图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: LC5256MV-5FN256C
  • 制造商: Lattice
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

LC5256MV-5FN256C产品简介:

ICGOO电子元器件商城为您提供LC5256MV-5FN256C由Lattice设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 LC5256MV-5FN256C价格参考。LatticeLC5256MV-5FN256C封装/规格:嵌入式 - CPLD(复杂可编程逻辑器件), 。您可以下载LC5256MV-5FN256C参考资料、Datasheet数据手册功能说明书,资料中有LC5256MV-5FN256C 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC CPLD 256MC 5NS 256FPBGA

产品分类

嵌入式 - CPLD(复杂可编程逻辑器件)

I/O数

141

品牌

Lattice Semiconductor Corporation

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

LC5256MV-5FN256C

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

ispXPLD® 5000MV

供应商器件封装

256-FPBGA(17x17)

其它名称

220-1722
LC5256MV-5FN256C-ND
LC5256MV5FN256C

包装

托盘

可编程类型

系统内可编程

安装类型

表面贴装

宏单元数

256

封装/外壳

256-BGA

工作温度

0°C ~ 90°C

延迟时间tpd(1)最大值

5.0ns

栅极数

-

标准包装

90

电源电压-内部

3 V ~ 3.6 V

逻辑元件/块数

8

推荐商品

型号:EPM7128STC100-15N

品牌:Intel

产品名称:集成电路(IC)

获取报价

型号:LC4064ZE-7TN48I

品牌:Lattice Semiconductor Corporation

产品名称:集成电路(IC)

获取报价

型号:XC95288-15HQ208C

品牌:Xilinx Inc.

产品名称:集成电路(IC)

获取报价

型号:XC2C128-7VQ100I

品牌:Xilinx Inc.

产品名称:集成电路(IC)

获取报价

型号:EPM570F256I5

品牌:Intel

产品名称:集成电路(IC)

获取报价

型号:LC4064B-5T44C

品牌:Lattice Semiconductor Corporation

产品名称:集成电路(IC)

获取报价

型号:XC2C32A-6QFG32I

品牌:Xilinx Inc.

产品名称:集成电路(IC)

获取报价

型号:LC4256C-5TN100C

品牌:Lattice Semiconductor Corporation

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
LC5256MV-5FN256C 相关产品

LC4512V-35FTN256C

品牌:Lattice Semiconductor Corporation

价格:

XC95288XV-10FG256C

品牌:Xilinx Inc.

价格:

EPM7160STC100-6

品牌:Intel

价格:

M4A3-256/160-12YNI

品牌:Lattice Semiconductor Corporation

价格:

LC4064C-5TN48C

品牌:Lattice Semiconductor Corporation

价格:

GAL16V8D-25QPNI

品牌:Lattice Semiconductor Corporation

价格:

EPM7128AETC144-7

品牌:Intel

价格:

XC9536XL-7PCG44C

品牌:Xilinx Inc.

价格:

PDF Datasheet 数据手册内容提取

® ispXPLD 5000MX Device Datasheet June 2010 Select Devices Discontinued! Product Change Notifications (PCNs) #09-10 has been issued to discontinue select devices in this data sheet. The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status. Product Line Ordering Part Number Product Status Reference PCN LC5256MV-4F256C LC5256MV-4FN256C LC5256MV-5F256C LC5256MV-5FN256C LC5256MV-75F256C LC5256MV Active / Orderable LC5256MV-75FN256C LC5256MV-5F256I LC5256MV-5FN256I LC5256MV-75F256I LC5256MV-75FN256I LC5256MB-4F256C LC5256MB-4FN256C LC5256MB-5F256C LC5256MB-5FN256C LC5256MB-75F256C LC5256MB Active / Orderable LC5256MB-75FN256C LC5256MB-5F256I LC5256MB-5FN256I LC5256MB-75F256I LC5256MB-75FN256I LC5256MC-4F256C LC5256MC-4FN256C LC5256MC-5F256C LC5256MC-5FN256C LC5256MC-75F256C LC5256MC Discontinued PCN#09-10 LC5256MC-75FN256C LC5256MC-5F256I LC5256MC-5FN256I LC5256MC-75F256I LC5256MC-75FN256I 5555 N.E. Moore Ct. (cid:122) Hillsboro, Oregon 97124-6421 (cid:122) Phone (503) 268-8000 (cid:122) FAX (503) 268-8347 Internet: http://www.latticesemi.com

Product Line Ordering Part Number Product Status Reference PCN LC5512MV-45Q208C LC5512MV-45QN208C LC5512MV-75Q208C LC5512MV-75QN208C LC5512MV-75Q208I LC5512MV-75QN208I LC5512MV-45F256C LC5512MV-45FN256C LC5512MV-75F256C LC5512MV Active / Orderable LC5512MV-75FN256C LC5512MV-75F256I LC5512MV-75FN256I LC5512MV-45F484C LC5512MV-45FN484C LC5512MV-75F484C LC5512MV-75FN484C LC5512MV-75F484I LC5512MV-75FN484I LC5512MB-45Q208C LC5512MB-45QN208C LC5512MB-75Q208C Discontinued PCN#09-10 LC5512MB-75QN208C LC5512MB-75Q208I LC5512MB-75QN208I LC5512MB-45F256C LC5512MB-45FN256C LC5512MB-75F256C LC5512MB Active / Orderable LC5512MB-75FN256C LC5512MB-75F256I LC5512MB-75FN256I LC5512MB-45F484C LC5512MB-45FN484C LC5512MB-75F484C Discontinued PCN#09-10 LC5512MB-75FN484C LC5512MB-75F484I LC5512MB-75FN484I LC5512MC-45Q208C LC5512MC-45QN208C LC5512MC-75Q208C LC5512MC-75QN208C LC5512MC-75Q208I LC5512MC-75QN208I LC5512MC Discontinued PCN#09-10 LC5512MC-45F256C LC5512MC-45FN256C LC5512MC-75F256C LC5512MC-75FN256C LC5512MC-75F256I LC5512MC-75FN256I 5555 N.E. Moore Ct. (cid:122) Hillsboro, Oregon 97124-6421 (cid:122) Phone (503) 268-8000 (cid:122) FAX (503) 268-8347 Internet: http://www.latticesemi.com

Product Line Ordering Part Number Product Status Reference PCN LC5512MC-45F484C LC5512MC-45FN484C LC5512MC LC5512MC-75F484C Discontinued PCN#09-10 (Cont’d) LC5512MC-75FN484C LC5512MC-75F484I LC5512MC-75FN484I LC5768MV-5F256C LC5768MV-5FN256C LC5768MV-75F256C LC5768MV-75FN256C LC5768MV-75F256I LC5768MV-75FN256I LC5768MV Active / Orderable LC5768MV-5F484C LC5768MV-5FN484C LC5768MV-75F484C LC5768MV-75FN484C LC5768MV-75F484I LC5768MV-75FN484I LC5768MB-5F256C LC5768MB-5FN256C LC5768MB-75F256C LC5768MB-75FN256C LC5768MB-75F256I LC5768MB-75FN256I LC5768MB Discontinued PCN#09-10 LC5768MB-5F484C LC5768MB-5FN484C LC5768MB-75F484C LC5768MB-75FN484C LC5768MB-75F484I LC5768MB-75FN484I LC5768MC-5F256C LC5768MC-5FN256C LC5768MC-75F256C LC5768MC-75FN256C LC5768MC-75F256I LC5768MC-75FN256I LC5768MC Discontinued PCN#09-10 LC5768MC-5F484C LC5768MC-5FN484C LC5768MC-75F484C LC5768MC-75FN484C LC5768MC-75F484I LC5768MC-75FN484I 5555 N.E. Moore Ct. (cid:122) Hillsboro, Oregon 97124-6421 (cid:122) Phone (503) 268-8000 (cid:122) FAX (503) 268-8347 Internet: http://www.latticesemi.com

