04 0.04 0.05 ns LVCMOS33_8mA LVCMOS 3.3 8 mA drive 0.06 0.07 0.08 ns LVCMOS33_12mA LVCMOS 3.3 12 mA drive –0.01 –0.01 –0.01 ns LVCMOS33_14mA LVCMOS 3.3 14 mA drive 0.50 0.60 0.70 ns LVCMOS25_4mA LVCMOS 2.5 4 mA drive 0.05 0.06 0.07 ns LVCMOS25_8mA LVCMOS 2.5 8 mA drive 0.10 0.12 0.13 ns LVCMOS25_12mA LVCMOS 2.5 12 mA drive 0.00 0.00 0.00 ns LVCMOS25_14mA LVCMOS 2.5 14 mA drive 0.34 0.40 0.47 ns LVCMOS18_4mA LVCMOS 1.8 4 mA drive 0.11 0.13 0.15 ns LVCMOS18_8mA LVCMOS 1.8 8 mA drive 0.05 0.06 0.06 ns LVCMOS18_12mA LVCMOS 1.8 12 mA drive –0.06 –0.07 –0.08 ns LVCMOS18_14mA LVCMOS 1.8 14 mA drive 0.06 0.07 0.09 ns LVCMOS15_4mA LVCMOS 1.5 4 mA drive 0.15 0.19 0.22 ns LVCMOS15_8mA LVCMOS 1.5 8 mA drive 0.05 0.06 0.07 ns LVCMOS12_2mA LVCMOS 1.2 2 mA drive 0.26 0.31 0.36 ns LVCMOS12_6mA LVCMOS 1.2 6 mA drive 0.05 0.06 0.07 ns PCI334 PCI33 1.85 2.22 2.59 ns 1. Timing adders are characterized but not tested on every device. 2. LVCMOS timing is measured with the load specified in Switching Test Conditions table. 3. All other standards tested according to the appropriate specifications. 4. I/O standard only available in LCMXO1200 and LCMXO2280 devices. Rev. A 0.19 3-13
DC and Switching Characteristics MachXO Family Data Sheet sysCLOCK PLL Timing Over Recommended Operating Conditions Parameter Descriptions Conditions Min. Max. Units 25 420 MHz fIN Input Clock Frequency (CLKI, CLKFB) Input Divider (M) = 1; 18 25 MHz Feedback Divider (N) <= 45, 6 f Output Clock Frequency (CLKOP, CLKOS) 25 420 MHz OUT f K-Divider Output Frequency (CLKOK) 0.195 210 MHz OUT2 f PLL VCO Frequency 420 840 MHz VCO 25 — MHz fPFD Phase Detector Input Frequency Input Divider (M) = 1; 18 25 MHz Feedback Divider (N) <= 45, 6 AC Characteristics t Output Clock Duty Cycle Default duty cycle selected3 45 55 % DT t 4 Output Phase Accuracy — 0.05 UI PH f >= 100 MHz — +/–120 ps t 1 Output Clock Period Jitter OUT OPJIT f < 100 MHz — 0.02 UIPP OUT t Input Clock to Output Clock Skew Divider ratio = integer — +/–200 ps SK t Output Clock Pulse Width At 90% or 10%3 1 — ns W t 2 PLL Lock-in Time — 150 µs LOCK t Programmable Delay Unit 100 450 ps PA f 100 MHz — +/–200 ps OUT t Input Clock Period Jitter IPJIT f < 100 MHz — 0.02 UI OUT t External Feedback Delay — 10 ns FBKDLY t Input Clock High Time 90% to 90% 0.5 — ns HI t Input Clock Low Time 10% to 10% 0.5 — ns LO t RST Pulse Width 10 — ns RST 1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. 2. Output clock is valid after t for PLL reset and dynamic delay adjustment. LOCK 3. Using LVDS output buffers. 4. CLKOS as compared to CLKOP output. 5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency. 6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed. Rev. A 0.19 3-14
DC and Switching Characteristics MachXO Family Data Sheet MachXO “C” Sleep Mode Timing Symbol Parameter Device Min. Typ. Max Units t SLEEPN Low to Power Down All — — 400 ns PWRDN LCMXO256 — — 400 µs LCMXO640 — — 600 µs t SLEEPN High to Power Up PWRUP LCMXO1200 — — 800 µs LCMXO2280 — — 1000 µs t SLEEPN Pulse Width All 400 — — ns WSLEEPN t SLEEPN Pulse Rejection All — — 100 ns WAWAKE Rev. A 0.19 Flash Download Time Power Down Mode I/O tPWRUP tPWRDN SLEEPN tWSLEEPNor tWAWAKE Symbol Parameter Min. Typ. Max. Units LCMXO256 — — 0.4 ms Minimum VCC or VCCAUX LCMXO640 — — 0.6 ms t (later of the two supplies) REFRESH LCMXO1200 — — 0.8 ms to Device I/O Active LCMXO2280 — — 1.0 ms JTAG Port Timing Specifications Symbol Parameter Min. Max. Units f TCK [BSCAN] clock frequency — 25 MHz MAX t TCK [BSCAN] clock pulse width 40 — ns BTCP t TCK [BSCAN] clock pulse width high 20 — ns BTCPH t TCK [BSCAN] clock pulse width low 20 — ns BTCPL t TCK [BSCAN] setup time 8 — ns BTS t TCK [BSCAN] hold time 10 — ns BTH t TCK [BSCAN] rise/fall time 50 — mV/ns BTRF t TAP controller falling edge of clock to output valid — 10 ns BTCO t TAP controller falling edge of clock to output disabled — 10 ns BTCODIS t TAP controller falling edge of clock to output enabled — 10 ns BTCOEN t BSCAN test capture register setup time 8 — ns BTCRS t BSCAN test capture register hold time 25 — ns BTCRH t BSCAN test update register, falling edge of clock to output valid — 25 ns BUTCO t BSCAN test update register, falling edge of clock to output disabled — 25 ns BTUODIS t BSCAN test update register, falling edge of clock to output enabled — 25 ns BTUPOEN Rev. A 0.19 3-15
DC and Switching Characteristics MachXO Family Data Sheet Figure 3-5. JTAG Port Timing Waveforms TMS TDI tBTS tBTH tBTCPH tBTCPL tBTCP TCK tBTCOEN tBTCO tBTCODIS TDO Valid Data Valid Data tBTCRS tBTCRH Data to be captured Data Captured from I/O tBTUPOEN tBUTCO tBTUODIS Data to be driven out Valid Data Valid Data to I/O 3-16
DC and Switching Characteristics MachXO Family Data Sheet Switching Test Conditions Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5. Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards V T R1 DUT Test Point CL Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces Test Condition R C Timing Ref. V 1 L T LVTTL, LVCMOS 3.3 = 1.5 V — LVCMOS 2.5 = V /2 — CCIO LVTTL and LVCMOS settings (L -> H, H -> L) 0pF LVCMOS 1.8 = V /2 — CCIO LVCMOS 1.5 = V /2 — CCIO LVCMOS 1.2 = V /2 — CCIO LVTTL and LVCMOS 3.3 (Z -> H) V OL 1.5 LVTTL and LVCMOS 3.3 (Z -> L) V OH Other LVCMOS (Z -> H) V /2 V CCIO OL 188 0pF Other LVCMOS (Z -> L) V /2 V CCIO OH LVTTL + LVCMOS (H -> Z) V - 0.15 V OH OL LVTTL + LVCMOS (L -> Z) V - 0.15 V OL OH Note: Output test conditions for all other interfaces are determined by the respective standards. 3-17
MachXO Family Data Sheet Pinout Information June 2017 Data Sheet DS1002 Signal Descriptions Signal Name I/O Descriptions General Purpose [Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. [A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected. P[Edge] [Row/Column I/O Number]_[A/B/C/D/E/F] Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic. During configuration of the user-programmable I/Os, the user has an option to tristate the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-program- mable I/Os to be tristated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tristated with an internal pull-up resistor enabled. Global RESET signal (active low). Dedicated pad, when not in use it can be used as an GSRN I I/O pin. TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the TSALL I outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin. NC — No connect. GND — GND - Ground. Dedicated pins. V — VCC - The power supply pins for core logic. Dedicated pins. CC VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits V — CCAUX including all the differential and referenced input buffers. Dedicated pins. V — V - The power supply pins for I/O Bank x. Dedicated pins. CCIOx CCIO Sleep Mode pin - Active low sleep pin. When this pin is held high, the device operates normally. This pin has a weak internal pull-up, but when unused, an external pull-up to SLEEPN1 I V is recommended. When driven low, the device moves into Sleep mode after a spec- CC ified time. PLL and Clock Functions (Used as user programmable I/O pins when not used for PLL or clock pins) Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM [LOC][0]_PLL[T, C]_IN — (Upper PLL) and LLM (Lower PLL). T = true and C = complement. Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM [LOC][0]_PLL[T, C]_FB — (Upper PLL) and LLM (Lower PLL). T = true and C = complement. PCLK [n]_[1:0] — Primary Clock Pads, n per side. Test and Programming (Dedicated pins) TMS I Test Mode Select input pin, used to control the 1149.1 state machine. TCK I Test Clock input pin, used to clock the 1149.1 state machine. TDI I Test Data input pin, used to load data into the device using an 1149.1 state machine. TDO O Output pin -Test Data output pin used to shift data out of the device using 1149.1. 1. Applies to MachXO “C” devices only. NC for “E” devices. © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 4-1 DS1002 Pinouts_02.0
Pinout Information MachXO Family Data Sheet Pin Information Summary LCMXO256C/E LCMXO640C/E 256 caBGA / Pin Type 100 TQFP 100 csBGA 100 TQFP 144 TQFP 100 csBGA 132 csBGA 256 ftBGA Single Ended User I/O 78 78 74 113 74 101 159 Differential Pair User I/O1 38 38 17 43 17 42 79 Muxed 6 6 6 6 6 6 6 TAP 4 4 4 4 4 4 4 Dedicated (Total Without Supplies) 5 5 5 5 5 5 5 VCC 2 2 2 4 2 4 4 VCCAUX 1 1 1 2 1 2 2 Bank0 3 3 2 2 2 2 4 Bank1 3 3 2 2 2 2 4 VCCIO Bank2 — — 2 2 2 2 4 Bank3 — — 2 2 2 2 4 GND 8 8 10 12 10 12 18 NC 0 0 0 0 0 0 52 Bank0 41/20 41/20 18/5 29/10 18/5 26/11 42/21 Single Ended/Differential I/O Bank1 37/18 37/18 21/4 30/11 21/4 27/12 40/20 per Bank Bank2 — — 14/2 24/9 14/2 21/9 36/18 Bank3 — — 21/6 30/13 21/6 27/10 40/20 1. These devices support emulated LVDS outputs. LVDS inputs are not supported. LCMXO1200C/E LCMXO2280C/E 256 caBGA / 256 caBGA / Pin Type 100 TQFP 144 TQFP 132 csBGA 256 ftBGA 100 TQFP 144 TQFP 132 csBGA 256 ftBGA 324 ftBGA Single Ended User I/O 73 113 101 211 73 113 101 211 271 Differential Pair User I/O1 27 48 42 105 30 47 41 105 134 Muxed 6 6 6 6 6 6 6 6 6 TAP 4 4 4 4 4 4 4 4 4 Dedicated (Total Without Supplies) 5 5 5 5 5 5 5 5 5 VCC 4 4 4 4 2 4 4 4 6 VCCAUX 2 2 2 2 2 2 2 2 2 Bank0 1 1 1 2 1 1 1 2 2 Bank1 1 1 1 2 1 1 1 2 2 Bank2 1 1 1 2 1 1 1 2 2 Bank3 1 1 1 2 1 1 1 2 2 VCCIO Bank4 1 1 1 2 1 1 1 2 2 Bank5 1 1 1 2 1 1 1 2 2 Bank6 1 1 1 2 1 1 1 2 2 Bank7 1 1 1 2 1 1 1 2 2 GND 8 12 12 18 8 12 12 18 24 NC 0 0 0 0 0 0 0 0 0 Bank0 10/3 14/6 13/5 26/13 9/3 13/6 12/5 24/12 34/17 Bank1 8/2 15/7 13/5 28/14 9/3 16/7 14/5 30/15 36/18 Bank2 10/4 15/7 13/6 26/13 10/4 15/7 13/6 26/13 34/17 Single Ended/Differential I/O Bank3 11/5 15/7 14/7 28/14 11/5 15/7 14/7 28/14 34/17 per Bank Bank4 8/3 14/5 13/5 27/13 8/3 14/4 13/4 29/14 35/17 Bank5 5/2 10/4 8/2 22/11 5/2 10/4 8/2 20/10 30/15 Bank6 10/3 15/6 13/6 28/14 10/4 15/6 13/6 28/14 34/17 Bank7 11/5 15/6 14/6 26/13 11/5 15/6 14/6 26/13 34/17 1. These devices support on-chip LVDS buffers for left and right I/O Banks. 4-2
Pinout Information MachXO Family Data Sheet Power Supply and NC Signal 100 TQFP1 144 TQFP1 100 csBGA2 VCC LCMXO256/640: 35, 90 21, 52, 93, 129 P7, B6 LCMXO1200/2280: 17, 35, 66, 91 VCCIO0 LCMXO256: 60, 74, 92 LCMXO640: 117, 135 LCMXO256: H14, A14, B5 LCMXO640: 80, 92 LCMXO1200/2280: 135 LCMXO640: B12, B5 LCMXO1200/2280: 94 VCCIO1 LCMXO256: 10, 24, 41 LCMXO640: 82, 98 LCMXO256: G1, P1, P10 LCMXO640: 60, 74 LCMXO1200/2280: 117 LCMXO640: H14, A14 LCMXO1200/2280: 80 VCCIO2 LCMXO256: None LCMXO640: 38, 63 LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 98 LCMXO640: P4, P10 LCMXO1200/2280: 70 VCCIO3 LCMXO256: None LCMXO640: 10, 26 LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 82 LCMXO640: G1, P1 LCMXO1200/2280: 56 VCCIO4 LCMXO256/640: None LCMXO640: None — LCMXO1200/2280: 44 LCMXO1200/2280: 63 VCCIO5 LCMXO256/640: None LCMXO640: None — LCMXO1200/2280: 27 LCMXO1200/2280: 38 VCCIO6 LCMXO256/640: None LCMXO640: None — LCMXO1200/2280: 20 LCMXO1200/2280: 26 VCCIO7 LCMXO256/640: None LCMXO640: None — LCMXO1200/2280: 6 LCMXO1200/2280: 10 VCCAUX LCMXO256/640: 88 53, 128 B7 LCMXO1200/2280: 36, 90 GND3 LCMXO256: 40, 84, 62, 75, 93, 12, 16, 59, 88, 123, 118, 136, 83, 99, LCMXO256: N9, B9, G14, B13, 25, 42 37, 64, 11, 27 A4, H1, N2, N10 LCMXO640: 40, 84, 81, 93, 62, 75, LCMXO640: N9, B9, A10, A4, 30, 42, 12, 25 G14, B13, N3, N10, H1, N2 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26 NC4 — 1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise. 2. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally. 3. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane. 4. NC pins should not be connected to any active signals, VCC or GND. 4-3