Product Line Ordering Part Number Product Status Reference PCN LC51024MV-52F484C LC51024MV-52FN484C LC51024MV-75F484C LC51024MV-75FN484C LC51024MV-75F484I LC51024MV-75FN484I LC51024MV Active / Orderable LC51024MV-52F672C LC51024MV-52FN672C LC51024MV-75F672C LC51024MV-75FN672C LC51024MV-75F672I LC51024MV-75FN672I LC51024MB-52F484C LC51024MB-52FN484C LC51024MB-75F484C LC51024MB-75FN484C LC51024MB-75F484I LC51024MB-75FN484I LC51024MB Discontinued PCN#09-10 LC51024MB-52F672C LC51024MB-52FN672C LC51024MB-75F672C LC51024MB-75FN672C LC51024MB-75F672I LC51024MB-75FN672I LC51024MC-52F484C LC51024MC-52FN484C LC51024MC-75F484C LC51024MC-75FN484C LC51024MC-75F484I LC51024MC-75FN484I LC51024MC Discontinued PCN#09-10 LC51024MC-52F672C LC51024MC-52FN672C LC51024MC-75F672C LC51024MC-75FN672C LC51024MC-75F672I LC51024MC-75FN672I 5555 N.E. Moore Ct. (cid:122) Hillsboro, Oregon 97124-6421 (cid:122) Phone (503) 268-8000 (cid:122) FAX (503) 268-8347 Internet: http://www.latticesemi.com

ispXPLD TM 5000MX Family 3.3V, 2.5V and 1.8V In-System Programmable eXpanded Programmable Logic Device XPLD™ Family February 2010 Data Sheet S Features  Expanded In-System Programmability (ispXP™) (cid:129) Instant-on capability  Flexible Multi-Function Block (MFB) (cid:129) Single chip convenience E Architecture (cid:129) In-System Programmable via IEEE 1532 (cid:129) SuperWIDE™ logic (up to 136 inputs) Interface (cid:129) Arithmetic capability (cid:129) Infinitely reconfCigurable via IEEE 1532 or sys- (cid:129) Single- or Dual-port SRAM CONFIG™ microprocessor interface (cid:129) FIFO D (cid:129) Design security (cid:129) Ternary CAM  High SpeIed Operation  sysCLOCK™ PLL Timing Control (cid:129) 4.0nVs pin-to-pin delays, 300MHz f EMAX (cid:129) Multiply and divide between 1 and 32 (cid:129) Deterministic timing (cid:129) Clock shifting capability  Low Power Consumption (cid:129) External feedback capability E U (cid:129) Typical static power: 20 to 50mA (1.8V),  sysIO™ Interfaces 30 to 60mA (2.5/3.3V) (cid:129) LVCMOS 1.8, 2.5, 3.3V D (cid:129) 1.8V core for low dynamic power – Programmable impedance N  Easy System Integration – Hot-socketing (cid:129) 3.3V (5000MV), 2.5V (5000MB) and 1.8V – Flexible bus-maintenance (Pull-up, pull- (5000MC) power supply operation down, bus-keeper, or none) I – Open drain operation T (cid:129) 5V tolerant I/O for LVCMOS 3.3 and LVTTL T interfaces (cid:129) SSTL 2, 3 (I & II) (cid:129) IEEE 1149.1 interface for boundary scan testing (cid:129) HSTL (I, III, IV) C (cid:129) PCI 3.3 N(cid:129) sysIO quick configuration (cid:129) Density migration (cid:129) GTL+ (cid:129) Multiple density and package options (cid:129) LVDS E (cid:129) PQFP and fine pitch BGA packaging (cid:129) LVPECL O (cid:129) Lead-free package options (cid:129) LVTTL Table1.ispXPLD 5L000MX Family Selection Guide C ispXPLD 5256MX ispXPLD 5512MX ispXPLD 5768MX ispXPLD 51024MX E Macrocells 256 512 768 1,024 Multi-Function Blocks S 8 16 24 32 MaxSimum RAM Bits 128K 256K 384K 512K Maximum CAM Bits 48K 96K 144K 192K I sysCLOCK PLLs 2 2 2 2 D t (Propagation Delay) 4.0ns 4.5ns 5.0ns 5.2ns PD t (Register Set-up Time) 2.2ns 2.8ns 2.8ns 3.0ns S t (Register Clock to Out Time) 2.8ns 3.0ns 3.2ns 3.7ns CO f (Maximum Operating Frequency) 300MHz 275MHz 250MHz 250MHz MAX Functional Gates 75K 150K 225K 300K I/Os 141 149/193/253 193/317 317/381 Packages 208 PQFP 256 fpBGA 256 fpBGA 256 fpBGA 484 fpBGA 484 fpBGA 484 fpBGA 672 fpBGA © 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1 5kmx_12.4

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Figure1.ispXPLD 5000MX Block Diagram P R O G CCJV TDO TDI TMS TCK RAM GND CCV S ISP Port E VCCO0 VCCO3 VREF0 C VREF3 sysIO MFB MFB sysIO Bank 0 Bank 3 D O IO S S A A V E MFB MFB GCLCK0 E GCLCK3 Global U V CCP sysCLOCK Routing sysCLOCK GNDP PLL 0 Pool PLL 1 D(GRP) N GCLK1 GCLK2 sysIO sysIO Bank 1 MFB MFB Bank 2 I T RESET Optional O T O sysCONFIG S S GOE0 A A Interface GOE1 C N VREF1 MFB MFB VREF2 VCCO1 VCCO2 E O Introduction L The ispXPLD 5000MX family represents a new class of device, referred to as the eXpanded Programmable Logic C Devices (XPLDs). These devices extend the capability of Lattice’s popular SuperWIDE ispMACH 5000 architecture by providingE flexible memory capability. The family supports single- or dual-port SRAM, FIFO, and ternary CAM operation. Extra logic has also been included to allow efficient implementation of arithmetic functions. In addition, S sysCLOCK PLLs and sysIO interfaces provide support for the system-level needs of designers. S The devices provide designers with a convenient one-chip solution that provides logic availability at boot-up, design I security, and extreme reconfigurability. The use of advanced process technology provides industry-leading perfor- D mance with combinatorial propagation delay as low as 4.0ns, 2.8ns clock-to-out delay, 2.2ns set-up time, and oper- ating frequency up to 300MHz. This performance is coupled with low static and dynamic power consumption. The ispXPLD 5000MX architecture provides predictable deterministic timing. The availability of 3.3, 2.5 and 1.8V versions of these devices along with the flexibility of the sysIO interface helps users meet the challenge of today’s mixed voltage designs. Inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. Boundary scan testability further eases inte- gration into today’s complex systems. A variety of density and package options increase the likelihood of a good fit for a particular application. Table1 shows the members of the ispXPLD 5000MX family. Architecture The ispXPLD 5000MX devices consist of Multi-Function Blocks (MFBs) interconnected with a Global Routing Pool. Signals enter and leave the device via one of four sysIO banks. Figure1 shows the block diagram of the ispXPLD 2

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet 5000MX. Incoming signals may connect to the global routing pool or the registers in the MFBs. An Output Sharing Array (OSA) increases the number of I/O available to each MFB, allowing a complete function high-performance access to the I/O. There are four clock pins that drive four global clock nets within the device. Two sysCLOCK PLLs are provided to allow the synthesis of new clocks and control of clock skews. S Multi-Function Block (MFB) Each MFB in the ispXPLD 5000MX architecture can be configured in one of the six following modes. This provides E a flexible approach to implementing logic and memory that allows the designer to achieve the mix of functions that are required for a particular design, maximizing resource utilization. The six modes supported by the MFB are: C (cid:129) SuperWIDE Logic Mode (cid:129) True Dual-port SRAM Mode D (cid:129) Pseudo Dual-port SRAM Mode I (cid:129) Single-port SRAM Mode (cid:129) FIFO Mode V E (cid:129) Ternary CAM Mode The MFB consists of a multi-function array and associated roEuting. Depending on the chosen functions the multi- U function array uses up to 68 inputs from the GRP and the four global clock and reset signals. The array outputs data along with certain control functions to the macrocells. Output signals can be routed internally for use else- where in the device and to the sysIO banks for outputD. Figure2 shows the block diagram of the MFB. The various N configurations are described in more detail in the following sections. Figure2.MFB Block Diagram I T n e I T d To Routing K0CK1K2K3set sca CLCLCLCLRe Ca N E O Multifunction Array True Dual Port L RAM C(8,192 bit) Pseudo Dual E Port RAM s (16,384 bit) al S n A Single Port g S S (16R,3A84M bit) ack Si via O I b O d D FIFO ee o I/ (16,384 bit) F T 2 3 Ternary CAM (128*48) Logic (68 Input * 164 Product Term Array, 32 MC) PTOE Sharing Cascade Out 3

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Cascading For Wide Operation In several modes it is possible to cascade adjacent MFBs to support wider operation. Table2 details the different cascading options. There are chains of MFBs in each device which determine those MFBs that are adjacent for the purposes of cascading. Table3 indicates these chains. The ispXPLD 5000MX design tools automatically cascade S blocks if required by a particular design. Table2.Cascading Modes For Wide Support E Mode Cascading Function Input Width. Allows two MFBs to act as a 136-input block. Logic C Arithmetic. Allow the carry chain to pass between two MFBs. FIFO Memory Width Expansion. Allows MFBs to be cascaded for greater width support. D CAM Memory Width Expansion. Allows up to four MFBs to be cascaded for greater width support. I V Table3.MFB Cascade Chain E Device MFBs in Cascade Chain E A B C D U ispXPLD 5256MX H -> G -> F -> E A B C D E F DG H ispXPLD 5512MX N P NMLKJI D C B A X W V U T S R Q ispXPLD 5768MX E F G H I J K L M N IO P T H G F E D C B A AF TAE AD AC AB AA Z Y ispXPLD 51024MX I J K L M N O P Q R S T U V W X C N SuperWIDE Logic Mode In logic mode, each MFB cEontains 32 macrocells and a fully populated, programmable AND-array with 160 logic product terms and four control product terms. The MOFB has 68 inputs from the Global Routing Pool, which are available in both true and complement form for every product term. It is also possible to cascade adjacent MFBs to create a block with L136 inputs. The four control product terms are used for shared reset, clock, clock enable, and output enable functions. Figure3 shows theC overall structure of the MFB in logic mode while Figure4 provides a more detailed view from the perspective of a macrocell slice. E S S I D 4

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Figure3.MFB in SuperWIDE Logic Mode† CLK0CLK1CLK2CLK3Reset arry In To Routing C S E s 68 Inputs nal from Sig C Routing ayP-Term GateArray cells dback OSA D 68f rInopmuts AND Arr68 inputs 164 Dual-OR PT Sharing 32 Macro VMacrocell FeeITo I/O via E Adjacent E 32 U MFB D N Shared PT Clk Shared PT Clk En Shared PT Reset PTOE ISharing T T Carry Out Figure4.Macrocell Slice in LogicC Mode AND-Array N From From Carry-in GRP n-7 E PT OE to O I/O Block From L I/O Cell 68 C PTSA Bypass E Output to I/O Block or S Internal Control D Q (See Pin Table S PTSA for Assignments) I PT Clock SPhTa rCeEd Clk En D GRP R/L Shared PTCLK CLK0 CLK1 Clk CLK2 P R CLK3 PT Preset PT Reset Shared PT Reset Global Reset AND Array Dual-OR Array To Carry-out Macrocell n+7 5

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet AND-Array The programmable AND-Array consists of 68 inputs and 164 output product terms. The 68 inputs from the GRP are used to form 136 lines in the AND-Array (true and complement of the inputs). Each line in the array can be con- nected to any of the 164 output product terms via a wired AND. Each of the 160 logic product terms feed the Dual- S OR Array with the remaining four control product terms feeding the Shared PT Clock, Shared PT Clock Enable, Shared PT Reset and Shared PT OE. Starting with PT0 sets of five product terms form product term clusters. There is one product term cluster for every macrocell in the MFB. In addition to the four control product terms, the E first, third, fourth and fifth product terms of each cluster can be used as a PTOE, PT Clock, PT Preset and PT Reset, respectively. Figure5 is a graphical representation of the AND-Array. C Figure5.AND Array D In[0] In[66] I In[67] V E PT0 PT1 PT2 Cluster 0 E PT3 PT4 U D N PT155 PT156 PT157 Cluster 31 PT158 PT159 PT160 Shared clock enable PT161 ShIared clock T TPT162Shared reset PT163 Shared OE Note: C Indicates programmable fuse. N Dual-OR Array (Including Arithmetic Support) E The Dual-OR Array consists of 64 OR gates. There are two OR gates per macrocell in the MFB. These OR gates O are referred to as the Expandable PTSA OR gate and the PTSA-Bypass OR gate. The PTSA-Bypass OR gate receives its five inputs from the combination of product terms associated with the product term cluster. The PTSA- L Bypass OR gate feeds the macrocell directly for fast narrow logic. The Expandable PTSA OR gate receives five C inputs from the combination of product terms associated with the product term cluster. It also receives an additional input from thEe Expanded PTSA OR gate of the N-7 macrocell, where N is the number of the macrocell associated with the current OR gate. The Expandable PTSA OR gate feeds the PTSA for sharing with other product terms and S the N+7 Expandable PTSA OR gate. This allows cascading of multiple OR gates for wide functions. There is a smalSl timing adder for each level of expansion. Figure6 is a graphical representation of the Dual-OR Array. I The Dual-OR PT sharing array also contains logic to aid in the efficient implementation of arithmetic functions. This logic takes Carry In and Dallows the generation of Carry Out along with a SUM signal. Subtractors can be imple- mented using the two’s complement method. Carry is propagated from macrocells 0 to macrocell 31. Macrocell zero can have its carry input connected to the carry output of macrocell 31 in an adjacent MFB or it can be set to zero or one. If a macrocell is not used in an arithmetic function carry can bypass it. The carry chain flows is the same as that for PT cascading. 6