Pinout Information MachXO Family Data Sheet Power Supply and NC (Cont.) Signal 132 csBGA1 256 caBGA / 256 ftBGA1 324 ftBGA1 VCC H3, P6, G12, C7 G7, G10, K7, K10 F14, G11, G9, H7, L7, M9 VCCIO0 LCMXO640: B11, C5 LCMXO640: F8, F7, F9, F10 G8, G7 LCMXO1200/2280: C5 LCMXO1200/2280: F8, F7 VCCIO1 LCMXO640: L12, E12 LCMXO640: H11, G11, K11, J11 G12, G10 LCMXO1200/2280: B11 LCMXO1200/2280: F9, F10 VCCIO2 LCMXO640: N2, M10 LCMXO640: L9, L10, L8, L7 J12, H12 LCMXO1200/2280: E12 LCMXO1200/2280: H11, G11 VCCIO3 LCMXO640: D2, K3 LCMXO640: K6, J6, H6, G6 L12, K12 LCMXO1200/2280: L12 LCMXO1200/2280: K11, J11 VCCIO4 LCMXO640: None LCMXO640: None M12, M11 LCMXO1200/2280: M10 LCMXO1200/2280: L9, L10 VCCIO5 LCMXO640: None LCMXO640: None M8, R9 LCMXO1200/2280: N2 LCMXO1200/2280: L8, L7 VCCIO6 LCMXO640: None LCMXO640: None M7, K7 LCMXO1200/2280: K3 LCMXO1200/2280: K6, J6 VCCIO7 LCMXO640: None LCMXO640: None H6, J7 LCMXO1200/2280: D2 LCMXO1200/2280: H6, G6 VCCAUX P7, A7 T9, A8 M10, F9 GND2 F1, P9, J14, C9, A10, B4, L13, A1, A16, F11, G8, G9, H7, H8, H9, E14, F16, H10, H11, H8, H9, J10, D13, P2, N11, E1, L2 H10, J7, J8, J9, J10, K8, K9, L6, J11, J4, J8, J9, K10, K11, K17, K8, T1, T16 K9, L10, L11, L8, L9, N2, P14, P5, R7 NC3 — LCMXO640: E4, E5, F5, F6, C3, — C2, G4, G5, H4, H5, K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11, R15, R16, P15, P16, M11, L11, N12, N13, M13, M12, K12, J12, F12, F13, E12, E13, D13, D14, B15, A15, C14, B14, E11, E10, E7, E6, D4, D3, B3, B2 LCMXO1200: None LCMXO2280: None 1. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally. 2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane. 3. NC pins should not be connected to any active signals, VCC or GND. 4-4
Pinout Information MachXO Family Data Sheet LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP LCMXO256 LCMXO640 Ball Dual Ball Dual Pin Number Function Bank Function Differential Function Bank Function Differential 1 PL2A 1 T PL2A 3 T 2 PL2B 1 C PL2C 3 T 3 PL3A 1 T PL2B 3 C 4 PL3B 1 C PL2D 3 C 5 PL3C 1 T PL3A 3 T 6 PL3D 1 C PL3B 3 C 7 PL4A 1 T PL3C 3 T 8 PL4B 1 C PL3D 3 C 9 PL5A 1 T PL4A 3 10 VCCIO1 1 VCCIO3 3 11 PL5B 1 C PL4C 3 T 12 GNDIO1 1 GNDIO3 3 13 PL5C 1 T PL4D 3 C 14 PL5D 1 GSRN C PL5B 3 GSRN 15 PL6A 1 T PL7B 3 16 PL6B 1 TSALL C PL8C 3 TSALL T 17 PL7A 1 T PL8D 3 C 18 PL7B 1 C PL9A 3 19 PL7C 1 T PL9C 3 20 PL7D 1 C PL10A 3 21 PL8A 1 T PL10C 3 22 PL8B 1 C PL11A 3 23 PL9A 1 T PL11C 3 24 VCCIO1 1 VCCIO3 3 25 GNDIO1 1 GNDIO3 3 26 TMS 1 TMS TMS 2 TMS 27 PL9B 1 C PB2C 2 28 TCK 1 TCK TCK 2 TCK 29 PB2A 1 T VCCIO2 2 30 PB2B 1 C GNDIO2 2 31 TDO 1 TDO TDO 2 TDO 32 PB2C 1 T PB4C 2 33 TDI 1 TDI TDI 2 TDI 34 PB2D 1 C PB4E 2 35 VCC — VCC — 36 PB3A 1 PCLK1_1** T PB5B 2 PCLK2_1** 37 PB3B 1 C PB5D 2 38 PB3C 1 PCLK1_0** T PB6B 2 PCLK2_0** 39 PB3D 1 C PB6C 2 40 GND — GND — 41 VCCIO1 1 VCCIO2 2 42 GNDIO1 1 GNDIO2 2 4-5
Pinout Information MachXO Family Data Sheet LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.) LCMXO256 LCMXO640 Ball Dual Ball Dual Pin Number Function Bank Function Differential Function Bank Function Differential 43 PB4A 1 T PB8B 2 44 PB4B 1 C PB8C 2 T 45 PB4C 1 T PB8D 2 C 46 PB4D 1 C PB9A 2 47 PB5A 1 PB9C 2 T 48* SLEEPN — SLEEPN SLEEPN — SLEEPN 49 PB5C 1 T PB9D 2 C 50 PB5D 1 C PB9F 2 51 PR9B 0 C PR11D 1 C 52 PR9A 0 T PR11B 1 C 53 PR8B 0 C PR11C 1 T 54 PR8A 0 T PR11A 1 T 55 PR7D 0 C PR10D 1 C 56 PR7C 0 T PR10C 1 T 57 PR7B 0 C PR10B 1 C 58 PR7A 0 T PR10A 1 T 59 PR6B 0 C PR9D 1 60 VCCIO0 0 VCCIO1 1 61 PR6A 0 T PR9B 1 62 GNDIO0 0 GNDIO1 1 63 PR5D 0 C PR7B 1 64 PR5C 0 T PR6C 1 65 PR5B 0 C PR6B 1 66 PR5A 0 T PR5D 1 67 PR4B 0 C PR5B 1 68 PR4A 0 T PR4D 1 69 PR3D 0 C PR4B 1 70 PR3C 0 T PR3D 1 71 PR3B 0 C PR3B 1 72 PR3A 0 T PR2D 1 73 PR2B 0 C PR2B 1 74 VCCIO0 0 VCCIO1 1 75 GNDIO0 0 GNDIO1 1 76 PR2A 0 T PT9F 0 C 77 PT5C 0 PT9E 0 T 78 PT5B 0 C PT9C 0 79 PT5A 0 T PT9A 0 80 PT4F 0 C VCCIO0 0 81 PT4E 0 T GNDIO0 0 82 PT4D 0 C PT7E 0 83 PT4C 0 T PT7A 0 84 GND — GND — 4-6
Pinout Information MachXO Family Data Sheet LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.) LCMXO256 LCMXO640 Ball Dual Ball Dual Pin Number Function Bank Function Differential Function Bank Function Differential 85 PT4B 0 PCLK0_1** C PT6B 0 PCLK0_1** 86 PT4A 0 PCLK0_0** T PT5B 0 PCLK0_0** C 87 PT3D 0 C PT5A 0 T 88 VCCAUX — VCCAUX — 89 PT3C 0 T PT4F 0 90 VCC — VCC — 91 PT3B 0 C PT3F 0 92 VCCIO0 0 VCCIO0 0 93 GNDIO0 0 GNDIO0 0 94 PT3A 0 T PT3B 0 C 95 PT2F 0 C PT3A 0 T 96 PT2E 0 T PT2F 0 C 97 PT2D 0 C PT2E 0 T 98 PT2C 0 T PT2B 0 C 99 PT2B 0 C PT2C 0 100 PT2A 0 T PT2A 0 T * NC for “E” devices. ** Primary clock inputs are single-ended. 4-7
Pinout Information MachXO Family Data Sheet LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP LCMXO1200 LCMXO2280 Pin Ball Dual Ball Dual Number Function Bank Function Differential Function Bank Function Differential 1 PL2A 7 T PL2A 7 LUM0_PLLT_FB_A T 2 PL2B 7 C PL2B 7 LUM0_PLLC_FB_A C 3 PL3C 7 T PL3C 7 LUM0_PLLT_IN_A T 4 PL3D 7 C PL3D 7 LUM0_PLLC_IN_A C 5 PL4B 7 PL4B 7 6 VCCIO7 7 VCCIO7 7 7 PL6A 7 T* PL7A 7 T* 8 PL6B 7 GSRN C* PL7B 7 GSRN C* 9 GND — GND — 10 PL7C 7 T PL9C 7 T 11 PL7D 7 C PL9D 7 C 12 PL8C 7 T PL10C 7 T 13 PL8D 7 C PL10D 7 C 14 PL9C 6 PL11C 6 15 PL10A 6 T* PL13A 6 T* 16 PL10B 6 C* PL13B 6 C* 17 VCC — VCC — 18 PL11B 6 PL14D 6 C 19 PL11C 6 TSALL PL14C 6 TSALL T 20 VCCIO6 6 VCCIO6 6 21 PL13C 6 PL16C 6 22 PL14A 6 LLM0_PLLT_FB_A T* PL17A 6 LLM0_PLLT_FB_A T* 23 PL14B 6 LLM0_PLLC_FB_A C* PL17B 6 LLM0_PLLC_FB_A C* 24 PL15A 6 LLM0_PLLT_IN_A T* PL18A 6 LLM0_PLLT_IN_A T* 25 PL15B 6 LLM0_PLLC_IN_A C* PL18B 6 LLM0_PLLC_IN_A C* GNDIO6 GNDIO6 26** — — GNDIO5 GNDIO5 27 VCCIO5 5 VCCIO5 5 28 TMS 5 TMS TMS 5 TMS 29 TCK 5 TCK TCK 5 TCK 30 PB3B 5 PB3B 5 31 PB4A 5 T PB4A 5 T 32 PB4B 5 C PB4B 5 C 33 TDO 5 TDO TDO 5 TDO 34 TDI 5 TDI TDI 5 TDI 35 VCC — VCC — 36 VCCAUX — VCCAUX — 37 PB6E 5 T PB8E 5 T 38 PB6F 5 C PB8F 5 C 39 PB7B 4 PCLK4_1**** PB10F 4 PCLK4_1**** 40 PB7F 4 PCLK4_0**** PB10B 4 PCLK4_0**** 41 GND — GND — 4-8
Pinout Information MachXO Family Data Sheet LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.) LCMXO1200 LCMXO2280 Pin Ball Dual Ball Dual Number Function Bank Function Differential Function Bank Function Differential 42 PB9A 4 T PB12A 4 T 43 PB9B 4 C PB12B 4 C 44 VCCIO4 4 VCCIO4 4 45 PB10A 4 T PB13A 4 T 46 PB10B 4 C PB13B 4 C 47*** SLEEPN — SLEEPN SLEEPN — SLEEPN 48 PB11A 4 T PB16A 4 T 49 PB11B 4 C PB16B 4 C GNDIO3 GNDIO3 50** — — GNDIO4 GNDIO4 51 PR16B 3 PR19B 3 52 PR15B 3 C* PR18B 3 C* 53 PR15A 3 T* PR18A 3 T* 54 PR14B 3 C* PR17B 3 C* 55 PR14A 3 T* PR17A 3 T* 56 VCCIO3 3 VCCIO3 3 57 PR12B 3 C* PR15B 3 C* 58 PR12A 3 T* PR15A 3 T* 59 GND — GND — 60 PR10B 3 C* PR13B 3 C* 61 PR10A 3 T* PR13A 3 T* 62 PR9B 3 C* PR11B 3 C* 63 PR9A 3 T* PR11A 3 T* 64 PR8B 2 C* PR10B 2 C* 65 PR8A 2 T* PR10A 2 T* 66 VCC — VCC — 67 PR6C 2 PR8C 2 68 PR6B 2 C* PR8B 2 C* 69 PR6A 2 T* PR8A 2 T* 70 VCCIO2 2 VCCIO2 2 71 PR4D 2 PR5D 2 72 PR4B 2 C* PR5B 2 C* 73 PR4A 2 T* PR5A 2 T* 74 PR2B 2 C PR3B 2 C* 75 PR2A 2 T PR3A 2 T* GNDIO1 GNDIO1 76** — — GNDIO2 GNDIO2 77 PT11C 1 PT15C 1 78 PT11B 1 C PT14B 1 C 79 PT11A 1 T PT14A 1 T 80 VCCIO1 1 VCCIO1 1 81 PT9E 1 PT12D 1 C 4-9
Pinout Information MachXO Family Data Sheet LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.) LCMXO1200 LCMXO2280 Pin Ball Dual Ball Dual Number Function Bank Function Differential Function Bank Function Differential 82 PT9A 1 PT12C 1 T 83 GND — GND — 84 PT8B 1 C PT11B 1 C 85 PT8A 1 T PT11A 1 T 86 PT7D 1 PCLK1_1**** PT10B 1 PCLK1_1**** 87 PT6F 0 PCLK0_0**** PT9B 1 PCLK1_0**** 88 PT6D 0 C PT8F 0 C 89 PT6C 0 T PT8E 0 T 90 VCCAUX — VCCAUX — 91 VCC — VCC — 92 PT5B 0 PT6D 0 93 PT4B 0 PT6F 0 94 VCCIO0 0 VCCIO0 0 95 PT3D 0 C PT4B 0 C 96 PT3C 0 T PT4A 0 T 97 PT3B 0 PT3B 0 98 PT2B 0 C PT2B 0 C 99 PT2A 0 T PT2A 0 T GNDIO0 GNDIO0 100** — — GNDIO7 GNDIO7 *Supports true LVDS outputs. **Double bonded to the pin. ***NC for "E" devices. ****Primary clock inputs are single-ended. 4-10
Pinout Information MachXO Family Data Sheet LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA LCMXO256 LCMXO640 Ball Ball Dual Differen- Ball Ball Dual Differen- Number Function Bank Function tial Number Function Bank Function tial B1 PL2A 1 T B1 PL2A 3 T C1 PL2B 1 C C1 PL2C 3 T D2 PL3A 1 T D2 PL2B 3 C D1 PL3B 1 C D1 PL2D 3 C C2 PL3C 1 T C2 PL3A 3 T E1 PL3D 1 C E1 PL3B 3 C E2 PL4A 1 T E2 PL3C 3 T F1 PL4B 1 C F1 PL3D 3 C F2 PL5A 1 T F2 PL4A 3 G2 PL5B 1 C G2 PL4C 3 T H1 GNDIO1 1 H1 GNDIO3 3 H2 PL5C 1 T H2 PL4D 3 C J1 PL5D 1 GSRN C J1 PL5B 3 GSRN J2 PL6A 1 T J2 PL7B 3 K1 PL6B 1 TSALL C K1 PL8C 3 TSALL T K2 PL7A 1 T K2 PL8D 3 C L1 PL7B 1 C L1 PL9A 3 L2 PL7C 1 T L2 PL9C 3 M1 PL7D 1 C M1 PL10A 3 M2 PL8A 1 T M2 PL10C 3 N1 PL8B 1 C N1 PL11A 3 M3 PL9A 1 T M3 PL11C 3 N2 GNDIO1 1 N2 GNDIO3 3 P2 TMS 1 TMS P2 TMS 2 TMS P3 PL9B 1 C P3 PB2C 2 N4 TCK 1 TCK N4 TCK 2 TCK P4 PB2A 1 T P4 VCCIO2 2 N3 PB2B 1 C N3 GNDIO2 2 P5 TDO 1 TDO P5 TDO 2 TDO N5 PB2C 1 T N5 PB4C 2 P6 TDI 1 TDI P6 TDI 2 TDI N6 PB2D 1 C N6 PB4E 2 P7 VCC — P7 VCC — N7 PB3A 1 PCLK1_1** T N7 PB5B 2 PCLK2_1** P8 PB3B 1 C P8 PB5D 2 N8 PB3C 1 PCLK1_0** T N8 PB6B 2 PCLK2_0** P9 PB3D 1 C P9 PB6C 2 N10 GNDIO1 1 N10 GNDIO2 2 P11 PB4A 1 T P11 PB8B 2 N11 PB4B 1 C N11 PB8C 2 T P12 PB4C 1 T P12 PB8D 2 C N12 PB4D 1 C N12 PB9A 2 4-11
Pinout Information MachXO Family Data Sheet LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.) LCMXO256 LCMXO640 Ball Ball Dual Differen- Ball Ball Dual Differen- Number Function Bank Function tial Number Function Bank Function tial P13 PB5A 1 P13 PB9C 2 T M12* SLEEPN — SLEEPN M12* SLEEPN — SLEEPN P14 PB5C 1 T P14 PB9D 2 C N13 PB5D 1 C N13 PB9F 2 N14 PR9B 0 C N14 PR11D 1 C M14 PR9A 0 T M14 PR11B 1 C L13 PR8B 0 C L13 PR11C 1 T L14 PR8A 0 T L14 PR11A 1 T M13 PR7D 0 C M13 PR10D 1 C K14 PR7C 0 T K14 PR10C 1 T K13 PR7B 0 C K13 PR10B 1 C J14 PR7A 0 T J14 PR10A 1 T J13 PR6B 0 C J13 PR9D 1 H13 PR6A 0 T H13 PR9B 1 G14 GNDIO0 0 G14 GNDIO1 1 G13 PR5D 0 C G13 PR7B 1 F14 PR5C 0 T F14 PR6C 1 F13 PR5B 0 C F13 PR6B 1 E14 PR5A 0 T E14 PR5D 1 E13 PR4B 0 C E13 PR5B 1 D14 PR4A 0 T D14 PR4D 1 D13 PR3D 0 C D13 PR4B 1 C14 PR3C 0 T C14 PR3D 1 C13 PR3B 0 C C13 PR3B 1 B14 PR3A 0 T B14 PR2D 1 C12 PR2B 0 C C12 PR2B 1 B13 GNDIO0 0 B13 GNDIO1 1 A13 PR2A 0 T A13 PT9F 0 C A12 PT5C 0 A12 PT9E 0 T B11 PT5B 0 C B11 PT9C 0 A11 PT5A 0 T A11 PT9A 0 B12 PT4F 0 C B12 VCCIO0 0 A10 PT4E 0 T A10 GNDIO0 0 B10 PT4D 0 C B10 PT7E 0 A9 PT4C 0 T A9 PT7A 0 A8 PT4B 0 PCLK0_1** C A8 PT6B 0 PCLK0_1** B8 PT4A 0 PCLK0_0** T B8 PT5B 0 PCLK0_0** C A7 PT3D 0 C A7 PT5A 0 T B7 VCCAUX — B7 VCCAUX — A6 PT3C 0 T A6 PT4F 0 B6 VCC — B6 VCC — A5 PT3B 0 C A5 PT3F 0 4-12
Pinout Information MachXO Family Data Sheet LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.) LCMXO256 LCMXO640 Ball Ball Dual Differen- Ball Ball Dual Differen- Number Function Bank Function tial Number Function Bank Function tial A4 GNDIO0 0 A4 GNDIO0 0 B4 PT3A 0 T B4 PT3B 0 C A3 PT2F 0 C A3 PT3A 0 T B3 PT2E 0 T B3 PT2F 0 C A2 PT2D 0 C A2 PT2E 0 T C3 PT2C 0 T C3 PT2B 0 C A1 PT2B 0 C A1 PT2C 0 B2 PT2A 0 T B2 PT2A 0 T N9 GND — N9 GND — B9 GND — B9 GND — B5 VCCIO0 0 B5 VCCIO0 0 A14 VCCIO0 0 A14 VCCIO1 1 H14 VCCIO0 0 H14 VCCIO1 1 P10 VCCIO1 1 P10 VCCIO2 2 G1 VCCIO1 1 G1 VCCIO3 3 P1 VCCIO1 1 P1 VCCIO3 3 *NC for “E” devices. **Primary clock inputs are single-ended. 4-13