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Figure6.Dual-OR PT Sharing Array From Carry n-7 In To I/O Block From PT0 PT OE S E From PT1 To Macrocell PTSA Bypass C D I N To PTSA From PT2 V E To Macrocell PT Clock E U From PT3 To Macrocell D PT Preset N From PT4 I T T To Macrocell PT Reset To Carry C n+7 Out N Product Term Sharing Array The Product Term Sharing EArray (PTSA) consists of 32 inputs from the Dual-OR Array (Expandable PTSA OR) and O 32 outputs directly to the macrocells. Each output is the OR term of any combination of the seven Expandable PTSA OR terms connected to that output. Every Nth macrocell is connected to N-3, N-2, N-1, N, N+1, N+2 and N+3 PTSA OR termLs via a programmable connection. This wraps around the logic, for example, Macrocell 0 gets its logic from 29, 30, 31, 0, 1, 2, 3. The ExpaCndable PTSA OR used in conjunction with the PTSA allows wide func- tions to be implemented easily and efficiently. Without using the Expandable PTSA OR capability, the greatest E number of product terms that can be included in a single function with one pass of delay is 35. Up to 160 product terms can be included in a single fuSnction through the use of the expandable PTSA OR capability. Figure7 shows the graphical representation of the PTSA. S Figure7.Product Term ShIaring Array (PTSA) DPTSA OR 0 Macrocell 0 PTSA OR 1 Macrocell 1 PTSA OR 2 Macrocell 2 PTSA OR 3 PTSA OR 29 Macrocell 29 PTSA OR 30 Macrocell 30 PTSA OR 31 Macrocell 31 7

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Macrocell The 32 registered macrocells in the MFB are driven by the 32 outputs from the PTSA or the PTSA bypass. Each macrocell contains a programmable XOR gate, a programmable register/latch flip-flop and the necessary clocks and control logic to allow combinatorial or registered operation. All macrocells have an output that feeds the GRP. S Selected macrocells have an additional output that feeds the OSA and hence I/Os. This dual or concurrent output capability from the macrocell gives efficient use of the hardware resources. One output can be a registered function for example, while the other output can be an unrelated combinatorial function. A direct register input from the I/O E cell facilitates efficient use of the macrocell to construct high-speed input registers. Macrocell registers can be clocked from one of several global or product term clocks available on the device. A global and product term clock enable is also provided, eliminating the need to gate the clock to the macrocell registers directly. Reset and preset C for the macrocell register is provided from both global and product term signals. The macrocell register can be pro- grammed to operate as a D-type register or a D-type latch. Figure8 is a graphical representation of the mDacrocell. I Figure8.Macrocell V E From I/O Cell E PTSA Bypass U Output to D I/O Block N From PTSA D Q I PT Clock SharedT PT CE T Clk En C GRP N R/L Shared PT Clock CLK0 CELK1 Clk CLK2 O CLK3 P R PT Preset L PT Reset C Shared PT Reset Global Reset E Memory Modes S S The ispXPLD 5000MX architecture allows the MFB to be configured as a variety of memory blocks as detailed in Table4. The remainder of Ithis section details operation of each of the memory modes. Additional information regarding the memory modes can also be found in TN1030, Using Memory in ispXPLD 5000MX Devices. D 8

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Table4.MFB Memory Configuration Max. Configuration Memory Mode Size1 Dual-port 8,192 x 1 S 4,096 x 2 2,048 x 4 1,024 x 8 512 x 16 E Single-port, Pseudo Dual Port, FIFO 16,384 x1 8,192 x 2 4,096 x 4 C 2,048 x 8 1,024 x 16 D 512 x 32 I CAM 128 x 48 V E 1. Smaller configurations are possible. Input and Output E U The data input and control signals to a MFB in memory mode are generated from inputs from the routing. Data sig- nals are only available in the true non-inverted format. True or complemented versions of the inputs are available for generating the control signals. Data and flag outputDs are fed from the MFB to the GRP and OSA. Unused inputs N and outputs are not accessible in memory mode. ROM Operation In each of the memory modes it is possible to specify the power-on sItate of each bit in the memory array. This T allows the memory to be used as ROM if desired. T Increased Depth And Width C Designs that require a memory depth or width that is greater Nthan that support by a single MFB can be supported by cascading multiple blocks. For dual port, single port, and pseudo dual port modes additional width is easily pro- vided by sharing address lines. Additional depth is supported by multiplexing the RAM output. For FIFO and CAM E modes additional width is supported through the cascOading of MFBs. The Lattice design tools automatically combine blocks to support the memory size specified in the user’s design. L Bus Size Matching C All of the memory modes apart from CAM mode support different widths on each of the ports. The RAM bits are E mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies this mappSing scheme applies to each port. S I D 9

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet True Dual-Port SRAM Mode In Dual-Port SRAM Mode the multi-function array is configured as a dual port SRAM. In this mode two independent read/write ports access the same 8,192-bits of memory. Data widths of 1, 2, 4, 8, and 16 are supported by the MFB. Figure9 shows the block diagram of the dual port SRAM. S Write data, address, chip select and read/write signals are always synchronous (registered.) The output data sig- nals can be synchronous or asynchronous. Resets are asynchronous. All inputs on the same port share the same clock, clock enable, and reset selections. All outputs on the same port share the sameE clock, clock enable, and reset selections. Selections may be made independently between both inputs and outputs and ports. Table5 shows the possible sources for the clock, clock enable and initialization signals for the various registers. C Figure9.Dual-Port SRAM Block Diagram D I V CLK0 E PORT A CLK1 CLK2 Read/Write Address RD Data A CLK3 RESET (ADA[0:8-12]) E (DOA[0:0-15]) U Reset A (RSTA) Clock A (CLKA) D N Clk En A (CENA) Write/R ead A (WRA) Dual ‘ I 68 Inputs ChiTp Sel A (CSA [0:1]) ‘ Port T From SRAM Routing Write Data Array C(DIA[0:0,1,3,7,15]) N PORT B E Similar signals O RD Data B as PORT A: (DOB[0:0-15]) ADB[0:8-12], RSTB, L CLKB, CENB, WRB, CSB[0,1], DIB[0:0,1,3, 7,15] C E Table5.Register Clock, Clock EnSable, and Reset in Dual-Port SRAM Mode S Register Input Source I CLKA (CLKB) or one of the global clocks (CLK0 - CLK3). The selected sig- Clock nal can be inverted if desired. Address, Write Data, D Read Data, Read/ CENA (CENB) or one of the global clocks (CLK1 - CLK 2). The selected sig- Clock Enable Write, and Chip nal can be inverted if required. Select Created by the logical OR of the global reset signal and RSTA (RSTB). Reset RSTA (RSTB) can be inverted is desired. 10

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Pseudo Dual-Port SRAM Mode In Pseudo Dual-Port SRAM Mode the multi-function array is configured as a SRAM with an independent read and write ports that access the same 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB. Figure10 shows the block diagram of the Pseudo Dual-Port SRAM. S Write data, write address, chip select and write enable signals are always synchronous (registered). The read data and read address signals can be synchronous or asynchronous. Reset is asynchronous. All write signals share the same clock, and clock enable. All read signals share the same clock and clock enable.E Reset is shared by both read and write signals. Table6 shows the possible sources for the clock, clock enable and initialization signals for the various registers. C Figure10.Pseudo Dual-Port SRAM Block Diagram D I V CLK0 E CLK1 Read Address CLK2 Read Data CLK3 (RAD[0:8-13]) (RD[0:0-15]) RESET E U Write Address (WAD[0:8-13]) D Write Data 16,384 bit N (WD[0:0,1,3,7,15,31]) Pseudo 68 Inputs Write Enable (WE) ‘‘ DPuoartl From Write Clock (WCLK) I Routing T SRAM Write Chip Sel (WCS[0,1]) ArrayT Write Clk Enable (WCEN) C Read Clk Enable (RCEN)N Read Clock (RCLK) E Reset (RST) O L C Table6.Register Clock, Clock Enable, and Reset in Pseudo Dual-Port SRAM Mode E Register Input Source Clock S WCLK or one of the global clocks (CLK0 - CLK3). The selected signal can be inverted if desired. S Write Address, Write Clock Enable WCEN or one of the global clocks (CLK1 - CLK2). The selected signal can Data, Write Enable, I be inverted if desired. and Write Chip Select DReset Created by the logical OR of the global reset signal and RST. RST may have inversion if desired. Clock RCLK or one of the global clocks (CLK0 - CLK3). The selected signal can be inverted if desired. Read Data and Read Clock Enable RCEN or one of the global clocks (CLK1 - CLK2). The selected signal can Address be inverted if desired. Reset Created by the logical OR of the global reset signal and RST. RST may have inversion if desired. 11

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Single-Port SRAM Mode In Single-Port SRAM Mode the multi-function array is configured as a single-port SRAM. In this mode one ports accesses 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB. Figure11 shows the block diagram of the single-port SRAM. S Write data, address, chip select and read/write signals are always synchronous (registered.) The output data sig- nals can be synchronous or asynchronous. Reset is asynchronous. All signals share a common clock, clock enable, and reset. Table7 shows the possible sources for the clock, clock enable and resEet signals. Figure11.Single-Port SRAM Block Diagram C D I CLK0 CLK1 V CLK2 E CLK3 Read/Write Address Read Data RESET (AD[0-8:13]) (DO[0-0,31]) E Write Data U (DI[0-0,1,3,7,15,31]) Write/Read (WR) 16,384-Bit D ‘ 68 Inputs Clock (CLK) ‘SRAM N from Array Chip Select (CS0,1) Routing Clk Ena ble (CEN) I ResTet (RST) T C N E O Table7.Register Clock, Clock Enable, and Reset in Single-Port SRAM Mode L Register Input Source C Clock CLK or one of the global clocks (CLK0 - CLK3). Each of these signals can E be inverted if required. Address, Write Data, Read Data, Read/ Clock Enable CEN or one of the global clocks (CLK1 - CLK 2). Each of these signals can S Write, and Chip be inverted if required. SSelect Reset Created by the logical OR of the global reset signal and RST. RST is routed by the multifunction array from GRP, with inversion if desired. I D 12

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet FIFO Mode In FIFO Mode the multi-function array is configured as a FIFO (First In First Out) buffer with built in control. The read and write clocks can be different or the same dependent on the application. Four flags show the status of the FIFO; Full, Empty, Almost Full, and Almost Empty. The thresholds for Full, Almost full and Almost empty are pro- S grammable by the user. It is possible to reset the read pointer, allowing support of frame retransmit in communica- tions applications. If desired, the block can be used in show ahead mode allowing the early reading of the next read address. E In this mode one ports accesses 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB. Figure12 shows the block diagram of the FIFO. C Write data, write enable, flag outputs and read enable are synchronous. The Write Data, Almost Full and Full share D the same clock and clock enables. Read outputs are synchronous although these can be configured in look ahead mode. The Read Data, Empty and Almost Empty signals share the sameI clock and clock enables. Reset is shared by all signals. Table8 shows the possible sources for the clock, clockV enable and reset signals for the various reg- E isters. Figure12.FIFO Block Diagram E U CLK0 Write Enable (DWE) CCLLKK12 Write Clock (WCLK) N CLK3 FIFO RESET Reset (RST) FIFO Flags* TRReesa edt _CRloPc k(R (SRTCRLPK)) CLoongtircol AFAlmuIlmlol,o sEst mtE pFmtuplytl,,y T Read Enable (RE) C ‘ 68 Inputs ‘N From Routing E Write Data O 16,384-bit Read Data (DI[0:0-31]) SRAM (DO[0:0-31]) Array L *CControl logic can be duplicated in adjacent MFB in 32-bit mode E Table8.Register Clocks, Clock EnSables, and Initialization in FIFO Mode S Register Input Source Write Data, Clock WCILK or one of the global clocks (CLK0 - CLK3). Each of these signals can be inverted if required. Write Enable Clock DWE or one of the global clocks (CLK1 - CLK 2). Each of these signals can be inverted if required. Enable Reset N/A Full and Clock WCLK or one of the global clocks (CLK0 - CLK3). Each of these signals can be inverted if required. Almost Full Clock WE or one of the global clocks (CLK1 - CLK 2). Each of these signals can be inverted if required. Flags Enable Reset Created by the logical OR of the global reset signal and RST. RST is routed by the multifunction array from GRP, with inversion if desired. Read Data, Clock RCLK or one of the global clocks (CLK0 - CLK3). Each of these signals can be inverted if required. Empty and Clock RE or one of the global clocks (CLK1 - CLK 2). Each of these signals can be inverted if required. Almost Empty Enable Flags Reset Created by the logical OR of the global reset signal and RST. RST is routed by the multifunction array from GRP, with inversion if desired. 13

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet CAM Mode In CAM Mode the multi-function array is configured as a Ternary Content Addressable Memory (CAM). CAM behaves like a reverse memory where the input is data and the output is an address. It can be used to perform a variety of high-performance look-up functions. As such, CAM has two modes of operation. In write or update mode S the CAM behaves as a RAM and data is written to the supplied address. In read or compare operations data is sup- plied to the CAM and if this matches any of the data in the array the Match and Multiple Match (if there is more than one match) flags are set to true and the lowest address with matching data is output. The CAM contains 128 E entries of 48 bits. Figure13 shows the block diagram of the CAM. To further enhance the flexibility of the CAM a mask register is available. If enabled during updates, bits corre- C sponding with those set to 1 in the mask register are not updated. If enabled during compare operations, bits corre- sponding to those set to 1 in the mask register are not included in the compare. A write don’t care sigDnal allows don’t cares to be programmed into the CAM if desired. Like other write operations the mask register controls this. I The write/comp data, write address, write enable, write chip select, aVnd write don’t care signals are synchronous. E The CAM Output signals, match flag, and multimatch flag can be synchronous or asynchronous. The Enable mask register input is not latched but must meet setup and hold times relative to the write clock. All inputs must use the same clock and clock enable signals. All outputs must use theE same clock and clock enable signals. Reset is com- U mon for both inputs and outputs. Table9 shows the allowable sources for clock, clock enable, and reset for the var- ious CAM registers. D N Figure13.CAM Mode I CLK0 T CLK1 Write/Comp Data T CLK2 (WD[0:31]) CLK3 CAM RESET C Write Address Output (WAD[0:6]) N CO[0:6] En Mask Reg (EN_MASK) E Write EnableO (WE) 128X48 Match Write Chip Sel (WCS[0:1]‘)‘ CAM Out L 68F Irnopmuts WR Mask Reg (WR_MASK) MATCH Routing WR dont care (WR_DC) C Reset (RST) Multi- E CLK (CLK) match Out S Clock Enable (CE) MUL_MATCH S I D Table9.Register Clocks, Clock Enables, and Initialization in CAM Mode Register Input Source Clock CLK or one of the global clocks (CLK0 - CLK3). Each of these signals can Write data, Write address, be inverted if required. Enable mask register, Write Clock Enable WE or one of the global clocks (CLK1 - CLK 2). Each of these signals can enable, write chip select, and be inverted if required. write don’t care, CAM Output, Match, and Multimatch Reset Created by the logical OR of the global reset signal and RST. RST is routed by the multifunction array from GRP, with inversion if desired 14