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA LCMXO640 LCMXO1200 LCMXO2280 Ball Dual Ball Dual Ball Dual Ball # Function Bank Function Differential Ball # Function Bank Function Differential Ball # Function Bank Function Differential B1 PL2A 3 T B1 PL2A 7 T B1 PL2A 7 LUM0_PLLT_FB_A T C1 PL2B 3 C C1 PL3C 7 T C1 PL3C 7 LUM0_PLLT_IN_A T B2 PL2C 3 T B2 PL2B 7 C B2 PL2B 7 LUM0_PLLC_FB_A C C2 PL2D 3 C C2 PL4A 7 T* C2 PL4A 7 T* C3 PL3A 3 T C3 PL3D 7 C C3 PL3D 7 LUM0_PLLC_IN_A C D1 PL3B 3 C D1 PL4B 7 C* D1 PL4B 7 C* D3 PL3D 3 D3 PL4C 7 D3 PL4C 7 E1 GNDIO3 3 E1 GNDIO7 7 E1 GNDIO7 7 E2 PL5A 3 T E2 PL6A 7 T* E2 PL7A 7 T* E3 PL5B 3 GSRN C E3 PL6B 7 GSRN C* E3 PL7B 7 GSRN C* F2 PL5D 3 F2 PL6D 7 F2 PL7D 7 F3 PL6B 3 F3 PL7C 7 T F3 PL9C 7 T G1 PL6C 3 T G1 PL7D 7 C G1 PL9D 7 C G2 PL6D 3 C G2 PL8C 7 T G2 PL10C 7 T G3 PL7A 3 T G3 PL8D 7 C G3 PL10D 7 C H2 PL7B 3 C H2 PL10A 6 T* H2 PL12A 6 T* H1 PL7C 3 H1 PL10B 6 C* H1 PL12B 6 C* H3 VCC — H3 VCC — H3 VCC — J1 PL8A 3 J1 PL11B 6 J1 PL14D 6 C J2 PL8C 3 TSALL J2 PL11C 6 TSALL T J2 PL14C 6 TSALL T J3 PL9A 3 T J3 PL11D 6 C J3 PL14B 6 K2 PL9B 3 C K2 PL12A 6 T* K2 PL15A 6 T* K1 PL9C 3 K1 PL12B 6 C* K1 PL15B 6 C* L2 GNDIO3 3 L2 GNDIO6 6 L2 GNDIO6 6 L1 PL10A 3 T L1 PL14A 6 LLM0_PLLT_FB_A T* L1 PL17A 6 LLM0_PLLT_FB_A T* L3 PL10B 3 C L3 PL14B 6 LLM0_PLLC_FB_A C* L3 PL17B 6 LLM0_PLLC_FB_A C* M1 PL11A 3 T M1 PL15A 6 LLM0_PLLT_IN_A T* M1 PL18A 6 LLM0_PLLT_IN_A T* N1 PL11B 3 C N1 PL16A 6 T N1 PL19A 6 T M2 PL11C 3 T M2 PL15B 6 LLM0_PLLC_IN_A C* M2 PL18B 6 LLM0_PLLC_IN_A C* P1 PL11D 3 C P1 PL16B 6 C P1 PL19B 6 C P2 GNDIO2 2 P2 GNDIO5 5 P2 GNDIO5 5 P3 TMS 2 TMS P3 TMS 5 TMS P3 TMS 5 TMS M3 PB2C 2 T M3 PB2C 5 T M3 PB2A 5 T N3 PB2D 2 C N3 PB2D 5 C N3 PB2B 5 C P4 TCK 2 TCK P4 TCK 5 TCK P4 TCK 5 TCK M4 PB3B 2 M4 PB3B 5 M4 PB3B 5 N4 PB3C 2 T N4 PB4A 5 T N4 PB4A 5 T P5 PB3D 2 C P5 PB4B 5 C P5 PB4B 5 C N5 TDO 2 TDO N5 TDO 5 TDO N5 TDO 5 TDO M5 TDI 2 TDI M5 TDI 5 TDI M5 TDI 5 TDI N6 PB4E 2 T N6 PB5C 5 N6 PB6C 5 P6 VCC — P6 VCC — P6 VCC — M6 PB4F 2 C M6 PB6A 5 M6 PB8A 5 P7 VCCAUX — P7 VCCAUX — P7 VCCAUX — N7 PB5A 2 T N7 PB6F 5 N7 PB8F 5 M7 PB5B 2 PCLK2_1*** C M7 PB7B 4 PCLK4_1*** M7 PB10F 4 PCLK4_1*** N8 PB5D 2 N8 PB7C 4 T N8 PB10C 4 T P8 PB6A 2 T P8 PB7D 4 C P8 PB10D 4 C M8 PB6B 2 PCLK2_0*** C M8 PB7F 4 PCLK4_0*** M8 PB10B 4 PCLK4_0*** N9 PB7A 2 T N9 PB9A 4 T N9 PB12A 4 T 4-14
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Dual Ball Dual Ball Dual Ball # Function Bank Function Differential Ball # Function Bank Function Differential Ball # Function Bank Function Differential M9 PB7B 2 C M9 PB9B 4 C M9 PB12B 4 C N10 PB7E 2 T N10 PB9C 4 T N10 PB12C 4 T P10 PB7F 2 C P10 PB9D 4 C P10 PB12D 4 C N11 GNDIO2 2 N11 GNDIO4 4 N11 GNDIO4 4 P11 PB8C 2 T P11 PB10A 4 T P11 PB13C 4 T M11 PB8D 2 C M11 PB10B 4 C M11 PB13D 4 C P12 PB9C 2 T P12 PB10C 4 P12 PB15B 4 P13 PB9D 2 C P13 PB11C 4 T P13 PB16C 4 T N12** SLEEPN — SLEEPN N12** SLEEPN — SLEEPN N12** SLEEPN — SLEEPN P14 PB9F 2 P14 PB11D 4 C P14 PB16D 4 C N14 PR11D 1 C N14 PR16B 3 C N14 PR19B 3 C M14 PR11C 1 T M14 PR15B 3 C* M14 PR18B 3 C* N13 PR11B 1 C N13 PR16A 3 T N13 PR19A 3 T M12 PR11A 1 T M12 PR15A 3 T* M12 PR18A 3 T* M13 PR10B 1 C M13 PR14B 3 C* M13 PR17B 3 C* L14 PR10A 1 T L14 PR14A 3 T* L14 PR17A 3 T* L13 GNDIO1 1 L13 GNDIO3 3 L13 GNDIO3 3 K14 PR8D 1 C K14 PR12B 3 C* K14 PR15B 3 C* K13 PR8C 1 T K13 PR12A 3 T* K13 PR15A 3 T* K12 PR8B 1 C K12 PR11B 3 C* K12 PR14B 3 C* J13 PR8A 1 T J13 PR11A 3 T* J13 PR14A 3 T* J12 PR7C 1 J12 PR10B 3 C* J12 PR13B 3 C* H14 PR7B 1 C H14 PR10A 3 T* H14 PR13A 3 T* H13 PR7A 1 T H13 PR9B 3 C* H13 PR11B 3 C* H12 PR6D 1 C H12 PR9A 3 T* H12 PR11A 3 T* G13 PR6C 1 T G13 PR8B 2 C* G13 PR10B 2 C* G14 PR6B 1 G14 PR8A 2 T* G14 PR10A 2 T* G12 VCC — G12 VCC — G12 VCC — F14 PR5D 1 C F14 PR6C 2 F14 PR8C 2 F13 PR5C 1 T F13 PR6B 2 C* F13 PR8B 2 C* F12 PR4D 1 C F12 PR6A 2 T* F12 PR8A 2 T* E13 PR4C 1 T E13 PR5B 2 C* E13 PR7B 2 C* E14 PR4B 1 E14 PR5A 2 T* E14 PR7A 2 T* D13 GNDIO1 1 D13 GNDIO2 2 D13 GNDIO2 2 D14 PR3D 1 C D14 PR4B 2 C* D14 PR5B 2 C* D12 PR3C 1 T D12 PR4A 2 T* D12 PR5A 2 T* C14 PR2D 1 C C14 PR3D 2 C C14 PR4D 2 C B14 PR2C 1 T B14 PR2B 2 C B14 PR3B 2 C* C13 PR2B 1 C C13 PR3C 2 T C13 PR4C 2 T A14 PR2A 1 T A14 PR2A 2 T A14 PR3A 2 T* A13 PT9F 0 C A13 PT11D 1 C A13 PT16D 1 C A12 PT9E 0 T A12 PT11B 1 C A12 PT16B 1 C B13 PT9D 0 C B13 PT11C 1 T B13 PT16C 1 T B12 PT9C 0 T B12 PT10F 1 B12 PT15D 1 C12 PT9B 0 C C12 PT11A 1 T C12 PT16A 1 T A11 PT9A 0 T A11 PT10D 1 C A11 PT14B 1 C C11 PT8C 0 C11 PT10C 1 T C11 PT14A 1 T A10 GNDIO0 0 A10 GNDIO1 1 A10 GNDIO1 1 B10 PT7F 0 C B10 PT9F 1 C B10 PT12F 1 C C10 PT7E 0 T C10 PT9E 1 T C10 PT12E 1 T 4-15
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Dual Ball Dual Ball Dual Ball # Function Bank Function Differential Ball # Function Bank Function Differential Ball # Function Bank Function Differential B9 PT7B 0 C B9 PT9B 1 C B9 PT12D 1 C A9 PT7A 0 T A9 PT9A 1 T A9 PT12C 1 T A8 PT6B 0 PCLK0_1*** C A8 PT7D 1 PCLK1_1*** A8 PT10B 1 PCLK1_1*** B8 PT6A 0 T B8 PT7B 1 B8 PT9D 1 C8 PT5B 0 PCLK0_0*** C C8 PT6F 0 PCLK1_0*** C8 PT9B 1 PCLK1_0*** B7 PT5A 0 T B7 PT6D 0 B7 PT8D 0 A7 VCCAUX — A7 VCCAUX — A7 VCCAUX — C7 VCC — C7 VCC — C7 VCC — A6 PT4D 0 C A6 PT5D 0 C A6 PT7B 0 C B6 PT4C 0 T B6 PT5C 0 T B6 PT7A 0 T C6 PT3F 0 C C6 PT5B 0 C C6 PT6D 0 B5 PT3E 0 T B5 PT5A 0 T B5 PT6E 0 T A5 PT3D 0 A5 PT4B 0 A5 PT6F 0 C B4 GNDIO0 0 B4 GNDIO0 0 B4 GNDIO0 0 A4 PT3B 0 A4 PT3D 0 C A4 PT4B 0 C C4 PT2F 0 C4 PT3C 0 T C4 PT4A 0 T A3 PT2D 0 C A3 PT3B 0 C A3 PT3B 0 C A2 PT2C 0 T A2 PT2B 0 C A2 PT2B 0 C B3 PT2B 0 C B3 PT3A 0 T B3 PT3A 0 T A1 PT2A 0 T A1 PT2A 0 T A1 PT2A 0 T F1 GND — F1 GND — F1 GND — P9 GND — P9 GND — P9 GND — J14 GND — J14 GND — J14 GND — C9 GND — C9 GND — C9 GND — C5 VCCIO0 0 C5 VCCIO0 0 C5 VCCIO0 0 B11 VCCIO0 0 B11 VCCIO1 1 B11 VCCIO1 1 E12 VCCIO1 1 E12 VCCIO2 2 E12 VCCIO2 2 L12 VCCIO1 1 L12 VCCIO3 3 L12 VCCIO3 3 M10 VCCIO2 2 M10 VCCIO4 4 M10 VCCIO4 4 N2 VCCIO2 2 N2 VCCIO5 5 N2 VCCIO5 5 D2 VCCIO3 3 D2 VCCIO7 7 D2 VCCIO7 7 K3 VCCIO3 3 K3 VCCIO6 6 K3 VCCIO6 6 *Supports true LVDS outputs. **NC for “E” devices. ***Primary clock inputs are single-ended. 4-16
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP LCMXO640 LCMXO1200 LCMXO2280 Pin Ball Dual Ball Dual Ball Dual Number Function Bank Function Differential Function Bank Function Differential Function Bank Function Differential 1 PL2A 3 T PL2A 7 T PL2A 7 LUM0_PLLT_FB_A T 2 PL2C 3 T PL2B 7 C PL2B 7 LUM0_PLLC_FB_A C 3 PL2B 3 C PL3A 7 T* PL3A 7 T* 4 PL3A 3 T PL3B 7 C* PL3B 7 C* 5 PL2D 3 C PL3C 7 T PL3C 7 LUM0_PLLT_IN_A T 6 PL3B 3 C PL3D 7 C PL3D 7 LUM0_PLLC_IN_A C 7 PL3C 3 T PL4A 7 T* PL4A 7 T* 8 PL3D 3 C PL4B 7 C* PL4B 7 C* 9 PL4A 3 PL4C 7 PL4C 7 10 VCCIO3 3 VCCIO7 7 VCCIO7 7 11 GNDIO3 3 GNDIO7 7 GNDIO7 7 12 PL4D 3 PL5C 7 PL6C 7 13 PL5A 3 T PL6A 7 T* PL7A 7 T* 14 PL5B 3 GSRN C PL6B 7 GSRN C* PL7B 7 GSRN C* 15 PL5D 3 PL6D 7 PL7D 7 16 GND — GND — GND — 17 PL6C 3 T PL7C 7 T PL9C 7 T 18 PL6D 3 C PL7D 7 C PL9D 7 C 19 PL7A 3 T PL10A 6 T* PL13A 6 T* 20 PL7B 3 C PL10B 6 C* PL13B 6 C* 21 VCC — VCC — VCC — 22 PL8A 3 T PL11A 6 T* PL13D 6 23 PL8B 3 C PL11B 6 C* PL14D 6 C 24 PL8C 3 TSALL PL11C 6 TSALL PL14C 6 TSALL T 25 PL9C 3 T PL12B 6 PL15B 6 26 VCCIO3 3 VCCIO6 6 VCCIO6 6 27 GNDIO3 3 GNDIO6 6 GNDIO6 6 28 PL9D 3 C PL13D 6 PL16D 6 29 PL10A 3 T PL14A 6 LLM0_PLLT_FB_A T* PL17A 6 LLM0_PLLT_FB_A T* 30 PL10B 3 C PL14B 6 LLM0_PLLC_FB_A C* PL17B 6 LLM0_PLLC_FB_A C* 31 PL10C 3 T PL14C 6 T PL17C 6 T 32 PL11A 3 T PL14D 6 C PL17D 6 C 33 PL10D 3 C PL15A 6 LLM0_PLLT_IN_A T* PL18A 6 LLM0_PLLT_IN_A T* 34 PL11C 3 T PL15B 6 LLM0_PLLC_IN_A C* PL18B 6 LLM0_PLLC_IN_A C* 35 PL11B 3 C PL16A 6 T PL19A 6 T 36 PL11D 3 C PL16B 6 C PL19B 6 C 37 GNDIO2 2 GNDIO5 5 GNDIO5 5 38 VCCIO2 2 VCCIO5 5 VCCIO5 5 39 TMS 2 TMS TMS 5 TMS TMS 5 TMS 40 PB2C 2 PB2C 5 T PB2A 5 T 41 PB3A 2 T PB2D 5 C PB2B 5 C 42 TCK 2 TCK TCK 5 TCK TCK 5 TCK 43 PB3B 2 C PB3A 5 T PB3A 5 T 44 PB3C 2 T PB3B 5 C PB3B 5 C 45 PB3D 2 C PB4A 5 T PB4A 5 T 46 PB4A 2 T PB4B 5 C PB4B 5 C 47 TDO 2 TDO TDO 5 TDO TDO 5 TDO 48 PB4B 2 C PB4D 5 PB4D 5 49 PB4C 2 T PB5A 5 T PB5A 5 T 50 PB4D 2 C PB5B 5 C PB5B 5 C 4-17
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Pin Ball Dual Ball Dual Ball Dual Number Function Bank Function Differential Function Bank Function Differential Function Bank Function Differential 51 TDI 2 TDI TDI 5 TDI TDI 5 TDI 52 VCC — VCC — VCC — 53 VCCAUX — VCCAUX — VCCAUX — 54 PB5A 2 T PB6F 5 PB8F 5 55 PB5B 2 PCLKT2_1*** C PB7B 4 PCLK4_1*** PB10F 4 PCLK4_1*** 56 PB5D 2 PB7C 4 T PB10C 4 T 57 PB6A 2 T PB7D 4 C PB10D 4 C 58 PB6B 2 PCLKT2_0*** C PB7F 4 PCLK4_0*** PB10B 4 PCLK4_0*** 59 GND — GND — GND — 60 PB7C 2 PB9A 4 T PB12A 4 T 61 PB7E 2 PB9B 4 C PB12B 4 C 62 PB8A 2 PB9E 4 PB12E 4 63 VCCIO2 2 VCCIO4 4 VCCIO4 4 64 GNDIO2 2 GNDIO4 4 GNDIO4 4 65 PB8C 2 T PB10A 4 T PB13A 4 T 66 PB8D 2 C PB10B 4 C PB13B 4 C 67 PB9A 2 T PB10C 4 T PB13C 4 T 68 PB9C 2 T PB10D 4 C PB13D 4 C 69 PB9B 2 C PB10F 4 PB14D 4 70** SLEEPN — SLEEPN SLEEPN — SLEEPN SLEEPN — SLEEPN 71 PB9D 2 C PB11C 4 T PB16C 4 T 72 PB9F 2 PB11D 4 C PB16D 4 C 73 PR11D 1 C PR16B 3 C PR20B 3 C 74 PR11B 1 C PR16A 3 T PR20A 3 T 75 PR11C 1 T PR15B 3 C* PR19B 3 C 76 PR10D 1 C PR15A 3 T* PR19A 3 T 77 PR11A 1 T PR14D 3 C PR17D 3 C 78 PR10B 1 C PR14C 3 T PR17C 3 T 79 PR10C 1 T PR14B 3 C* PR17B 3 C* 80 PR10A 1 T PR14A 3 T* PR17A 3 T* 81 PR9D 1 PR13D 3 PR16D 3 82 VCCIO1 1 VCCIO3 3 VCCIO3 3 83 GNDIO1 1 GNDIO3 3 GNDIO3 3 84 PR9A 1 PR12B 3 C* PR15B 3 C* 85 PR8C 1 PR12A 3 T* PR15A 3 T* 86 PR8A 1 PR11B 3 C* PR14B 3 C* 87 PR7D 1 PR11A 3 T* PR14A 3 T* 88 GND — GND — GND — 89 PR7B 1 C PR10B 3 C* PR13B 3 C* 90 PR7A 1 T PR10A 3 T* PR13A 3 T* 91 PR6D 1 C PR8B 2 C* PR10B 2 C* 92 PR6C 1 T PR8A 2 T* PR10A 2 T* 93 VCC — VCC — VCC — 94 PR5D 1 PR6B 2 C* PR8B 2 C* 95 PR5B 1 PR6A 2 T* PR8A 2 T* 96 PR4D 1 PR5B 2 C* PR7B 2 C* 97 PR4B 1 C PR5A 2 T* PR7A 2 T* 98 VCCIO1 1 VCCIO2 2 VCCIO2 2 99 GNDIO1 1 GNDIO2 2 GNDIO2 2 100 PR4A 1 T PR4C 2 PR5C 2 4-18
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Pin Ball Dual Ball Dual Ball Dual Number Function Bank Function Differential Function Bank Function Differential Function Bank Function Differential 101 PR3D 1 C PR4B 2 C* PR5B 2 C* 102 PR3C 1 T PR4A 2 T* PR5A 2 T* 103 PR3B 1 C PR3D 2 C PR4D 2 C 104 PR2D 1 C PR3C 2 T PR4C 2 T 105 PR3A 1 T PR3B 2 C* PR4B 2 C* 106 PR2B 1 C PR3A 2 T* PR4A 2 T* 107 PR2C 1 T PR2B 2 C PR3B 2 C* 108 PR2A 1 T PR2A 2 T PR3A 2 T* 109 PT9F 0 C PT11D 1 C PT16D 1 C 110 PT9D 0 C PT11C 1 T PT16C 1 T 111 PT9E 0 T PT11B 1 C PT16B 1 C 112 PT9B 0 C PT11A 1 T PT16A 1 T 113 PT9C 0 T PT10F 1 C PT15D 1 C 114 PT9A 0 T PT10E 1 T PT15C 1 T 115 PT8C 0 PT10D 1 C PT14B 1 C 116 PT8B 0 C PT10C 1 T PT14A 1 T 117 VCCIO0 0 VCCIO1 1 VCCIO1 1 118 GNDIO0 0 GNDIO1 1 GNDIO1 1 119 PT8A 0 T PT9F 1 C PT12F 1 C 120 PT7E 0 PT9E 1 T PT12E 1 T 121 PT7C 0 PT9B 1 C PT12D 1 C 122 PT7A 0 PT9A 1 T PT12C 1 T 123 GND — GND — GND — 124 PT6B 0 PCLK0_1*** C PT7D 1 PCLK1_1*** PT10B 1 PCLK1_1*** 125 PT6A 0 T PT7B 1 C PT9D 1 C 126 PT5C 0 PT7A 1 T PT9C 1 T 127 PT5B 0 PCLK0_0*** PT6F 0 PCLK1_0*** PT9B 1 PCLK1_0*** 128 VCCAUX — VCCAUX — VCCAUX — 129 VCC — VCC — VCC — 130 PT4D 0 PT5D 0 C PT7B 0 C 131 PT4B 0 C PT5C 0 T PT7A 0 T 132 PT4A 0 T PT5B 0 C PT6D 0 133 PT3F 0 PT5A 0 T PT6E 0 T 134 PT3D 0 PT4B 0 PT6F 0 C 135 VCCIO0 0 VCCIO0 0 VCCIO0 0 136 GNDIO0 0 GNDIO0 0 GNDIO0 0 137 PT3B 0 C PT3D 0 C PT4B 0 T 138 PT2F 0 C PT3C 0 T PT4A 0 C 139 PT3A 0 T PT3B 0 C PT3B 0 C 140 PT2D 0 C PT3A 0 T PT3A 0 T 141 PT2E 0 T PT2D 0 C PT2D 0 C 142 PT2B 0 C PT2C 0 T PT2C 0 T 143 PT2C 0 T PT2B 0 C PT2B 0 C 144 PT2A 0 T PT2A 0 T PT2A 0 T *Supports true LVDS outputs. **NC for “E” devices. ***Primary clock inputs are single-ended. 4-19