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Clock Distribution The ispXPLD 5000MX family has four dedicated clock input pins: GCLK0-GCLK3. GLCK0 and GCLK3 can be routed through a PLL circuit or routed directly to the internal clock nets. The internal clock nets (CLK0-CLK3) are directly related to the dedicated clock pins (see Secondary Clock Divider exception when using the sysCLOCK cir- S cuit). These feed the registers in the MFBs. Note at each register there is the option of inverting the clock if required. Figure14 shows the clock distribution network. E Figure14.Clock Distribution Network I/O/CLK_OUT0 C D GCLK0 CLK0 VREF0 CLK_OUT0 IClock Net To Macrocells V PLL0 E SEC_OUT0 CLK1 Clock Net To Macrocells GCLK1 E U VREF1 sysCLOCK PLLs Global Clock Routing D N VREF2 GCLK2 Clock Net To Macrocells CLK2 SEC_OUT1 I TPLL1 T VREF3 CLK_OUT1 Clock Net To Macrocells CLK3 GCLK3 C N E I/O/CLK_OUT1 O sysCLOCK PLL L The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset and feedback C signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and gener- ate multiple Eclock signals for routing within the device. Furthermore, it can generate clock signals that are de- skewed either at the board level or the device level. S The ispXPLD 5000MX devices provide two PLL circuits. PLL0 receives its clock inputs from GCLK 0 and provides S outputs to CLK 0 (CLK 1 when using the secondary clock). PLL1 operates with signals from GCLK 3 and CLK 3 (CLK 2 when using the secoIndary clock). The optional outputs CLK_OUT can be routed to an I/O pin. The optional PLL_LOCK output is rouDted into the GRP. The optional input PLL_RST can be routed either from the GRP or directly from an I/O pin. The optional PLL_FBK into can be routed directly from a pin. Figure15 shows the ispXPLD 5000MX PLL block diagram. Figure16 shows the connection of optional inputs and outputs. 15

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Figure15.PLL Block Diagram Input Clock Post-scalar CLK_OUT CLK_IN Clock Net (M) Divider VCO (V) Divider S Programable and Delay Phase PLL_RST Detector PLLE_LOCK C D Feedback Secondary SEC_OUT Loop Clock Clock Net I (N) Divider (K) Divider V E PLL_FBK Figure16.Connection of Optional PLL Inputs and OutputEs U To GRP D N PLL_LOCK I/O Pin* CLK_OUT I T From Macrocell T To GRP C N PLL_RST E I/O Pin* To GRP O From Macrocell L To GRP C E PLL_FBK S I/O Pin* S From Macrocell I *Seepinout tabDle for details In order to facilitate the multiply and divide capabilities of the PLL, each PLL has dividers associated with it: M, N and K. The M divider is used to divide the clock signal, while the N divider is used to multiply the clock signal. The K divider is only used when a secondary clock output is needed. This divider divides the primary clock output and feeds to a separate global clock net. The V divider is used to provide lower frequency output clocks, while maintain- ing a stable, high frequency output from the PLL’s VCO circuit. The PLL also has a delay feature that allows the out- put clock to be advanced or delayed to improve set-up and clock-to-out times for better performance. For more information on the PLL, please refer to TN1003, sysCLOCK PLL Usage Guide for ispXPGA, ispGDX2, ispXPLD and ispMACH 5000VG Devices. 16

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Output Sharing Array (OSA) A number of I/O pads are available in each sysIO bank to route the selected number of macrocells from the MFB outputs directly to the I/O pads in logic mode. In the ispXPLD 5000MX, the large number of inputs and PTs to the MFB as well as the presence of the PTSA can cover most routing flexibility of signals to I/O cells. The Output Shar- S ing Array gives additional routing capability and I/O access to an MFB when a wide output function takes up the whole MFB and cannot be easily divided across multiple MFBs. By using the OSA, the wide output function, such as 32-bit FIFO, can have all of its output signals from the one MFB routed to I/O cells. In a given I/O block, the wide E output functions must share the I/O pads with other logic functions. The OSA bypass option routes the MFB signal directly to the I/O cell, allowing a direct connection to the I/O cell. C The logic functions use the option to provide faster speed to the outputs. The Logic Signal Connection tables list the OSA bypass as the primary macrocell and OSA options as alternate macrocells. Similarly, the AlternDate Input listing in the table shows the alternate macrocell input connection for a given I/O pin. Figure17 shows the alternate I macrocell connections in an I/O cell. V E sysIO Banks The ispXPLD 5000MX devices are divided into four sysIO banEks, consisting of multiple I/O cells, where each bank U is capable of supporting 16 different I/O standards. Each sysIO bank has its own I/O voltage (V ) and reference CCO voltage (V ) resources allowing complete independence from the others. REF D N I/O Cell The I/O cell of the ispXPLD 5000MX devices contains an output enable (OE) MUX, a programmable tri-state output buffer, a programmable input buffer, and programmable bus-maintenance circuitry. I T The I/O cell receives inputs from its associated macrocells and the deTvice pin. The I/O cell has a feedback line to its associated macrocells and a direct path to GRP. The output enable (OE) MUX selects the OE signal per I/O cell. C The inputs to the OE MUX are the four global PTOE signals, PTOE and the two GOE signals. The OE MUX also N has the ability to choose either the true or inverse of each of these signals. The output of the OE MUX goes through a logical AND with the TOE signal to allow easy tri-stating of the outputs for testing purposes. The MFBs are grouped into segments of fEour for the purpose of generating Shared PTOE signals. Each Shared PTOE signal is O derived from PT 163 from one of the four MFBs. Table10 shows the segments. The PTOE signal is derived from the first product term in each macrocell cluster, which is directly routed to the OE MUX. Therefore, every I/O cell L can have a different OE signal. Figure17 is a graphical representation of the I/O cell. C E S S I D 17