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA LCMXO640 LCMXO1200 LCMXO2280 Ball Ball Dual Ball Ball Dual Ball Ball Dual Number Function Bank Function Differential Number Function Bank Function Differential Number Function Bank Function Differential GND GNDIO3 3 GND GNDIO7 7 GND GNDIO7 7 VCCIO3 VCCIO3 3 VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7 E4 NC E4 PL2A 7 T E4 PL2A 7 LUM0_PLLT_FB_A T E5 NC E5 PL2B 7 C E5 PL2B 7 LUM0_PLLC_FB_A C F5 NC F5 PL3A 7 T* F5 PL3A 7 T* F6 NC F6 PL3B 7 C* F6 PL3B 7 C* F3 PL3A 3 T F3 PL3C 7 T F3 PL3C 7 LUM0_PLLT_IN_A T F4 PL3B 3 C F4 PL3D 7 C F4 PL3D 7 LUM0_PLLC_IN_A C E3 PL2C 3 T E3 PL4A 7 T* E3 PL4A 7 T* E2 PL2D 3 C E2 PL4B 7 C* E2 PL4B 7 C* C3 NC C3 PL4C 7 T C3 PL4C 7 T C2 NC C2 PL4D 7 C C2 PL4D 7 C B1 PL2A 3 T B1 PL5A 7 T* B1 PL5A 7 T* C1 PL2B 3 C C1 PL5B 7 C* C1 PL5B 7 C* VCCIO3 VCCIO3 3 VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7 GND GNDIO3 3 GND GNDIO7 7 GND GNDIO7 7 D2 PL3C 3 T D2 PL5C 7 T D2 PL6C 7 T D1 PL3D 3 C D1 PL5D 7 C D1 PL6D 7 C F2 PL5A 3 T F2 PL6A 7 T* F2 PL7A 7 T* G2 PL5B 3 GSRN C G2 PL6B 7 GSRN C* G2 PL7B 7 GSRN C* E1 PL4A 3 T E1 PL6C 7 T E1 PL7C 7 T F1 PL4B 3 C F1 PL6D 7 C F1 PL7D 7 C G4 NC G4 PL7A 7 T* G4 PL8A 7 T* G5 NC G5 PL7B 7 C* G5 PL8B 7 C* GND GND — GND GND — GND GND — G3 PL4C 3 T G3 PL7C 7 T G3 PL8C 7 T H3 PL4D 3 C H3 PL7D 7 C H3 PL8D 7 C H4 NC H4 PL8A 7 T* H4 PL9A 7 T* H5 NC H5 PL8B 7 C* H5 PL9B 7 C* — — VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7 — — GND GNDIO7 7 GND GNDIO7 7 G1 PL5C 3 T G1 PL8C 7 T G1 PL10C 7 T H1 PL5D 3 C H1 PL8D 7 C H1 PL10D 7 C H2 PL6A 3 T H2 PL9A 6 T* H2 PL11A 6 T* J2 PL6B 3 C J2 PL9B 6 C* J2 PL11B 6 C* J3 PL7C 3 T J3 PL9C 6 T J3 PL11C 6 T K3 PL7D 3 C K3 PL9D 6 C K3 PL11D 6 C J1 PL6C 3 T J1 PL10A 6 T* J1 PL12A 6 T* — — VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6 — — GND GNDIO6 6 GND GNDIO6 6 K1 PL6D 3 C K1 PL10B 6 C* K1 PL12B 6 C* K2 PL9A 3 T K2 PL10C 6 T K2 PL12C 6 T L2 PL9B 3 C L2 PL10D 6 C L2 PL12D 6 C L1 PL7A 3 T L1 PL11A 6 T* L1 PL13A 6 T* M1 PL7B 3 C M1 PL11B 6 C* M1 PL13B 6 C* P1 PL8D 3 C P1 PL11D 6 C P1 PL14D 6 C N1 PL8C 3 TSALL T N1 PL11C 6 TSALL T N1 PL14C 6 TSALL T L3 PL10A 3 T L3 PL12A 6 T* L3 PL15A 6 T* M3 PL10B 3 C M3 PL12B 6 C* M3 PL15B 6 C* M2 PL9C 3 T M2 PL12C 6 T M2 PL15C 6 T N2 PL9D 3 C N2 PL12D 6 C N2 PL15D 6 C VCCIO3 VCCIO3 3 VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6 GND GNDIO3 3 GND GNDIO6 6 GND GNDIO6 6 4-20
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Ball Dual Ball Ball Dual Ball Ball Dual Number Function Bank Function Differential Number Function Bank Function Differential Number Function Bank Function Differential J4 PL8A 3 T J4 PL13A 6 T* J4 PL16A 6 T* J5 PL8B 3 C J5 PL13B 6 C* J5 PL16B 6 C* R1 PL11A 3 T R1 PL13C 6 T R1 PL16C 6 T R2 PL11B 3 C R2 PL13D 6 C R2 PL16D 6 C — — — — — — GND GND — K5 NC K5 PL14A 6 LLM0_PLLT_FB_A T* K5 PL17A 6 LLM0_PLLT_FB_A T* K4 NC K4 PL14B 6 LLM0_PLLC_FB_A C* K4 PL17B 6 LLM0_PLLC_FB_A C* L5 PL10C 3 T L5 PL14C 6 T L5 PL17C 6 T L4 PL10D 3 C L4 PL14D 6 C L4 PL17D 6 C M5 NC M5 PL15A 6 LLM0_PLLT_IN_A T* M5 PL18A 6 LLM0_PLLT_IN_A T* M4 NC M4 PL15B 6 LLM0_PLLC_IN_A C* M4 PL18B 6 LLM0_PLLC_IN_A C* N4 PL11C 3 T N4 PL16A 6 T N4 PL19A 6 T N3 PL11D 3 C N3 PL16B 6 C N3 PL19B 6 C VCCIO3 VCCIO3 3 VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6 GND GNDIO3 3 GND GNDIO6 6 GND GNDIO6 6 GND GNDIO2 2 GND GNDIO5 5 GND GNDIO5 5 VCCIO2 VCCIO2 2 VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5 P4 TMS 2 TMS P4 TMS 5 TMS P4 TMS 5 TMS P2 NC P2 PB2A 5 T P2 PB2A 5 T P3 NC P3 PB2B 5 C P3 PB2B 5 C N5 NC N5 PB2C 5 T N5 PB2C 5 T R3 TCK 2 TCK R3 TCK 5 TCK R3 TCK 5 TCK N6 NC N6 PB2D 5 C N6 PB2D 5 C T2 PB2A 2 T T2 PB3A 5 T T2 PB3A 5 T T3 PB2B 2 C T3 PB3B 5 C T3 PB3B 5 C R4 PB2C 2 T R4 PB3C 5 T R4 PB3C 5 T R5 PB2D 2 C R5 PB3D 5 C R5 PB3D 5 C P5 PB3A 2 T P5 PB4A 5 T P5 PB4A 5 T P6 PB3B 2 C P6 PB4B 5 C P6 PB4B 5 C T5 PB3C 2 T T5 PB4C 5 T T5 PB4C 5 T M6 TDO 2 TDO M6 TDO 5 TDO M6 TDO 5 TDO T4 PB3D 2 C T4 PB4D 5 C T4 PB4D 5 C R6 PB4A 2 T R6 PB5A 5 T R6 PB5A 5 T GND GNDIO2 2 GND GNDIO5 5 GND GNDIO5 5 VCCIO2 VCCIO2 2 VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5 T6 PB4B 2 C T6 PB5B 5 C T6 PB5B 5 C N7 TDI 2 TDI N7 TDI 5 TDI N7 TDI 5 TDI T8 PB4C 2 T T8 PB5C 5 T T8 PB6A 5 T T7 PB4D 2 C T7 PB5D 5 C T7 PB6B 5 C M7 NC M7 PB6A 5 T M7 PB7C 5 T M8 NC M8 PB6B 5 C M8 PB7D 5 C T9 VCCAUX — T9 VCCAUX — T9 VCCAUX — R7 PB4E 2 T R7 PB6C 5 T R7 PB8C 5 T R8 PB4F 2 C R8 PB6D 5 C R8 PB8D 5 C — — VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5 — — GND GNDIO5 5 GND GNDIO5 5 P7 PB5C 2 T P7 PB6E 5 T P7 PB9A 4 T P8 PB5D 2 C P8 PB6F 5 C P8 PB9B 4 C N8 PB5A 2 T N8 PB7A 4 T N8 PB10E 4 T N9 PB5B 2 PCLK2_1*** C N9 PB7B 4 PCLK4_1*** C N9 PB10F 4 PCLK4_1*** C P10 PB7B 2 C P10 PB7D 4 C P10 PB10D 4 C P9 PB7A 2 T P9 PB7C 4 T P9 PB10C 4 T M9 PB6B 2 PCLK2_0*** C M9 PB7F 4 PCLK4_0*** C M9 PB10B 4 PCLK4_0*** C 4-21
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Ball Dual Ball Ball Dual Ball Ball Dual Number Function Bank Function Differential Number Function Bank Function Differential Number Function Bank Function Differential — — VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4 — — GND GNDIO4 4 GND GNDIO4 4 M10 PB6A 2 T M10 PB7E 4 T M10 PB10A 4 T R9 PB6C 2 T R9 PB8A 4 T R9 PB11C 4 T R10 PB6D 2 C R10 PB8B 4 C R10 PB11D 4 C T10 PB7C 2 T T10 PB8C 4 T T10 PB12A 4 T T11 PB7D 2 C T11 PB8D 4 C T11 PB12B 4 C N10 NC N10 PB8E 4 T N10 PB12C 4 T N11 NC N11 PB8F 4 C N11 PB12D 4 C VCCIO2 VCCIO2 2 VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4 GND GNDIO2 2 GND GNDIO4 4 GND GNDIO4 4 R11 PB7E 2 T R11 PB9A 4 T R11 PB13A 4 T R12 PB7F 2 C R12 PB9B 4 C R12 PB13B 4 C P11 PB8A 2 T P11 PB9C 4 T P11 PB13C 4 T P12 PB8B 2 C P12 PB9D 4 C P12 PB13D 4 C T13 PB8C 2 T T13 PB9E 4 T T13 PB14A 4 T T12 PB8D 2 C T12 PB9F 4 C T12 PB14B 4 C R13 PB9A 2 T R13 PB10A 4 T R13 PB14C 4 T R14 PB9B 2 C R14 PB10B 4 C R14 PB14D 4 C GND GND — GND GND — GND GND — T14 PB9C 2 T T14 PB10C 4 T T14 PB15A 4 T T15 PB9D 2 C T15 PB10D 4 C T15 PB15B 4 C P13** SLEEPN — SLEEPN P13** SLEEPN — SLEEPN P13** SLEEPN — SLEEPN P14 PB9F 2 P14 PB10F 4 P14 PB15D 4 R15 NC R15 PB11A 4 T R15 PB16A 4 T R16 NC R16 PB11B 4 C R16 PB16B 4 C P15 NC P15 PB11C 4 T P15 PB16C 4 T P16 NC P16 PB11D 4 C P16 PB16D 4 C VCCIO2 VCCIO2 2 VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4 GND GNDIO2 2 GND GNDIO4 4 GND GNDIO4 4 GND GNDIO1 1 GND GNDIO3 3 GND GNDIO3 3 VCCIO1 VCCIO1 1 VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3 M11 NC M11 PR16B 3 C M11 PR20B 3 C L11 NC L11 PR16A 3 T L11 PR20A 3 T N12 NC N12 PR15B 3 C* N12 PR18B 3 C* N13 NC N13 PR15A 3 T* N13 PR18A 3 T* M13 NC M13 PR14D 3 C M13 PR17D 3 C M12 NC M12 PR14C 3 T M12 PR17C 3 T N14 PR11D 1 C N14 PR14B 3 C* N14 PR17B 3 C* N15 PR11C 1 T N15 PR14A 3 T* N15 PR17A 3 T* L13 PR11B 1 C L13 PR13D 3 C L13 PR16D 3 C L12 PR11A 1 T L12 PR13C 3 T L12 PR16C 3 T M14 PR10B 1 C M14 PR13B 3 C* M14 PR16B 3 C* VCCIO1 VCCIO1 1 VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3 GND GNDIO1 1 GND GNDIO3 3 GND GNDIO3 3 L14 PR10A 1 T L14 PR13A 3 T* L14 PR16A 3 T* N16 PR10D 1 C N16 PR12D 3 C N16 PR15D 3 C M16 PR10C 1 T M16 PR12C 3 T M16 PR15C 3 T M15 PR9D 1 C M15 PR12B 3 C* M15 PR15B 3 C* L15 PR9C 1 T L15 PR12A 3 T* L15 PR15A 3 T* L16 PR9B 1 C L16 PR11D 3 C L16 PR14D 3 C K16 PR9A 1 T K16 PR11C 3 T K16 PR14C 3 T K13 PR8D 1 C K13 PR11B 3 C* K13 PR14B 3 C* 4-22
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Ball Dual Ball Ball Dual Ball Ball Dual Number Function Bank Function Differential Number Function Bank Function Differential Number Function Bank Function Differential J13 PR8C 1 T J13 PR11A 3 T* J13 PR14A 3 T* GND GND — GND GND — GND GND — K14 PR8B 1 C K14 PR10D 3 C K14 PR13D 3 C J14 PR8A 1 T J14 PR10C 3 T J14 PR13C 3 T K15 PR7D 1 C K15 PR10B 3 C* K15 PR13B 3 C* J15 PR7C 1 T J15 PR10A 3 T* J15 PR13A 3 T* — — GND GNDIO3 3 GND GNDIO3 3 — — VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3 K12 NC K12 PR9D 3 C K12 PR11D 3 C J12 NC J12 PR9C 3 T J12 PR11C 3 T J16 PR7B 1 C J16 PR9B 3 C* J16 PR11B 3 C* H16 PR7A 1 T H16 PR9A 3 T* H16 PR11A 3 T* H15 PR6B 1 C H15 PR8D 2 C H15 PR10D 2 C G15 PR6A 1 T G15 PR8C 2 T G15 PR10C 2 T H14 PR5D 1 C H14 PR8B 2 C* H14 PR10B 2 C* G14 PR5C 1 T G14 PR8A 2 T* G14 PR10A 2 T* GND GNDIO1 1 GND GNDIO2 2 GND GNDIO2 2 VCCIO1 VCCIO1 1 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2 H13 PR6D 1 C H13 PR7D 2 C H13 PR9D 2 C H12 PR6C 1 T H12 PR7C 2 T H12 PR9C 2 T G13 PR4D 1 C G13 PR7B 2 C* G13 PR9B 2 C* G12 PR4C 1 T G12 PR7A 2 T* G12 PR9A 2 T* G16 PR5B 1 C G16 PR6D 2 C G16 PR7D 2 C F16 PR5A 1 T F16 PR6C 2 T F16 PR7C 2 T F15 PR4B 1 C F15 PR6B 2 C* F15 PR7B 2 C* E15 PR4A 1 T E15 PR6A 2 T* E15 PR7A 2 T* E16 PR3B 1 C E16 PR5D 2 C E16 PR6D 2 C D16 PR3A 1 T D16 PR5C 2 T D16 PR6C 2 T VCCIO1 VCCIO1 1 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2 GND GNDIO1 1 GND GNDIO2 2 GND GNDIO2 2 D15 PR2D 1 C D15 PR5B 2 C* D15 PR6B 2 C* C15 PR2C 1 T C15 PR5A 2 T* C15 PR6A 2 T* C16 PR2B 1 C C16 PR4D 2 C C16 PR5D 2 C B16 PR2A 1 T B16 PR4C 2 T B16 PR5C 2 T F14 PR3D 1 C F14 PR4B 2 C* F14 PR5B 2 C* E14 PR3C 1 T E14 PR4A 2 T* E14 PR5A 2 T* — — — — — — GND GND — F12 NC F12 PR3D 2 C F12 PR4D 2 C F13 NC F13 PR3C 2 T F13 PR4C 2 T E12 NC E12 PR3B 2 C* E12 PR4B 2 C* E13 NC E13 PR3A 2 T* E13 PR4A 2 T* D13 NC D13 PR2B 2 C D13 PR3B 2 C* D14 NC D14 PR2A 2 T D14 PR3A 2 T* VCCIO0 VCCIO0 0 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2 GND GNDIO0 0 GND GNDIO2 2 GND GNDIO2 2 GND GNDIO0 0 GND GNDIO1 1 GND GNDIO1 1 VCCIO0 VCCIO0 0 VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1 B15 NC B15 PT11D 1 C B15 PT16D 1 C A15 NC A15 PT11C 1 T A15 PT16C 1 T C14 NC C14 PT11B 1 C C14 PT16B 1 C B14 NC B14 PT11A 1 T B14 PT16A 1 T C13 PT9F 0 C C13 PT10F 1 C C13 PT15D 1 C B13 PT9E 0 T B13 PT10E 1 T B13 PT15C 1 T 4-23
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Ball Dual Ball Ball Dual Ball Ball Dual Number Function Bank Function Differential Number Function Bank Function Differential Number Function Bank Function Differential E11 NC E11 PT10D 1 C E11 PT15B 1 C E10 NC E10 PT10C 1 T E10 PT15A 1 T D12 PT9D 0 C D12 PT10B 1 C D12 PT14D 1 C D11 PT9C 0 T D11 PT10A 1 T D11 PT14C 1 T A14 PT7F 0 C A14 PT9F 1 C A14 PT14B 1 C A13 PT7E 0 T A13 PT9E 1 T A13 PT14A 1 T C12 PT8B 0 C C12 PT9D 1 C C12 PT13D 1 C C11 PT8A 0 T C11 PT9C 1 T C11 PT13C 1 T — — VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1 — — GND GNDIO1 1 GND GNDIO1 1 B12 PT7B 0 C B12 PT9B 1 C B12 PT12D 1 C B11 PT7A 0 T B11 PT9A 1 T B11 PT12C 1 T A12 PT7D 0 C A12 PT8F 1 C A12 PT12B 1 C A11 PT7C 0 T A11 PT8E 1 T A11 PT12A 1 T GND GND — GND GND — GND GND — B10 PT5D 0 C B10 PT8D 1 C B10 PT11B 1 C B9 PT5C 0 T B9 PT8C 1 T B9 PT11A 1 T D10 PT8D 0 C D10 PT8B 1 C D10 PT10F 1 C D9 PT8C 0 T D9 PT8A 1 T D9 PT10E 1 T — — VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1 — — GND GNDIO1 1 GND GNDIO1 1 C10 PT6D 0 C C10 PT7F 1 C C10 PT10D 1 C C9 PT6C 0 T C9 PT7E 1 T C9 PT10C 1 T A9 PT6B 0 PCLK0_1*** C A9 PT7D 1 PCLK1_1*** C A9 PT10B 1 PCLK1_1*** C A10 PT6A 0 T A10 PT7C 1 T A10 PT10A 1 T E9 PT9B 0 C E9 PT7B 1 C E9 PT9D 1 C E8 PT9A 0 T E8 PT7A 1 T E8 PT9C 1 T D7 PT5B 0 PCLK0_0*** C D7 PT6F 0 PCLK1_0*** C D7 PT9B 1 PCLK1_0*** C D8 PT5A 0 T D8 PT6E 0 T D8 PT9A 1 T VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 GND GNDIO0 0 GND GNDIO0 0 GND GNDIO0 0 C8 PT4F 0 C C8 PT6D 0 C C8 PT8D 0 C B8 PT4E 0 T B8 PT6C 0 T B8 PT8C 0 T A8 VCCAUX — A8 VCCAUX — A8 VCCAUX — A7 PT4D 0 C A7 PT6B 0 C A7 PT7D 0 C A6 PT4C 0 T A6 PT6A 0 T A6 PT7C 0 T VCC VCC — VCC VCC — VCC VCC — B7 PT4B 0 C B7 PT5F 0 C B7 PT7B 0 C B6 PT4A 0 T B6 PT5E 0 T B6 PT7A 0 T C6 PT3C 0 T C6 PT5C 0 T C6 PT6A 0 T C7 PT3D 0 C C7 PT5D 0 C C7 PT6B 0 C A5 PT3E 0 T A5 PT5A 0 T A5 PT6C 0 T A4 PT3F 0 C A4 PT5B 0 C A4 PT6D 0 C E7 NC E7 PT4C 0 T E7 PT6E 0 T E6 NC E6 PT4D 0 C E6 PT6F 0 C B5 PT3B 0 C B5 PT3F 0 C B5 PT5D 0 C B4 PT3A 0 T B4 PT3E 0 T B4 PT5C 0 T D5 PT2D 0 C D5 PT3D 0 C D5 PT5B 0 C D6 PT2C 0 T D6 PT3C 0 T D6 PT5A 0 T C4 PT2E 0 T C4 PT4A 0 T C4 PT4A 0 T C5 PT2F 0 C C5 PT4B 0 C C5 PT4B 0 C — — — — — — GND GND — D4 NC D4 PT2D 0 C D4 PT3D 0 C 4-24
Pinout Information MachXO Family Data Sheet LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.) LCMXO640 LCMXO1200 LCMXO2280 Ball Ball Dual Ball Ball Dual Ball Ball Dual Number Function Bank Function Differential Number Function Bank Function Differential Number Function Bank Function Differential D3 NC D3 PT2C 0 T D3 PT3C 0 T A3 PT2B 0 C A3 PT3B 0 C A3 PT3B 0 C A2 PT2A 0 T A2 PT3A 0 T A2 PT3A 0 T B3 NC B3 PT2B 0 C B3 PT2D 0 C B2 NC B2 PT2A 0 T B2 PT2C 0 T VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 GND GNDIO0 0 GND GNDIO0 0 GND GNDIO0 0 A1 GND — A1 GND — A1 GND — A16 GND — A16 GND — A16 GND — F11 GND — F11 GND — F11 GND — G8 GND — G8 GND — G8 GND — G9 GND — G9 GND — G9 GND — H7 GND — H7 GND — H7 GND — H8 GND — H8 GND — H8 GND — H9 GND — H9 GND — H9 GND — H10 GND — H10 GND — H10 GND — J7 GND — J7 GND — J7 GND — J8 GND — J8 GND — J8 GND — J9 GND — J9 GND — J9 GND — J10 GND — J10 GND — J10 GND — K8 GND — K8 GND — K8 GND — K9 GND — K9 GND — K9 GND — L6 GND — L6 GND — L6 GND — T1 GND — T1 GND — T1 GND — T16 GND — T16 GND — T16 GND — G7 VCC — G7 VCC — G7 VCC — G10 VCC — G10 VCC — G10 VCC — K7 VCC — K7 VCC — K7 VCC — K10 VCC — K10 VCC — K10 VCC — H6 VCCIO3 3 H6 VCCIO7 7 H6 VCCIO7 7 G6 VCCIO3 3 G6 VCCIO7 7 G6 VCCIO7 7 K6 VCCIO3 3 K6 VCCIO6 6 K6 VCCIO6 6 J6 VCCIO3 3 J6 VCCIO6 6 J6 VCCIO6 6 L8 VCCIO2 2 L8 VCCIO5 5 L8 VCCIO5 5 L7 VCCIO2 2 L7 VCCIO5 5 L7 VCCIO5 5 L9 VCCIO2 2 L9 VCCIO4 4 L9 VCCIO4 4 L10 VCCIO2 2 L10 VCCIO4 4 L10 VCCIO4 4 K11 VCCIO1 1 K11 VCCIO3 3 K11 VCCIO3 3 J11 VCCIO1 1 J11 VCCIO3 3 J11 VCCIO3 3 H11 VCCIO1 1 H11 VCCIO2 2 H11 VCCIO2 2 G11 VCCIO1 1 G11 VCCIO2 2 G11 VCCIO2 2 F9 VCCIO0 0 F9 VCCIO1 1 F9 VCCIO1 1 F10 VCCIO0 0 F10 VCCIO1 1 F10 VCCIO1 1 F8 VCCIO0 0 F8 VCCIO0 0 F8 VCCIO0 0 F7 VCCIO0 0 F7 VCCIO0 0 F7 VCCIO0 0 * Supports true LVDS outputs. ** NC for “E” devices. *** Primary clock inputs are single-ended. 4-25
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA LCMXO2280 Ball Number Ball Function Bank Dual Function Differential GND GNDIO7 7 VCCIO7 VCCIO7 7 D4 PL2A 7 LUM0_PLLT_FB_A T F5 PL2B 7 LUM0_PLLC_FB_A C B3 PL3A 7 T* C3 PL3B 7 C* E4 PL3C 7 LUM0_PLLT_IN_A T G6 PL3D 7 LUM0_PLLC_IN_A C A1 PL4A 7 T* B1 PL4B 7 C* F4 PL4C 7 T VCC VCC — E3 PL4D 7 C D2 PL5A 7 T* D3 PL5B 7 C* G5 PL5C 7 T F3 PL5D 7 C C2 PL6A 7 T* VCCIO7 VCCIO7 7 GND GNDIO7 7 C1 PL6B 7 C* H5 PL6C 7 T G4 PL6D 7 C E2 PL7A 7 T* D1 PL7B 7 GSRN C* J6 PL7C 7 T H4 PL7D 7 C F2 PL8A 7 T* E1 PL8B 7 C* GND GND — J3 PL8C 7 T J5 PL8D 7 C G3 PL9A 7 T* H3 PL9B 7 C* K3 PL9C 7 T K5 PL9D 7 C F1 PL10A 7 T* VCCIO7 VCCIO7 7 GND GNDIO7 7 G1 PL10B 7 C* K4 PL10C 7 T K6 PL10D 7 C 4-26
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential G2 PL11A 6 T* H2 PL11B 6 C* L3 PL11C 6 T L5 PL11D 6 C H1 PL12A 6 T* VCCIO6 VCCIO6 6 GND GNDIO6 6 J2 PL12B 6 C* L4 PL12C 6 T L6 PL12D 6 C K2 PL13A 6 T* K1 PL13B 6 C* J1 PL13C 6 T VCC VCC — L2 PL13D 6 C M5 PL14D 6 C M3 PL14C 6 TSALL T L1 PL14B 6 C* M2 PL14A 6 T* M1 PL15A 6 T* N1 PL15B 6 C* M6 PL15C 6 T M4 PL15D 6 C VCCIO6 VCCIO6 6 GND GNDIO6 6 P1 PL16A 6 T* P2 PL16B 6 C* N3 PL16C 6 T N4 PL16D 6 C GND GND — T1 PL17A 6 LLM0_PLLT_FB_A T* R1 PL17B 6 LLM0_PLLC_FB_A C* P3 PL17C 6 T N5 PL17D 6 C R3 PL18A 6 LLM0_PLLT_IN_A T* R2 PL18B 6 LLM0_PLLC_IN_A C* P4 PL19A 6 T N6 PL19B 6 C U1 PL20A 6 T VCCIO6 VCCIO6 6 GND GNDIO6 6 GND GNDIO5 5 VCCIO5 VCCIO5 5 4-27
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential T2 PL20B 6 C P6 TMS 5 TMS V1 PB2A 5 T U2 PB2B 5 C T3 PB2C 5 T N7 TCK 5 TCK R4 PB2D 5 C R5 PB3A 5 T T4 PB3B 5 C VCC VCC — R6 PB3C 5 T P7 PB3D 5 C U3 PB4A 5 T T5 PB4B 5 C V2 PB4C 5 T N8 TDO 5 TDO V3 PB4D 5 C T6 PB5A 5 T GND GNDIO5 5 VCCIO5 VCCIO5 5 U4 PB5B 5 C P8 PB5C 5 T T7 PB5D 5 C V4 TDI 5 TDI R8 PB6A 5 T N9 PB6B 5 C U5 PB6C 5 T V5 PB6D 5 C U6 PB7A 5 T VCC VCC — V6 PB7B 5 C P9 PB7C 5 T T8 PB7D 5 C U7 PB8A 5 T V7 PB8B 5 C M10 VCCAUX — U8 PB8C 5 T V8 PB8D 5 C VCCIO5 VCCIO5 5 GND GNDIO5 5 T9 PB8E 5 T U9 PB8F 5 C V9 PB9A 4 T 4-28
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential V10 PB9B 4 C N10 PB9C 4 T R10 PB9D 4 C P10 PB10F 4 PCLK4_1*** C T10 PB10E 4 T U10 PB10D 4 C V11 PB10C 4 T U11 PB10B 4 PCLK4_0*** C VCCIO4 VCCIO4 4 GND GNDIO4 4 T11 PB10A 4 T U12 PB11A 4 T R11 PB11B 4 C GND GND — T12 PB11C 4 T P11 PB11D 4 C V12 PB12A 4 T V13 PB12B 4 C R12 PB12C 4 T N11 PB12D 4 C U13 PB12E 4 T VCCIO4 VCCIO4 4 GND GNDIO4 4 V14 PB12F 4 C T13 PB13A 4 T P12 PB13B 4 C R13 PB13C 4 T N12 PB13D 4 C V15 PB14A 4 T U14 PB14B 4 C V16 PB14C 4 T GND GND — T14 PB14D 4 C U15 PB15A 4 T V17 PB15B 4 C P13** SLEEPN — SLEEPN T15 PB15D 4 U16 PB16A 4 T V18 PB16B 4 C N13 PB16C 4 T R14 PB16D 4 C VCCIO4 VCCIO4 4 GND GNDIO4 4 4-29
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential GND GNDIO3 3 VCCIO3 VCCIO3 3 P15 PR20B 3 C N14 PR20A 3 T N15 PR19B 3 C M13 PR19A 3 T R15 PR18B 3 C* T16 PR18A 3 T* N16 PR17D 3 C M14 PR17C 3 T U17 PR17B 3 C* VCC VCC — U18 PR17A 3 T* R17 PR16D 3 C R16 PR16C 3 T P16 PR16B 3 C* VCCIO3 VCCIO3 3 GND GNDIO3 3 P17 PR16A 3 T* L13 PR15D 3 C M15 PR15C 3 T T17 PR15B 3 C* T18 PR15A 3 T* L14 PR14D 3 C L15 PR14C 3 T R18 PR14B 3 C* P18 PR14A 3 T* GND GND — K15 PR13D 3 C K13 PR13C 3 T N17 PR13B 3 C* N18 PR13A 3 T* K16 PR12D 3 C K14 PR12C 3 T M16 PR12B 3 C* L16 PR12A 3 T* GND GNDIO3 3 VCCIO3 VCCIO3 3 J16 PR11D 3 C J14 PR11C 3 T M17 PR11B 3 C* L17 PR11A 3 T* J15 PR10D 2 C 4-30
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential J13 PR10C 2 T M18 PR10B 2 C* L18 PR10A 2 T* GND GNDIO2 2 VCCIO2 VCCIO2 2 H16 PR9D 2 C H14 PR9C 2 T K18 PR9B 2 C* J18 PR9A 2 T* J17 PR8D 2 C VCC VCC — H18 PR8C 2 T H17 PR8B 2 C* G17 PR8A 2 T* H13 PR7D 2 C H15 PR7C 2 T G18 PR7B 2 C* F18 PR7A 2 T* G14 PR6D 2 C G16 PR6C 2 T VCCIO2 VCCIO2 2 GND GNDIO2 2 E18 PR6B 2 C* F17 PR6A 2 T* G13 PR5D 2 C G15 PR5C 2 T E17 PR5B 2 C* E16 PR5A 2 T* GND GND — F15 PR4D 2 C E15 PR4C 2 T D17 PR4B 2 C* D18 PR4A 2 T* B18 PR3D 2 C C18 PR3C 2 T C16 PR3B 2 C* D16 PR3A 2 T* C17 PR2B 2 C D15 PR2A 2 T VCCIO2 VCCIO2 2 GND GNDIO2 2 GND GNDIO1 1 VCCIO1 VCCIO1 1 4-31
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential E13 PT16D 1 C C15 PT16C 1 T F13 PT16B 1 C D14 PT16A 1 T A18 PT15D 1 C B17 PT15C 1 T A16 PT15B 1 C A17 PT15A 1 T VCC VCC — D13 PT14D 1 C F12 PT14C 1 T C14 PT14B 1 C E12 PT14A 1 T C13 PT13D 1 C B16 PT13C 1 T B15 PT13B 1 C A15 PT13A 1 T VCCIO1 VCCIO1 1 GND GNDIO1 1 B14 PT12F 1 C A14 PT12E 1 T D12 PT12D 1 C F11 PT12C 1 T B13 PT12B 1 C A13 PT12A 1 T C12 PT11D 1 C GND GND — B12 PT11C 1 T E11 PT11B 1 C D11 PT11A 1 T C11 PT10F 1 C A12 PT10E 1 T VCCIO1 VCCIO1 1 GND GNDIO1 1 F10 PT10D 1 C D10 PT10C 1 T B11 PT10B 1 PCLK1_1*** C A11 PT10A 1 T E10 PT9D 1 C C10 PT9C 1 T D9 PT9B 1 PCLK1_0*** C E9 PT9A 1 T B10 PT8F 0 C 4-32
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential A10 PT8E 0 T VCCIO0 VCCIO0 0 GND GNDIO0 0 A9 PT8D 0 C C9 PT8C 0 T B9 PT8B 0 C F9 VCCAUX — A8 PT8A 0 T B8 PT7D 0 C C8 PT7C 0 T VCC VCC — A7 PT7B 0 C B7 PT7A 0 T A6 PT6A 0 T B6 PT6B 0 C D8 PT6C 0 T F8 PT6D 0 C C7 PT6E 0 T E8 PT6F 0 C D7 PT5D 0 C VCCIO0 VCCIO0 0 GND GNDIO0 0 E7 PT5C 0 T A5 PT5B 0 C C6 PT5A 0 T B5 PT4A 0 T A4 PT4B 0 C D6 PT4C 0 T F7 PT4D 0 C B4 PT4E 0 T GND GND — C5 PT4F 0 C F6 PT3D 0 C E5 PT3C 0 T E6 PT3B 0 C D5 PT3A 0 T A3 PT2D 0 C C4 PT2C 0 T A2 PT2B 0 C B2 PT2A 0 T VCCIO0 VCCIO0 0 GND GNDIO0 0 E14 GND — 4-33
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential F16 GND — H10 GND — H11 GND — H8 GND — H9 GND — J10 GND — J11 GND — J4 GND — J8 GND — J9 GND — K10 GND — K11 GND — K17 GND — K8 GND — K9 GND — L10 GND — L11 GND — L8 GND — L9 GND — N2 GND — P14 GND — P5 GND — R7 GND — F14 VCC — G11 VCC — G9 VCC — H7 VCC — L7 VCC — M9 VCC — H6 VCCIO7 7 J7 VCCIO7 7 M7 VCCIO6 6 K7 VCCIO6 6 M8 VCCIO5 5 R9 VCCIO5 5 M12 VCCIO4 4 M11 VCCIO4 4 L12 VCCIO3 3 K12 VCCIO3 3 J12 VCCIO2 2 H12 VCCIO2 2 G12 VCCIO1 1 G10 VCCIO1 1 4-34
Pinout Information MachXO Family Data Sheet LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.) LCMXO2280 Ball Number Ball Function Bank Dual Function Differential G8 VCCIO0 0 G7 VCCIO0 0 * Supports true LVDS outputs. ** NC for “E” devices. *** Primary clock inputs are single-ended. 4-35
Pinout Information MachXO Family Data Sheet Thermal Management Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values. For Further Information For further information regarding Thermal Management, refer to the following: (cid:129) Thermal Management document (cid:129) TN1090 - Power Estimation and Management for MachXO Devices (cid:129) Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from www.latticesemi.com/software 4-36
MachXO Family Data Sheet Ordering Information June 2017 Data Sheet DS1002 Part Number Description LCMXO XXXX X – X XXXXXX X XX Device Family ES = Engineering Sample MachXO PLD Blank = Production Device Grade Logic Capacity C = Commercial 256 LUTs = 256 I = Industrial 640 LUTs = 640 1200 LUTs = 1200 Package 2280 LUTs = 2280 T100 = 100-pin TQFP T144 = 144-pin TQFP Supply Voltage M100 = 100-ball csBGA C = 1.8 V / 2.5 V / 3.3 V M132 = 132-ball csBGA E = 1.2 V B256 = 256-ball caBGA Note: Parts dual marked as described. FT256 = 256-ball ftBGA FT324 = 324-ball ftBGA TN100 = 100-pin Lead-Free TQFP TN144 = 144-pin Lead-Free TQFP MN100 = 100-ball Lead-Free csBGA MN132 = 132-ball Lead-Free csBGA BN256 = 256-ball Lead-Free caBGA FTN256 = 256-ball Lead-Free ftBGA FTN324 = 324-ball Lead-Free ftBGA Speed 3 = Slowest 4 5 = Fastest Ordering Information Note: MachXO devices are dual marked except the slowest commercial speed grade device. For example the com- mercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade. The slowest commercial speed grade does not have industrial markings. The markings appears as follows: LCMXO640E 4F256C-3I Datecode Dual Mark © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 5-1 DS1002 Ordering Information_01.9