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Figure17.I/O Cell S E C D I V E E U D N I Table10.Shared PTOE Segments T T Device MFBs Associated With Segments C ispXPLD 5256MX (A, B, C, D) (E, F, G, H) N ispXPLD 5512MX (A, B, C, D) (E, F, G, H) (I, J, K, L) (M, N, O, P) E ispXPLD 5768MX O (A, B, C, D) (E, F, G, H) (I, J, K, L) (M, N, O, P) (Q, R, S, T) (U, V, W, Z) L ispXPLD 51024MX (A, B, C, D) (E, F, G, H) C (I, J, K, L) (M, N, O, P) (Q, R, S, T) (U, V, W, Z) E (Y, Z, AA, AB) (AC, AD, AE, AF) S sysIO Standards S Each I/O within a bank is individually configurable based on the V and V settings. Some standards also I CCO REF require the use of an external termination voltage. Table12 lists the sysIO standards with the typical values for D V V and V For more information on the sysIO capability, refer to TN1000, sysIO Usage Guidelines for CCO, REF TT. Lattice Devices. Table11.Number of I/Os per Bank Device Maximum Number of I/Os per Bank (n) ispXPLD 5256MX 36 ispXPLD 5512MX 68 ispXPLD 5768MX 96 ispXPLD 51024MX 96 18

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Table12.ispXPLD 5000MX Supported I/O Standards sysIO Standard Nominal V Nominal V Nominal V CCO REF TT LVTTL 3.3V N/A N /A LVCMOS-3.3 3.3V N/A SN/A LVCMOS-2.5 2.5V N/A N/A LVCMOS-1.8 1.8V N/A N/A E PCI 3.3V 3.3V N/A N/A AGP-1X 3.3V N/A N/A SSTL3, Class I & II 3.3V 1.5V C 1.5V SSTL2, Class I & II 2.5V 1.25V 1.25V D CTT 3.3 3.3V 1.5V 1.5V I CTT 2.5 2.5V 1.25V 1.25V V HSTL, Class I 1.5V 0.75V E0.75V HSTL, Class III 1.5V 0.9V 0.75V HSTL, Class IV 1.5V E 0.9V 0.75V U GTL+ N/A 1.0V 1.5V LVPECL, Differential 2.5V, 3.3V N/A N/A D LVDS 2.5V, 3.3V N/A N N/A Table13.Differential Interface Standard Support1 I T sysIO Buffer T Driver Supported LVDS ReceivCer Supported with standard termination N Driver Supported with external resistor network LVPECL Receiver Supported with termination E 1. For more information, refer to TN1000 – sysIO Usage Guidelines for Lattice Devices. O Control, Clock, sysCONFIG and JTAG Signals L Global clock pins support the same sysIO standards as general purpose I/O. When required the V signal is C REF derived from the adjacent bank. When differential standards are supported two adjacent clock pins are paired to form the inpuEt. The TOE, PROGRAM, CFG0 and DONE pins of the ispXPLD 5000MX device are the only pins that do not have sysIO capabilities. The JTAG TAP pins support only LVCMOS 3.3, 2.5 and 1.8V standards. The voltage S is controlled by V These pins only support the LVTTL and LVCMOS standards applicable to the power supply CCJ. voltaSge of the device. The global reset global output enable pins are associated with Bank 2 and support all of the sysIO standards. I Hotsocketing D The I/O on the ispXPLD 5000MX devices are well suited for those applications that require hot socketing capability, when configured as LVCMOS or LVTTL. Hot socketing a device requires that the device, when powered down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of the powered-down device be minimal on active signals. Programmable Drive Strength The drive strength of I/Os that are programmed as LVCMOS is tightly controlled and can be programmed to a vari- ety of different values. Thus the impedance an output driver can be closely match to the characteristic impedance of the line it is driving. This allows users to eliminate the need for external series termination resistors. 19

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Programmable Slew Rate The slew rate of outputs is carefully controlled. When outputs are configured as LVCMOS the devices support two slew rates. This allows system noise and performance to be balanced in a design. Programmable Bus-Maintenance S All general-purpose inputs have programmable bus maintenance circuitry. These are intended to maintain a valid logic level into a device when driving devices go into the tri-state mode. Four options are available for users: pull- up, pull-down, bus-keeper, or nothing. E Expanded In-System Programmability (ispXP) C The ispXPLD 5000MX family utilizes a combination of EEPROM non-volatile cells and SRAM technology to deliver a logic solution that provides “instant-on” at power-up, a convenient single chip solution, and the capabilDity for infi- nite reconfiguration. A non-volatile array distributed within the device stores the device configuration. At power-up I this information is transferred in a massively parallel fashion into SRAM bits that control the operation of the device. Figure18 shows the different ports and modes that are used in the coVnfiguration and programmiEng of the ispXPLD 5000MX devices. Figure18.ispXP Block Diagram E U ISP 1149.1 TAP P ortD sysCONFIG Peripheral Port N Port I T ISP BACKGND 1532 TsysCONFIG Mode C N Programmin g C onfiguration in seconds in milliseconds Power-up E E2CMOS SRAM O Memory Space Refresh Memory Space Download in L microseconds Memory Space C E IEEE 1532 ISP S In-system programming of devices provides a number of significant benefits including rapid prototyping, lower S inventory levels, higher quality and the ability to make in-field modifications. All ispXPLD 5000MX devices provide in-system programmability through their Boundary Scan Test Access Port. This capability has been implemented in I a manner that ensures that the port remains compliant to the IEEE 1532 standard. By using IEEE 1532 as the D communication interface through which ISP is achieved, customers get the benefit of a standard, well-defined inter- face. The IEEE1532 programming interface allows programming of either the non-volatile array or reconfiguration of the SRAM bits. The ispXPLD 5000MX devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispXPLD 5000MX devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common auto- mated test equipment. This equipment can then be used to program ispXPLD 5000MX devices during the testing of a circuit board. 20

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet sysCONFIG Interface In addition to being able to program the device through the IEEE 1532 interface a microprocessor style interface (sysCONFIG interface) allows reconfiguration of the SRAM bits within the device. For more information on the sys- CONFIG capability, refer to TN1026, ispXP Configuration Usage Guidelines. S Security Scheme A programmable security scheme is provided on the ispXPLD 5000MX devices as a deterrent to unauthorized E copying of the array configuration patterns. Once programmed, this bit prevents readback of the programmed pat- tern by a device programmer, securing proprietary designs from competitors. The security bit also prevents pro- gramming and verification. The entire device must be erased in order to erase theC security bit. Low Power Consumption D The ispXPLD 5000MX devices use zero power non-volatile cells along wIith full CMOS design to provide low static power consumption. The 1.8V core reduces dynamic power consumpVtion compared with devices with higher core E voltages. For information on estimating power consumption, refer to TN1031 Power Estimation in ispXPLD 5000MX Devices. E U Density Migration The ispXPLD 5000MX family has been designed to enDsure that different density devices in the same package have compatible pin-outs. Furthermore, the architecture ensures a high success rate Nwhen performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design tar- geted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. I T T IEEE 1149.1-Compliant Boundary Scan Testability C All ispXPLD 5000MX devices have boundary scan cells anNd are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal boundary scan registers are linked internally, allowing test data to be shifted E in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, O these devices can be linked into a board-level serial scan path for board-level testing. The test access port has its own supply voltage and can operate with LVCMOS3.3, 2.5 and 1.8V standards. L sysIO Quick Configuration C To facilitate tEhe most efficient board test, the physical nature of the I/O cells must be set before running any continu- ity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’ S physical nature should be minimal so that board test time is minimized. The ispXPLD 5000MX family of devices allowSs this by offering the user the ability to quickly configure the physical nature of the sysIO cells. This quick con- figuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lat- I tice’s ispVM™ System programming software can either perform the quick configuration through the PC parallel D port, or can generate the ATE or test vectors necessary for a third-party test system. 21