Ordering Information MachXO Family Data Sheet Conventional Packaging Commercial Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256C-3T100C 256 1.8 V / 2.5 V / 3.3 V 78 -3 TQFP 100 COM LCMXO256C-4T100C 256 1.8 V / 2.5 V / 3.3 V 78 -4 TQFP 100 COM LCMXO256C-5T100C 256 1.8 V / 2.5 V / 3.3 V 78 -5 TQFP 100 COM LCMXO256C-3M100C 256 1.8V / 2.5 V / 3.3 V 78 -3 csBGA 100 COM LCMXO256C-4M100C 256 1.8 V / 2.5 V / 3.3 V 78 -4 csBGA 100 COM LCMXO256C-5M100C 256 1.8 V / 2.5 V / 3.3 V 78 -5 csBGA 100 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640C-3T100C 640 1.8 V / 2.5 V / 3.3 V 74 -3 TQFP 100 COM LCMXO640C-4T100C 640 1.8 V / 2.5 V / 3.3 V 74 -4 TQFP 100 COM LCMXO640C-5T100C 640 1.8 V / 2.5 V / 3.3 V 74 -5 TQFP 100 COM LCMXO640C-3M100C 640 1.8 V / 2.5 V / 3.3 V 74 -3 csBGA 100 COM LCMXO640C-4M100C 640 1.8 V / 2.5 V / 3.3 V 74 -4 csBGA 100 COM LCMXO640C-5M100C 640 1.8 V / 2.5 V / 3.3 V 74 -5 csBGA 100 COM LCMXO640C-3T144C 640 1.8 V / 2.5 V / 3.3 V 113 -3 TQFP 144 COM LCMXO640C-4T144C 640 1.8 V / 2.5 V / 3.3 V 113 -4 TQFP 144 COM LCMXO640C-5T144C 640 1.8 V / 2.5 V / 3.3 V 113 -5 TQFP 144 COM LCMXO640C-3M132C 640 1.8 V / 2.5 V / 3.3 V 101 -3 csBGA 132 COM LCMXO640C-4M132C 640 1.8 V / 2.5 V / 3.3 V 101 -4 csBGA 132 COM LCMXO640C-5M132C 640 1.8 V / 2.5 V / 3.3 V 101 -5 csBGA 132 COM LCMXO640C-3B256C 640 1.8 V / 2.5 V / 3.3 V 159 -3 caBGA 256 COM LCMXO640C-4B256C 640 1.8 V / 2.5 V / 3.3 V 159 -4 caBGA 256 COM LCMXO640C-5B256C 640 1.8 V / 2.5 V / 3.3 V 159 -5 caBGA 256 COM LCMXO640C-3FT256C 640 1.8 V / 2.5 V / 3.3 V 159 -3 ftBGA 256 COM LCMXO640C-4FT256C 640 1.8 V / 2.5 V / 3.3 V 159 -4 ftBGA 256 COM LCMXO640C-5FT256C 640 1.8 V / 2.5 V / 3.3 V 159 -5 ftBGA 256 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200C-3T100C 1200 1.8 V / 2.5 V / 3.3 V 73 -3 TQFP 100 COM LCMXO1200C-4T100C 1200 1.8 V / 2.5 V / 3.3 V 73 -4 TQFP 100 COM LCMXO1200C-5T100C 1200 1.8 V / 2.5 V / 3.3 V 73 -5 TQFP 100 COM LCMXO1200C-3T144C 1200 1.8 V / 2.5 V / 3.3 V 113 -3 TQFP 144 COM LCMXO1200C-4T144C 1200 1.8 V / 2.5 V / 3.3 V 113 -4 TQFP 144 COM LCMXO1200C-5T144C 1200 1.8 V / 2.5 V / 3.3 V 113 -5 TQFP 144 COM LCMXO1200C-3M132C 1200 1.8 V / 2.5 V / 3.3 V 101 -3 csBGA 132 COM LCMXO1200C-4M132C 1200 1.8 V / 2.5 V / 3.3 V 101 -4 csBGA 132 COM LCMXO1200C-5M132C 1200 1.8 V / 2.5 V / 3.3 V 101 -5 csBGA 132 COM LCMXO1200C-3B256C 1200 1.8 V / 2.5 V / 3.3 V 211 -3 caBGA 256 COM LCMXO1200C-4B256C 1200 1.8 V / 2.5 V / 3.3 V 211 -4 caBGA 256 COM LCMXO1200C-5B256C 1200 1.8 V / 2.5 V / 3.3 V 211 -5 caBGA 256 COM LCMXO1200C-3FT256C 1200 1.8 V / 2.5 V / 3.3 V 211 -3 ftBGA 256 COM LCMXO1200C-4FT256C 1200 1.8 V / 2.5 V / 3.3 V 211 -4 ftBGA 256 COM LCMXO1200C-5FT256C 1200 1.8 V / 2.5 V / 3.3 V 211 -5 ftBGA 256 COM 5-2
Ordering Information MachXO Family Data Sheet Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280C-3T100C 2280 1.8 V / 2.5 V / 3.3 V 73 -3 TQFP 100 COM LCMXO2280C-4T100C 2280 1.8 V / 2.5 V / 3.3 V 73 -4 TQFP 100 COM LCMXO2280C-5T100C 2280 1.8 V / 2.5 V / 3.3 V 73 -5 TQFP 100 COM LCMXO2280C-3T144C 2280 1.8 V / 2.5 V / 3.3 V 113 -3 TQFP 144 COM LCMXO2280C-4T144C 2280 1.8 V / 2.5 V / 3.3 V 113 -4 TQFP 144 COM LCMXO2280C-5T144C 2280 1.8 V / 2.5 V / 3.3 V 113 -5 TQFP 144 COM LCMXO2280C-3M132C 2280 1.8 V / 2.5 V / 3.3 V 101 -3 csBGA 132 COM LCMXO2280C-4M132C 2280 1.8 V / 2.5 V / 3.3 V 101 -4 csBGA 132 COM LCMXO2280C-5M132C 2280 1.8 V / 2.5 V / 3.3 V 101 -5 csBGA 132 COM LCMXO2280C-3B256C 2280 1.8 V / 2.5 V / 3.3 V 211 -3 caBGA 256 COM LCMXO2280C-4B256C 2280 1.8 V / 2.5 V / 3.3 V 211 -4 caBGA 256 COM LCMXO2280C-5B256C 2280 1.8 V / 2.5 V / 3.3 V 211 -5 caBGA 256 COM LCMXO2280C-3FT256C 2280 1.8 V / 2.5 V / 3.3 V 211 -3 ftBGA 256 COM LCMXO2280C-4FT256C 2280 1.8 V / 2.5 V / 3.3 V 211 -4 ftBGA 256 COM LCMXO2280C-5FT256C 2280 1.8 V / 2.5 V / 3.3 V 211 -5 ftBGA 256 COM LCMXO2280C-3FT324C 2280 1.8 V / 2.5 V / 3.3 V 271 -3 ftBGA 324 COM LCMXO2280C-4FT324C 2280 1.8 V / 2.5 V / 3.3 V 271 -4 ftBGA 324 COM LCMXO2280C-5FT324C 2280 1.8 V / 2.5 V / 3.3 V 271 -5 ftBGA 324 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256E-3T100C 256 1.2 V 78 -3 TQFP 100 COM LCMXO256E-4T100C 256 1.2 V 78 -4 TQFP 100 COM LCMXO256E-5T100C 256 1.2 V 78 -5 TQFP 100 COM LCMXO256E-3M100C 256 1.2 V 78 -3 csBGA 100 COM LCMXO256E-4M100C 256 1.2 V 78 -4 csBGA 100 COM LCMXO256E-5M100C 256 1.2 V 78 -5 csBGA 100 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640E-3T100C 640 1.2 V 74 -3 TQFP 100 COM LCMXO640E-4T100C 640 1.2 V 74 -4 TQFP 100 COM LCMXO640E-5T100C 640 1.2 V 74 -5 TQFP 100 COM LCMXO640E-3M100C 640 1.2 V 74 -3 csBGA 100 COM LCMXO640E-4M100C 640 1.2 V 74 -4 csBGA 100 COM LCMXO640E-5M100C 640 1.2 V 74 -5 csBGA 100 COM LCMXO640E-3T144C 640 1.2 V 113 -3 TQFP 144 COM LCMXO640E-4T144C 640 1.2 V 113 -4 TQFP 144 COM LCMXO640E-5T144C 640 1.2 V 113 -5 TQFP 144 COM LCMXO640E-3M132C 640 1.2 V 101 -3 csBGA 132 COM LCMXO640E-4M132C 640 1.2 V 101 -4 csBGA 132 COM LCMXO640E-5M132C 640 1.2 V 101 -5 csBGA 132 COM LCMXO640E-3B256C 640 1.2 V 159 -3 caBGA 256 COM LCMXO640E-4B256C 640 1.2 V 159 -4 caBGA 256 COM LCMXO640E-5B256C 640 1.2 V 159 -5 caBGA 256 COM LCMXO640E-3FT256C 640 1.2 V 159 -3 ftBGA 256 COM LCMXO640E-4FT256C 640 1.2 V 159 -4 ftBGA 256 COM LCMXO640E-5FT256C 640 1.2 V 159 -5 ftBGA 256 COM 5-3
Ordering Information MachXO Family Data Sheet Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200E-3T100C 1200 1.2 V 73 -3 TQFP 100 COM LCMXO1200E-4T100C 1200 1.2 V 73 -4 TQFP 100 COM LCMXO1200E-5T100C 1200 1.2 V 73 -5 TQFP 100 COM LCMXO1200E-3T144C 1200 1.2 V 113 -3 TQFP 144 COM LCMXO1200E-4T144C 1200 1.2 V 113 -4 TQFP 144 COM LCMXO1200E-5T144C 1200 1.2 V 113 -5 TQFP 144 COM LCMXO1200E-3M132C 1200 1.2 V 101 -3 csBGA 132 COM LCMXO1200E-4M132C 1200 1.2 V 101 -4 csBGA 132 COM LCMXO1200E-5M132C 1200 1.2 V 101 -5 csBGA 132 COM LCMXO1200E-3B256C 1200 1.2 V 211 -3 caBGA 256 COM LCMXO1200E-4B256C 1200 1.2 V 211 -4 caBGA 256 COM LCMXO1200E-5B256C 1200 1.2 V 211 -5 caBGA 256 COM LCMXO1200E-3FT256C 1200 1.2 V 211 -3 ftBGA 256 COM LCMXO1200E-4FT256C 1200 1.2 V 211 -4 ftBGA 256 COM LCMXO1200E-5FT256C 1200 1.2 V 211 -5 ftBGA 256 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280E-3T100C 2280 1.2 V 73 -3 TQFP 100 COM LCMXO2280E-4T100C 2280 1.2 V 73 -4 TQFP 100 COM LCMXO2280E-5T100C 2280 1.2 V 73 -5 TQFP 100 COM LCMXO2280E-3T144C 2280 1.2 V 113 -3 TQFP 144 COM LCMXO2280E-4T144C 2280 1.2 V 113 -4 TQFP 144 COM LCMXO2280E-5T144C 2280 1.2 V 113 -5 TQFP 144 COM LCMXO2280E-3M132C 2280 1.2 V 101 -3 csBGA 132 COM LCMXO2280E-4M132C 2280 1.2 V 101 -4 csBGA 132 COM LCMXO2280E-5M132C 2280 1.2 V 101 -5 csBGA 132 COM LCMXO2280E-3B256C 2280 1.2 V 211 -3 caBGA 256 COM LCMXO2280E-4B256C 2280 1.2 V 211 -4 caBGA 256 COM LCMXO2280E-5B256C 2280 1.2 V 211 -5 caBGA 256 COM LCMXO2280E-3FT256C 2280 1.2 V 211 -3 ftBGA 256 COM LCMXO2280E-4FT256C 2280 1.2 V 211 -4 ftBGA 256 COM LCMXO2280E-5FT256C 2280 1.2 V 211 -5 ftBGA 256 COM LCMXO2280E-3FT324C 2280 1.2 V 271 -3 ftBGA 324 COM LCMXO2280E-4FT324C 2280 1.2 V 271 -4 ftBGA 324 COM LCMXO2280E-5FT324C 2280 1.2 V 271 -5 ftBGA 324 COM 5-4
Ordering Information MachXO Family Data Sheet Conventional Packaging Industrial Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256C-3T100I 256 1.8 V / 2.5 V / 3.3 V 78 -3 TQFP 100 IND LCMXO256C-4T100I 256 1.8 V / 2.5 V / 3.3 V 78 -4 TQFP 100 IND LCMXO256C-3M100I 256 1.8 V / 2.5 V / 3.3 V 78 -3 csBGA 100 IND LCMXO256C-4M100I 256 1.8 V / 2.5 V / 3.3 V 78 -4 csBGA 100 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640C-3T100I 640 1.8 V / 2.5 V / 3.3 V 74 -3 TQFP 100 IND LCMXO640C-4T100I 640 1.8 V / 2.5 V / 3.3 V 74 -4 TQFP 100 IND LCMXO640C-3M100I 640 1.8 V / 2.5 V / 3.3 V 74 -3 csBGA 100 IND LCMXO640C-4M100I 640 1.8 V / 2.5 V / 3.3 V 74 -4 csBGA 100 IND LCMXO640C-3T144I 640 1.8 V / 2.5 V / 3.3 V 113 -3 TQFP 144 IND LCMXO640C-4T144I 640 1.8 V / 2.5 V / 3.3 V 113 -4 TQFP 144 IND LCMXO640C-3M132I 640 1.8 V / 2.5 V / 3.3 V 101 -3 csBGA 132 IND LCMXO640C-4M132I 640 1.8 V / 2.5 V / 3.3 V 101 -4 csBGA 132 IND LCMXO640C-3B256I 640 1.8 V / 2.5 V / 3.3 V 159 -3 caBGA 256 IND LCMXO640C-4B256I 640 1.8 V / 2.5 V / 3.3 V 159 -4 caBGA 256 IND LCMXO640C-3FT256I 640 1.8 V / 2.5 V / 3.3 V 159 -3 ftBGA 256 IND LCMXO640C-4FT256I 640 1.8 V / 2.5 V / 3.3 V 159 -4 ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200C-3T100I 1200 1.8 V / 2.5 V / 3.3 V 73 -3 TQFP 100 IND LCMXO1200C-4T100I 1200 1.8 V / 2.5 V / 3.3 V 73 -4 TQFP 100 IND LCMXO1200C-3T144I 1200 1.8 V / 2.5 V / 3.3 V 113 -3 TQFP 144 IND LCMXO1200C-4T144I 1200 1.8 V / 2.5 V / 3.3 V 113 -4 TQFP 144 IND LCMXO1200C-3M132I 1200 1.8 V / 2.5 V / 3.3 V 101 -3 csBGA 132 IND LCMXO1200C-4M132I 1200 1.8 V / 2.5 V / 3.3 V 101 -4 csBGA 132 IND LCMXO1200C-3B256I 1200 1.8 V / 2.5 V / 3.3 V 211 -3 caBGA 256 IND LCMXO1200C-4B256I 1200 1.8 V / 2.5 V / 3.3 V 211 -4 caBGA 256 IND LCMXO1200C-3FT256I 1200 1.8 V / 2.5 V / 3.3 V 211 -3 ftBGA 256 IND LCMXO1200C-4FT256I 1200 1.8 V / 2.5 V / 3.3 V 211 -4 ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280C-3T100I 2280 1.8 V / 2.5 V / 3.3 V 73 -3 TQFP 100 IND LCMXO2280C-4T100I 2280 1.8 V / 2.5 V / 3.3 V 73 -4 TQFP 100 IND LCMXO2280C-3T144I 2280 1.8 V / 2.5 V / 3.3 V 113 -3 TQFP 144 IND LCMXO2280C-4T144I 2280 1.8 V / 2.5 V / 3.3 V 113 -4 TQFP 144 IND LCMXO2280C-3M132I 2280 1.8 V / 2.5 V / 3.3 V 101 -3 csBGA 132 IND LCMXO2280C-4M132I 2280 1.8 V / 2.5 V / 3.3 V 101 -4 csBGA 132 IND LCMXO2280C-3B256I 2280 1.8 V / 2.5 V / 3.3 V 211 -3 caBGA 256 IND LCMXO2280C-4B256I 2280 1.8 V / 2.5 V / 3.3 V 211 -4 caBGA 256 IND LCMXO2280C-3FT256I 2280 1.8 V / 2.5 V / 3.3 V 211 -3 ftBGA 256 IND LCMXO2280C-4FT256I 2280 1.8 V / 2.5 V / 3.3 V 211 -4 ftBGA 256 IND LCMXO2280C-3FT324I 2280 1.8 V / 2.5 V / 3.3 V 271 -3 ftBGA 324 IND LCMXO2280C-4FT324I 2280 1.8 V / 2.5 V / 3.3 V 271 -4 ftBGA 324 IND 5-5
Ordering Information MachXO Family Data Sheet Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256E-3T100I 256 1.2 V 78 -3 TQFP 100 IND LCMXO256E-4T100I 256 1.2 V 78 -4 TQFP 100 IND LCMXO256E-3M100I 256 1.2 V 78 -3 csBGA 100 IND LCMXO256E-4M100I 256 1.2 V 78 -4 csBGA 100 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640E-3T100I 640 1.2 V 74 -3 TQFP 100 IND LCMXO640E-4T100I 640 1.2 V 74 -4 TQFP 100 IND LCMXO640E-3M100I 640 1.2 V 74 -3 csBGA 100 IND LCMXO640E-4M100I 640 1.2 V 74 -4 csBGA 100 IND LCMXO640E-3T144I 640 1.2 V 113 -3 TQFP 144 IND LCMXO640E-4T144I 640 1.2 V 113 -4 TQFP 144 IND LCMXO640E-3M132I 640 1.2 V 101 -3 csBGA 132 IND LCMXO640E-4M132I 640 1.2 V 101 -4 csBGA 132 IND LCMXO640E-3B256I 640 1.2 V 159 -3 caBGA 256 IND LCMXO640E-4B256I 640 1.2 V 159 -4 caBGA 256 IND LCMXO640E-3FT256I 640 1.2 V 159 -3 ftBGA 256 IND LCMXO640E-4FT256I 640 1.2 V 159 -4 ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200E-3T100I 1200 1.2 V 73 -3 TQFP 100 IND LCMXO1200E-4T100I 1200 1.2 V 73 -4 TQFP 100 IND LCMXO1200E-3T144I 1200 1.2 V 113 -3 TQFP 144 IND LCMXO1200E-4T144I 1200 1.2 V 113 -4 TQFP 144 IND LCMXO1200E-3M132I 1200 1.2 V 101 -3 csBGA 132 IND LCMXO1200E-4M132I 1200 1.2 V 101 -4 csBGA 132 IND LCMXO1200E-3B256I 1200 1.2 V 211 -3 caBGA 256 IND LCMXO1200E-4B256I 1200 1.2 V 211 -4 caBGA 256 IND LCMXO1200E-3FT256I 1200 1.2 V 211 -3 ftBGA 256 IND LCMXO1200E-4FT256I 1200 1.2 V 211 -4 ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280E-3T100I 2280 1.2 V 73 -3 TQFP 100 IND LCMXO2280E-4T100I 2280 1.2 V 73 -4 TQFP 100 IND LCMXO2280E-3T144I 2280 1.2 V 113 -3 TQFP 144 IND LCMXO2280E-4T144I 2280 1.2 V 113 -4 TQFP 144 IND LCMXO2280E-3M132I 2280 1.2 V 101 -3 csBGA 132 IND LCMXO2280E-4M132I 2280 1.2 V 101 -4 csBGA 132 IND LCMXO2280E-3B256I 2280 1.2 V 211 -3 caBGA 256 IND LCMXO2280E-4B256I 2280 1.2 V 211 -4 caBGA 256 IND LCMXO2280E-3FT256I 2280 1.2 V 211 -3 ftBGA 256 IND LCMXO2280E-4FT256I 2280 1.2 V 211 -4 ftBGA 256 IND LCMXO2280E-3FT324I 2280 1.2 V 271 -3 ftBGA 324 IND LCMXO2280E-4FT324I 2280 1.2 V 271 -4 ftBGA 324 IND 5-6
Ordering Information MachXO Family Data Sheet Lead-Free Packaging Commercial Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256C-3TN100C 256 1.8 V / 2.5 V / 3.3 V 78 -3 Lead-Free TQFP 100 COM LCMXO256C-4TN100C 256 1.8 V / 2.5 V / 3.3 V 78 -4 Lead-Free TQFP 100 COM LCMXO256C-5TN100C 256 1.8 V / 2.5 V / 3.3 V 78 -5 Lead-Free TQFP 100 COM LCMXO256C-3MN100C 256 1.8 V / 2.5 V / 3.3 V 78 -3 Lead-Free csBGA 100 COM LCMXO256C-4MN100C 256 1.8 V / 2.5 V / 3.3 V 78 -4 Lead-Free csBGA 100 COM LCMXO256C-5MN100C 256 1.8 V / 2.5 V / 3.3 V 78 -5 Lead-Free csBGA 100 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640C-3TN100C 640 1.8 V / 2.5 V / 3.3 V 74 -3 Lead-Free TQFP 100 COM LCMXO640C-4TN100C 640 1.8 V / 2.5 V / 3.3 V 74 -4 Lead-Free TQFP 100 COM LCMXO640C-5TN100C 640 1.8 V / 2.5 V / 3.3 V 74 -5 Lead-Free TQFP 100 COM LCMXO640C-3MN100C 640 1.8 V / 2.5 V / 3.3 V 74 -3 Lead-Free csBGA 100 COM LCMXO640C-4MN100C 640 1.8 V / 2.5 V / 3.3 V 74 -4 Lead-Free csBGA 100 COM LCMXO640C-5MN100C 640 1.8 V / 2.5 V / 3.3 V 74 -5 Lead-Free csBGA 100 COM LCMXO640C-3TN144C 640 1.8 V / 2.5 V / 3.3 V 113 -3 Lead-Free TQFP 144 COM LCMXO640C-4TN144C 640 1.8 V / 2.5 V / 3.3 V 113 -4 Lead-Free TQFP 144 COM LCMXO640C-5TN144C 640 1.8 V / 2.5 V / 3.3 V 113 -5 Lead-Free TQFP 144 COM LCMXO640C-3MN132C 640 1.8 V / 2.5 V / 3.3 V 101 -3 Lead-Free csBGA 132 COM LCMXO640C-4MN132C 640 1.8 V / 2.5 V / 3.3 V 101 -4 Lead-Free csBGA 132 COM LCMXO640C-5MN132C 640 1.8 V / 2.5 V / 3.3 V 101 -5 Lead-Free csBGA 132 COM LCMXO640C-3BN256C 640 1.8 V / 2.5 V / 3.3 V 159 -3 Lead-Free caBGA 256 COM LCMXO640C-4BN256C 640 1.8 V / 2.5 V / 3.3 V 159 -4 Lead-Free caBGA 256 COM LCMXO640C-5BN256C 640 1.8 V / 2.5 V / 3.3 V 159 -5 Lead-Free caBGA 256 COM LCMXO640C-3FTN256C 640 1.8 V / 2.5 V / 3.3 V 159 -3 Lead-Free ftBGA 256 COM LCMXO640C-4FTN256C 640 1.8 V / 2.5 V / 3.3 V 159 -4 Lead-Free ftBGA 256 COM LCMXO640C-5FTN256C 640 1.8 V / 2.5 V / 3.3 V 159 -5 Lead-Free ftBGA 256 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200C-3TN100C 1200 1.8 V / 2.5 V / 3.3 V 73 -3 Lead-Free TQFP 100 COM LCMXO1200C-4TN100C 1200 1.8 V / 2.5 V / 3.3 V 73 -4 Lead-Free TQFP 100 COM LCMXO1200C-5TN100C 1200 1.8 V / 2.5 V / 3.3 V 73 -5 Lead-Free TQFP 100 COM LCMXO1200C-3TN144C 1200 1.8 V / 2.5 V / 3.3 V 113 -3 Lead-Free TQFP 144 COM LCMXO1200C-4TN144C 1200 1.8 V / 2.5 V / 3.3 V 113 -4 Lead-Free TQFP 144 COM LCMXO1200C-5TN144C 1200 1.8 V / 2.5 V / 3.3 V 113 -5 Lead-Free TQFP 144 COM LCMXO1200C-3MN132C 1200 1.8 V / 2.5 V / 3.3 V 101 -3 Lead-Free csBGA 132 COM LCMXO1200C-4MN132C 1200 1.8 V / 2.5 V / 3.3 V 101 -4 Lead-Free csBGA 132 COM LCMXO1200C-5MN132C 1200 1.8 V / 2.5 V / 3.3 V 101 -5 Lead-Free csBGA 132 COM LCMXO1200C-3BN256C 1200 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free caBGA 256 COM LCMXO1200C-4BN256C 1200 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free caBGA 256 COM LCMXO1200C-5BN256C 1200 1.8 V / 2.5 V / 3.3 V 211 -5 Lead-Free caBGA 256 COM LCMXO1200C-3FTN256C 1200 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free ftBGA 256 COM LCMXO1200C-4FTN256C 1200 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free ftBGA 256 COM LCMXO1200C-5FTN256C 1200 1.8 V / 2.5 V / 3.3 V 211 -5 Lead-Free ftBGA 256 COM 5-7
Ordering Information MachXO Family Data Sheet Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280C-3TN100C 2280 1.8 V / 2.5 V / 3.3 V 73 -3 Lead-Free TQFP 100 COM LCMXO2280C-4TN100C 2280 1.8 V / 2.5 V / 3.3 V 73 -4 Lead-Free TQFP 100 COM LCMXO2280C-5TN100C 2280 1.8 V / 2.5 V / 3.3 V 73 -5 Lead-Free TQFP 100 COM LCMXO2280C-3TN144C 2280 1.8 V / 2.5 V / 3.3 V 113 -3 Lead-Free TQFP 144 COM LCMXO2280C-4TN144C 2280 1.8 V / 2.5 V / 3.3 V 113 -4 Lead-Free TQFP 144 COM LCMXO2280C-5TN144C 2280 1.8 V / 2.5 V / 3.3 V 113 -5 Lead-Free TQFP 144 COM LCMXO2280C-3MN132C 2280 1.8 V / 2.5 V / 3.3 V 101 -3 Lead-Free csBGA 132 COM LCMXO2280C-4MN132C 2280 1.8 V / 2.5 V / 3.3 V 101 -4 Lead-Free csBGA 132 COM LCMXO2280C-5MN132C 2280 1.8 V / 2.5 V / 3.3 V 101 -5 Lead-Free csBGA 132 COM LCMXO2280C-3BN256C 2280 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free caBGA 256 COM LCMXO2280C-4BN256C 2280 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free caBGA 256 COM LCMXO2280C-5BN256C 2280 1.8 V / 2.5 V / 3.3 V 211 -5 Lead-Free caBGA 256 COM LCMXO2280C-3FTN256C 2280 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free ftBGA 256 COM LCMXO2280C-4FTN256C 2280 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free ftBGA 256 COM LCMXO2280C-5FTN256C 2280 1.8 V / 2.5 V / 3.3 V 211 -5 Lead-Free ftBGA 256 COM LCMXO2280C-3FTN324C 2280 1.8 V / 2.5 V / 3.3 V 271 -3 Lead-Free ftBGA 324 COM LCMXO2280C-4FTN324C 2280 1.8 V / 2.5 V / 3.3 V 271 -4 Lead-Free ftBGA 324 COM LCMXO2280C-5FTN324C 2280 1.8 V / 2.5 V / 3.3 V 271 -5 Lead-Free ftBGA 324 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256E-3TN100C 256 1.2 V 78 -3 Lead-Free TQFP 100 COM LCMXO256E-4TN100C 256 1.2 V 78 -4 Lead-Free TQFP 100 COM LCMXO256E-5TN100C 256 1.2 V 78 -5 Lead-Free TQFP 100 COM LCMXO256E-3MN100C 256 1.2 V 78 -3 Lead-Free csBGA 100 COM LCMXO256E-4MN100C 256 1.2 V 78 -4 Lead-Free csBGA 100 COM LCMXO256E-5MN100C 256 1.2 V 78 -5 Lead-Free csBGA 100 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640E-3TN100C 640 1.2 V 74 -3 Lead-Free TQFP 100 COM LCMXO640E-4TN100C 640 1.2 V 74 -4 Lead-Free TQFP 100 COM LCMXO640E-5TN100C 640 1.2 V 74 -5 Lead-Free TQFP 100 COM LCMXO640E-3MN100C 640 1.2 V 74 -3 Lead-Free csBGA 100 COM LCMXO640E-4MN100C 640 1.2 V 74 -4 Lead-Free csBGA 100 COM LCMXO640E-5MN100C 640 1.2 V 74 -5 Lead-Free csBGA 100 COM LCMXO640E-3TN144C 640 1.2 V 113 -3 Lead-Free TQFP 144 COM LCMXO640E-4TN144C 640 1.2 V 113 -4 Lead-Free TQFP 144 COM LCMXO640E-5TN144C 640 1.2 V 113 -5 Lead-Free TQFP 144 COM LCMXO640E-3MN132C 640 1.2 V 101 -3 Lead-Free csBGA 132 COM LCMXO640E-4MN132C 640 1.2 V 101 -4 Lead-Free csBGA 132 COM LCMXO640E-5MN132C 640 1.2 V 101 -5 Lead-Free csBGA 132 COM LCMXO640E-3BN256C 640 1.2 V 159 -3 Lead-Free caBGA 256 COM LCMXO640E-4BN256C 640 1.2 V 159 -4 Lead-Free caBGA 256 COM LCMXO640E-5BN256C 640 1.2 V 159 -5 Lead-Free caBGA 256 COM LCMXO640E-3FTN256C 640 1.2 V 159 -3 Lead-Free ftBGA 256 COM LCMXO640E-4FTN256C 640 1.2 V 159 -4 Lead-Free ftBGA 256 COM LCMXO640E-5FTN256C 640 1.2 V 159 -5 Lead-Free ftBGA 256 COM 5-8
Ordering Information MachXO Family Data Sheet Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200E-3TN100C 1200 1.2 V 73 -3 Lead-Free TQFP 100 COM LCMXO1200E-4TN100C 1200 1.2 V 73 -4 Lead-Free TQFP 100 COM LCMXO1200E-5TN100C 1200 1.2 V 73 -5 Lead-Free TQFP 100 COM LCMXO1200E-3TN144C 1200 1.2 V 113 -3 Lead-Free TQFP 144 COM LCMXO1200E-4TN144C 1200 1.2 V 113 -4 Lead-Free TQFP 144 COM LCMXO1200E-5TN144C 1200 1.2 V 113 -5 Lead-Free TQFP 144 COM LCMXO1200E-3MN132C 1200 1.2 V 101 -3 Lead-Free csBGA 132 COM LCMXO1200E-4MN132C 1200 1.2 V 101 -4 Lead-Free csBGA 132 COM LCMXO1200E-5MN132C 1200 1.2 V 101 -5 Lead-Free csBGA 132 COM LCMXO1200E-3BN256C 1200 1.2 V 211 -3 Lead-Free caBGA 256 COM LCMXO1200E-4BN256C 1200 1.2 V 211 -4 Lead-Free caBGA 256 COM LCMXO1200E-5BN256C 1200 1.2 V 211 -5 Lead-Free caBGA 256 COM LCMXO1200E-3FTN256C 1200 1.2 V 211 -3 Lead-Free ftBGA 256 COM LCMXO1200E-4FTN256C 1200 1.2 V 211 -4 Lead-Free ftBGA 256 COM LCMXO1200E-5FTN256C 1200 1.2 V 211 -5 Lead-Free ftBGA 256 COM Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280E-3TN100C 2280 1.2 V 73 -3 Lead-Free TQFP 100 COM LCMXO2280E-4TN100C 2280 1.2 V 73 -4 Lead-Free TQFP 100 COM LCMXO2280E-5TN100C 2280 1.2 V 73 -5 Lead-Free TQFP 100 COM LCMXO2280E-3TN144C 2280 1.2 V 113 -3 Lead-Free TQFP 144 COM LCMXO2280E-4TN144C 2280 1.2 V 113 -4 Lead-Free TQFP 144 COM LCMXO2280E-5TN144C 2280 1.2 V 113 -5 Lead-Free TQFP 144 COM LCMXO2280E-3MN132C 2280 1.2 V 101 -3 Lead-Free csBGA 132 COM LCMXO2280E-4MN132C 2280 1.2 V 101 -4 Lead-Free csBGA 132 COM LCMXO2280E-5MN132C 2280 1.2 V 101 -5 Lead-Free csBGA 132 COM LCMXO2280E-3BN256C 2280 1.2 V 211 -3 Lead-Free caBGA 256 COM LCMXO2280E-4BN256C 2280 1.2 V 211 -4 Lead-Free caBGA 256 COM LCMXO2280E-5BN256C 2280 1.2 V 211 -5 Lead-Free caBGA 256 COM LCMXO2280E-3FTN256C 2280 1.2 V 211 -3 Lead-Free ftBGA 256 COM LCMXO2280E-4FTN256C 2280 1.2 V 211 -4 Lead-Free ftBGA 256 COM LCMXO2280E-5FTN256C 2280 1.2 V 211 -5 Lead-Free ftBGA 256 COM LCMXO2280E-3FTN324C 2280 1.2 V 271 -3 Lead-Free ftBGA 324 COM LCMXO2280E-4FTN324C 2280 1.2 V 271 -4 Lead-Free ftBGA 324 COM LCMXO2280E-5FTN324C 2280 1.2 V 271 -5 Lead-Free ftBGA 324 COM 5-9
Ordering Information MachXO Family Data Sheet Lead-Free Packaging Industrial Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256C-3TN100I 256 1.8 V / 2.5 V / 3.3 V 78 -3 Lead-Free TQFP 100 IND LCMXO256C-4TN100I 256 1.8 V / 2.5 V / 3.3 V 78 -4 Lead-Free TQFP 100 IND LCMXO256C-3MN100I 256 1.8 V / 2.5 V / 3.3 V 78 -3 Lead-Free csBGA 100 IND LCMXO256C-4MN100I 256 1.8 V / 2.5 V / 3.3 V 78 -4 Lead-Free csBGA 100 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640C-3TN100I 640 1.8 V / 2.5 V / 3.3 V 74 -3 Lead-Free TQFP 100 IND LCMXO640C-4TN100I 640 1.8 V / 2.5 V / 3.3 V 74 -4 Lead-Free TQFP 100 IND LCMXO640C-3MN100I 640 1.8 V / 2.5 V / 3.3 V 74 -3 Lead-Free csBGA 100 IND LCMXO640C-4MN100I 640 1.8 V / 2.5 V / 3.3 V 74 -4 Lead-Free csBGA 100 IND LCMXO640C-3TN144I 640 1.8 V / 2.5 V / 3.3 V 113 -3 Lead-Free TQFP 144 IND LCMXO640C-4TN144I 640 1.8 V / 2.5 V / 3.3 V 113 -4 Lead-Free TQFP 144 IND LCMXO640C-3MN132I 640 1.8 V / 2.5 V / 3.3 V 101 -3 Lead-Free csBGA 132 IND LCMXO640C-4MN132I 640 1.8 V / 2.5 V / 3.3 V 101 -4 Lead-Free csBGA 132 IND LCMXO640C-3BN256I 640 1.8 V / 2.5 V / 3.3 V 159 -3 Lead-Free caBGA 256 IND LCMXO640C-4BN256I 640 1.8 V / 2.5 V / 3.3 V 159 -4 Lead-Free caBGA 256 IND LCMXO640C-3FTN256I 640 1.8 V / 2.5 V / 3.3 V 159 -3 Lead-Free ftBGA 256 IND LCMXO640C-4FTN256I 640 1.8 V / 2.5 V / 3.3 V 159 -4 Lead-Free ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200C-3TN100I 1200 1.8 V / 2.5 V / 3.3 V 73 -3 Lead-Free TQFP 100 IND LCMXO1200C-4TN100I 1200 1.8 V / 2.5 V / 3.3 V 73 -4 Lead-Free TQFP 100 IND LCMXO1200C-3TN144I 1200 1.8 V / 2.5 V / 3.3 V 113 -3 Lead-Free TQFP 144 IND LCMXO1200C-4TN144I 1200 1.8 V / 2.5 V / 3.3 V 113 -4 Lead-Free TQFP 144 IND LCMXO1200C-3MN132I 1200 1.8 V / 2.5 V / 3.3 V 101 -3 Lead-Free csBGA 132 IND LCMXO1200C-4MN132I 1200 1.8 V / 2.5 V / 3.3 V 101 -4 Lead-Free csBGA 132 IND LCMXO1200C-3BN256I 1200 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free caBGA 256 IND LCMXO1200C-4BN256I 1200 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free caBGA 256 IND LCMXO1200C-3FTN256I 1200 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free ftBGA 256 IND LCMXO1200C-4FTN256I 1200 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280C-3TN100I 2280 1.8 V / 2.5 V / 3.3 V 73 -3 Lead-Free TQFP 100 IND LCMXO2280C-4TN100I 2280 1.8 V / 2.5 V / 3.3 V 73 -4 Lead-Free TQFP 100 IND LCMXO2280C-3TN144I 2280 1.8 V / 2.5 V / 3.3 V 113 -3 Lead-Free TQFP 144 IND LCMXO2280C-4TN144I 2280 1.8 V / 2.5 V / 3.3 V 113 -4 Lead-Free TQFP 144 IND LCMXO2280C-3MN132I 2280 1.8 V / 2.5 V / 3.3 V 101 -3 Lead-Free csBGA 132 IND LCMXO2280C-4MN132I 2280 1.8 V / 2.5 V / 3.3 V 101 -4 Lead-Free csBGA 132 IND LCMXO2280C-3BN256I 2280 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free caBGA 256 IND LCMXO2280C-4BN256I 2280 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free caBGA 256 IND LCMXO2280C-3FTN256I 2280 1.8 V / 2.5 V / 3.3 V 211 -3 Lead-Free ftBGA 256 IND LCMXO2280C-4FTN256I 2280 1.8 V / 2.5 V / 3.3 V 211 -4 Lead-Free ftBGA 256 IND LCMXO2280C-3FTN324I 2280 1.8 V / 2.5 V / 3.3 V 271 -3 Lead-Free ftBGA 324 IND LCMXO2280C-4FTN324I 2280 1.8 V / 2.5 V / 3.3 V 271 -4 Lead-Free ftBGA 324 IND 5-10
Ordering Information MachXO Family Data Sheet Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO256E-3TN100I 256 1.2 V 78 -3 Lead-Free TQFP 100 IND LCMXO256E-4TN100I 256 1.2 V 78 -4 Lead-Free TQFP 100 IND LCMXO256E-3MN100I 256 1.2 V 78 -3 Lead-Free csBGA 100 IND LCMXO256E-4MN100I 256 1.2 V 78 -4 Lead-Free csBGA 100 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO640E-3TN100I 640 1.2 V 74 -3 Lead-Free TQFP 100 IND LCMXO640E-4TN100I 640 1.2 V 74 -4 Lead-Free TQFP 100 IND LCMXO640E-3MN100I 640 1.2 V 74 -3 Lead-Free csBGA 100 IND LCMXO640E-4MN100I 640 1.2 V 74 -4 Lead-Free csBGA 100 IND LCMXO640E-3TN144I 640 1.2 V 113 -3 Lead-Free TQFP 144 IND LCMXO640E-4TN144I 640 1.2 V 113 -4 Lead-Free TQFP 144 IND LCMXO640E-3MN132I 640 1.2 V 101 -3 Lead-Free csBGA 132 IND LCMXO640E-4MN132I 640 1.2 V 101 -4 Lead-Free csBGA 132 IND LCMXO640E-3BN256I 640 1.2 V 159 -3 Lead-Free caBGA 256 IND LCMXO640E-4BN256I 640 1.2 V 159 -4 Lead-Free caBGA 256 IND LCMXO640E-3FTN256I 640 1.2 V 159 -3 Lead-Free ftBGA 256 IND LCMXO640E-4FTN256I 640 1.2 V 159 -4 Lead-Free ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO1200E-3TN100I 1200 1.2 V 73 -3 Lead-Free TQFP 100 IND LCMXO1200E-4TN100I 1200 1.2 V 73 -4 Lead-Free TQFP 100 IND LCMXO1200E-3TN144I 1200 1.2 V 113 -3 Lead-Free TQFP 144 IND LCMXO1200E-4TN144I 1200 1.2 V 113 -4 Lead-Free TQFP 144 IND LCMXO1200E-3MN132I 1200 1.2 V 101 -3 Lead-Free csBGA 132 IND LCMXO1200E-4MN132I 1200 1.2 V 101 -4 Lead-Free csBGA 132 IND LCMXO1200E-3BN256I 1200 1.2 V 211 -3 Lead-Free caBGA 256 IND LCMXO1200E-4BN256I 1200 1.2 V 211 -4 Lead-Free caBGA 256 IND LCMXO1200E-3FTN256I 1200 1.2 V 211 -3 Lead-Free ftBGA 256 IND LCMXO1200E-4FTN256I 1200 1.2 V 211 -4 Lead-Free ftBGA 256 IND Part Number LUTs Supply Voltage I/Os Grade Package Pins Temp. LCMXO2280E-3TN100I 2280 1.2 V 73 -3 Lead-Free TQFP 100 IND LCMXO2280E-4TN100I 2280 1.2 V 73 -4 Lead-Free TQFP 100 IND LCMXO2280E-3TN144I 2280 1.2 V 113 -3 Lead-Free TQFP 144 IND LCMXO2280E-4TN144I 2280 1.2 V 113 -4 Lead-Free TQFP 144 IND LCMXO2280E-3MN132I 2280 1.2 V 101 -3 Lead-Free csBGA 132 IND LCMXO2280E-4MN132I 2280 1.2 V 101 -4 Lead-Free csBGA 132 IND LCMXO2280E-3BN256I 2280 1.2 V 211 -3 Lead-Free caBGA 256 IND LCMXO2280E-4BN256I 2280 1.2 V 211 -4 Lead-Free caBGA 256 IND LCMXO2280E-3FTN256I 2280 1.2 V 211 -3 Lead-Free ftBGA 256 IND LCMXO2280E-4FTN256I 2280 1.2 V 211 -4 Lead-Free ftBGA 256 IND LCMXO2280E-3FTN324I 2280 1.2 V 271 -3 Lead-Free ftBGA 324 IND LCMXO2280E-4FTN324I 2280 1.2 V 271 -4 Lead-Free ftBGA 324 IND 5-11
MachXO Family Data Sheet Supplemental Information June 2017 Data Sheet DS1002 For Further Information A variety of technical notes for the MachXO family are available on the Lattice web site. (cid:129) TN1091, MachXO sysIO Usage Guide (cid:129) TN1089, MachXO sysCLOCK Design and Usage Guide (cid:129) TN1092, Memory Usage Guide for MachXO Devices (cid:129) TN1090, Power Estimation and Management for MachXO Devices (cid:129) TN1086, MachXO JTAG Programming and Configuration User’s Guide (cid:129) TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (cid:129) TN1097, MachXO Density Migration (cid:129) AN8066, Boundary Scan Testability with Lattice sysIO Capability For further information on interface standards refer to the following web sites: (cid:129) JEDEC Standards (LVTTL, LVCMOS): www.jedec.org (cid:129) PCI: www.pcisig.com © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 6-1 DS1002 Further Information_01.4
MachXO Family Data Sheet Revision History June 2017 Data Sheet DS1002 Revision History Date Version Section Change Summary June 2017 3.1 All Minor style/format changes. Architecture Clarified 'Off' Leakage reference in Figure 2-11, Characteristics of Nor- mal, Off and Sleep Modes. Added footnote. DC and Switching Updated MachXO256 and MachXO640 Hot Socketing Specifications Characteristics table – Changed I to I in footnote 3. PW PD Ordering Information Updated logo in markings. June 2013 03.0 All Updated document with new corporate logo. Architecture Architecture Overview – Added information on the state of the register on power up and after configuration. DC and Switching MachXO1200 and MachXO2280 Hot Socketing Specifications table – Characteristics Removed footnote 4. Added MachXO Programming/Erase Specifications table. July 2010 02.9 DC and Switching Updated sysCLOCK PLL Timing table. Characteristics June 2009 02.8 Introduction Added 0.8-mm 256-pin caBGA package to MachXO Family Selection Guide table. Pinout Information Added Logic Signal Connections table for 0.8-mm 256-pin caBGA pack- age. Ordering Information Updated Part Number Description diagram and Ordering Part Number tables with 0.8-mm 256-pin caBGA package information. November 2007 02.7 DC and Switching Added JTAG Port Timing Waveforms diagram. Characteristics Pinout Information Added Thermal Management text section. Supplemental Updated title list. Information August 2007 02.6 DC and Switching Updated sysIO Single-Ended DC Electrical Characteristics table. Characteristics February 2007 02.5 Architecture Updated EBR Asynchronous Reset section. December 2006 02.4 Architecture EBR Asynchronous Reset section added. Pinout Information Power Supply and NC table: Pin/Ball orientation footnotes added. November 2006 02.3 DC and Switching Corrections to MachXO “C” Sleep Mode Timing table - value for Characteristics t (400ns) changed from max. to min. Value for t WSLEEPN WAWAKE (100ns) changed from min. to max. Added Flash Download Time table. August 2006 02.2 Multiple Removed 256 fpBGA information for MachXO640. May 2006 02.1 Pinout Information Removed [LOC][0]_PLL_RST from Signal Description table. PCLK footnote has been added to all appropriate pins. © 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 7-1
Revision History MachXO Family Data Sheet Date Version Section Change Summary April 2006 02.0 Introduction Introduction paragraphs updated. Architecture Architecture Overview paragraphs updated. “Top View of the MachXO1200 Device” figure updated. “Top View of the MachXO640 Device” figure updated. “Top View of the MachXO256 Device” figure updated. “Slice Diagram” figure updated. Slice Signal Descriptions table updated. Routing section updated. sysCLOCK Phase Lockecd Loops (PLLs) section updated. PLL Diagram updated. PLL Signal Descriptions table updated. sysMEM Memory section has been updated. PIO Groups section has been updated. PIO section has been updated. MachXO PIO Block Diagram updated. Supported Input Standards table updated. MachXO Configuration and Programming diagram updated. DC and Switching Recommended Operating Conditions table - footnotes updated. Characteristics MachXO256 and MachXO640 Hot Socketing Specifications - footnotes updated. Added MachXO1200 and MachXO2280 Hot Socketing Specifications table. DC Electrical Characteristics, footnotes have been updated. Supply Current (Sleep Mode) table has been updated, removed "4W" references. Footnotes have been updated. Supply Current (Standby) table and associated footnotes updated. Intialization Supply Current table and footnotes updated. Programming and Erase Flash Supply Current table and associated footnotes have been updatd. Register-to-Register Performance table updated (rev. A 0.19). MachXO External Switching Characteristics updated (rev. A 0.19). MachXO Internal Timing Parameters updated (rev. A 0.19). MachXO Family Timing Adders updated (rev. A 0.19). sysCLOCK Timing updated (rev. A 0.19). MachXO "C" Sleep Mode Timing updated (A 0.19). JTAG Port Timing Specification updated (rev. A 0.19). Test Fixture Required Components table updated. Pinout Information Signal Descriptions have been updated. Pin Information Summary has been updated. Footnote has been added. Power Supply and NC Connection table has been updated. Logic Signal Connections have been updated (PCLKTx_x --> PCLKx_x) Ordering Information Removed "4W" references. Added 256-ftBGA Ordering Part Numbers for MachXO640. 7-2
Revision History MachXO Family Data Sheet Date Version Section Change Summary December 2005 01.3 DC and Switching Supply Current (Standby) table updated with LCMXO1200/2280 data. Characteristics Ordering Information Ordering Part Number section updated (added LCMXO2280C "4W"). November 2005 01.2 Pinout Information Added “Power Supply and NC Connections” summary information for LCMXO1200 and LCMXO2280 in 100 TQFP package. October 2005 01.1 Introduction Distributed RAM information in family table updated. Added footnote 1 - fpBGA packaging to the family selection guide. Architecture sysIO Buffer section updated. Hot Socketing section updated. Sleep Mode section updated. SLEEP Pin Characteristics section updated. Oscillator section updated. Security section updated. DC and Switching Recommended Operating Conditions table updated. Characteristics DC Electrical Characteristics table updated. Supply Current (Sleep Mode) table added with LCMXO256/640 data. Supply Current (Standby) table updated with LCMXO256/640 data. Initialization Supply Current table updated with LCMXO256/640 data. Programming and Erase Flash Supply Current table updated with LCMXO256/640 data. Register-to-Register Performance table updated (rev. A 0.16). External Switching Characteristics table updated (rev. A 0.16). Internal Timing Parameter table updated (rev. A 0.16). Family Timing Adders updated (rev. A 0.16). sysCLOCK Timingupdated (rev. A 0.16). MachXO "C" Sleep Mode Timing updated (A 0.16). JTAG Port Timing Specification updated (rev. A 0.16). Pinout Information SLEEPIN description updated. Pin Information Summary updated. Power Supply and NC Connection table has been updated. Logic Signal Connection section has been updated to include all devices/packages. Ordering Information Part Number Description section has been updated. Ordering Part Number section has been updated (added LCMXO256C/ LCMXO640C "4W"). Supplemental MachXO Density Migration Technical Note (TN1097) added. Information February 2005 01.0 — Initial release. 7-3
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: L attice: LCMXO640C-3FN256C LCMXO640C-5T144C LCMXO256C-3M100C LCMXO256C-3M100I LCMXO256C- 3MN100C LCMXO256C-3MN100I LCMXO256C-3T100C LCMXO256C-3T100I LCMXO256C-3TN100C LCMXO256C-3TN100I LCMXO256C-4M100C LCMXO256C-4M100I LCMXO256C-4MN100C LCMXO256C-4MN100I LCMXO256C-4T100C LCMXO256C-4T100I LCMXO256C-4TN100C LCMXO256C-4TN100I LCMXO256C-5M100C LCMXO256C-5MN100C LCMXO256C-5T100C LCMXO256C-5TN100C LCMXO256E-3M100C LCMXO256E-3M100I LCMXO256E-3MN100C LCMXO256E-3MN100I LCMXO256E-3T100C LCMXO256E-3T100I LCMXO256E-3TN100C LCMXO256E-3TN100I LCMXO256E-4M100C LCMXO256E-4M100I LCMXO256E-4MN100C LCMXO256E-4MN100I LCMXO256E-4T100C LCMXO256E-4T100I LCMXO256E-4TN100C LCMXO256E-4TN100I LCMXO256E-5M100C LCMXO256E-5MN100C LCMXO256E-5T100C LCMXO256E-5TN100C LCMXO640C-3F256C LCMXO640C-3F256I LCMXO640C-3FN256I LCMXO640C-3M100C LCMXO640C-3M100I LCMXO640C-3M132C LCMXO640C-3M132I LCMXO640C-3MN100C LCMXO640C-3MN100I LCMXO640C-3MN132C LCMXO640C-3MN132I LCMXO640C- 3T100C LCMXO640C-3T100I LCMXO640C-3T144I LCMXO640C-3TN100C LCMXO640C-3TN100I LCMXO640C- 3TN144C LCMXO640C-3TN144I LCMXO640C-4F256C LCMXO640C-4F256I LCMXO640C-4FN256C LCMXO640C- 4FN256I LCMXO640C-4M100C LCMXO640C-4M100I LCMXO640C-4M132C LCMXO640C-4M132I LCMXO640C- 4MN100C LCMXO640C-4MN100I LCMXO640C-4MN132C LCMXO640C-4MN132I LCMXO640C-4T100C LCMXO640C-4T100I LCMXO640C-4T144I LCMXO640C-4TN100C LCMXO640C-4TN100I LCMXO640C-4TN144I LCMXO640C-5F256C LCMXO640C-5FN256C LCMXO640C-5M100C LCMXO640C-5M132C LCMXO640C-5MN100C LCMXO640C-5MN132C LCMXO640C-5T100C LCMXO640C-5TN100C LCMXO640E-3F256C LCMXO640E-3F256I LCMXO640E-3FN256C LCMXO640E-3FN256I LCMXO640E-3M100C LCMXO640E-3M100I LCMXO640E-3M132C LCMXO640E-3M132I LCMXO640E-3MN100C LCMXO640E-3MN100I LCMXO640E-3MN132C LCMXO640E- 3MN132I LCMXO640E-3T100C LCMXO640E-3T100I