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Absolute Maximum Ratings1, 2, 3 ispXPLD 5000MC ispXPLD 5000MB/V 1.8V 2.5V/3.3V Supply Voltage (V ). . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V. . . . . . . . . . . . . . . . -0.5 to 5.5VS CC PLL Supply Voltage (V ) . . . . . . . . . . . . . . . . . . -0.5 to 2.5V. . . . . . . . . . . . . . . . -0.5 to 5.5V CCP E Output Supply Voltage (V ). . . . . . . . . . . . . . . . -0.5 to 4.5V. . . . . . . . . . . . . . . . -0.5 to 4.5V CCO IEEE 1149.1 TAP Supply Voltage (V ). . . . . . . . -0.5 to 4.5V. . . . . . . . . . . . . . . . -0.5 to 4.5V CCJ C Input Voltage Applied4, 5 . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.5V. . . . . . . . . . . . . . . . -0.5 to 5.5V D Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . -65 to 150C . . . . . . . . . . . . . . .-65 to 150C I Junction Temperature (T ) with Power Applied . . . -55 to 150C . . . . . . . . . . . . . . .-55 to 150C J V E 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied (while programming, following the programming specifications). E U 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. D 4. Overshoot and Undershoot of -2V to (V +2) volts not to exceed 6V is permitted foNr a duration of <20ns. IHMAX 5. A maximum of 64 I/Os per device with V > 3.6V is allowed. IN Recommended Operating Conditions I T T Symbol Parameter Min. Max. Units Supply Voltage for 1.8V Devices (ispXPLD 5000MC) 1.65 1.95 V C N V Supply Voltage for 2.5V Devices (ispXPLD 5000MB) 2.3 2.7 V CC Supply Voltage for 3.3V Devices (ispXPLD 5000MV) 3 3.6 V PLL Block SupEply Voltage for PLL 1.8V Devices 1.65 1.95 V O V PLL Block Supply Voltage for PLL 2.5V Devices 2.3 2.7 V CCP PLL Block Supply Voltage for PLL 3.3V Devices 3 3.6 V L Junction Temperature (CommerciaCl Operation) 0 90 C T J Junction Temperature (Industrial Operation) -40 105 C E E2CMOS Erase ReprograSm Specifications S Parameter Min. Max. Units Erase/Reprogram Cycle1 I 1,000 — Cycles 1. Valid over commercial temDperature range. Hot Socketing Characteristics1, 2, 3, 4 Symbol Parameter Condition Min. Typ. Max. Units I Input or I/O Leakage Current 0 ð V ð 3.0V — +/-50 +/-800 A DK IN 1. Insensitive to sequence of V and V when V þð 1.0V. For V > 1.0V, V min must be present. However, assumes monotonic CC CCO CCO CCO CC rise/fall rates for V and V provided (V - V )þð 3.6V. CC CCO, IN CCO 2. 0 ð V ð V (MAX), 0 ð V ð V (MAX) CC CC CCO CCO 3. I is additive to I , I or I . Device defaults to pull-up until non-volatile cells are active. DK PU PD BH 4. LVTTL, LVCMOS only. 22

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet DC Electrical Characteristics Over Recommended Operating Conditions Symbol Parameter Condition Min. Typ. Max. Units S 0 ð V ð (V - 0.2V) — — 10 µA I I 1 Input or I/O Leakage IN CCO IL, IH (V - 0.2V) < V ð 3.6V — — 40 µA CCO IN I 4 Input High Leakage Current 3.6V < VIN ð 5.5V and — E— 3 mA IH 3.0V ð V ð 3.6V CCO I 3 I/O Active Pullup Current 0 ð V ð 0.7 V -30 — -150 µA PU IN CCO I I/O Active Pulldown Current V (MAX) ð V ð V (MAX) 30C — 150 µA PD IL IN IH IBHLS Bus Hold Low Sustaining Current VIN = VIL (MAX) 30 — — D µA I Bus Hold High Sustaining Current V = 0.7 V 30 — — µA BHHS IN CCO I I Bus Hold Low Overdrive Current 0 ð V ð V (MAX) — — 150 µA BHLO IN IH V I Bus Hold High Overdrive Current 0 ð V ð V (MAX) — — E150 µA BHHO IN IH V Bus Hold Trip Points 0 ð V ð V (MAX) V * 0.35 — V * 0.65 µA BHT IN IH CCO CCO V = 3.3V, 2.5V, 1.8EV — 8 — pf C1 I/O Capacitance2 CCO U V = 1.8V, V = 0 to V (MAX) — 8 — pf CC IO IH V = 3.3V, 2.5V, 1.8V — 8 — pf C2 Clock Capacitance2 CCO D V = 1.8V, V = 0 to V (MAX) —N 8 — pf CC IO IH V = 3.3V, 2.5V, 1.8V — 8 — pf C3 Global Input Capacitance2 CCO V = 1.8V, V = 0 to V (MAX) — 8 — pf CC IO IH I 1. Input or I/O leakage current is measured with theT pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled. T 2. T 25°C, f=1.0MHz A 3. IPU on JTAG pins has a maximum of -17C5µA for 5512MX devices. 4. 5V tolerant inputs and I/Os should be placed in banks where 3.0V ð V N ð 3.6V. The JTAG and sysCONFIG ports are not included for the CCO 5V tolerant interface. E O L C E S S I D 23

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Supply Current Symbol Parameter Condition Min. Typ.3 Max. Units ispXPLD 5256 V = 3.3V, f = 1.0MHz — 26 S— mA CC I 1,2 Operating Power Supply Current V = 2.5V, f = 1.0MHz — 26 — mA CC CC V = 1.8V, f = 1.0MHz — 16 — mA CC E V = 3.3V, f = 1.0MHz, unloaded — 4 — mA CCO Standby Power Supply Current I V = 2.5V, f = 1.0MHz, unloaded — 4 — mA CCO (per I/O Bank) CCO V = 1.8V, f = 1.0MHz, unloaded —C 3 — mA CCO VCCP = 3.3V, f = 10MHz — 11 — D mA PLL Power Supply Current I V = 2.5V, f = 10MHz — 11 — mA CCP (per PLL Bank) CCP I V = 1.8V, f = 10MHz — 3 — mA CCP V V = 3.3V — 1 E— mA CCJ Standby IEEE 1149.1 TAP Power I V = 2.5V — 1 — mA CCJ Supply Current CCJ V = 1.8V E — 1 — mA CCJ U ispXPLD 5512 V = 3.3V, f = 1.0MHz — 33 — mA CC D I 1,2 Operating Power Supply Current V = 2.5V, f = 1.0MHz —N 33 — mA CC CC V = 1.8V, f = 1.0MHz — 22 — mA CC V = 3.3V, f = 1.0MHz, unloaded — 4 — mA CCO Standby Power Supply Current I I TV = 2.5V, f = 1.0MHz, unloaded — 4 — mA CCO (per I/O Bank) CCO T V = 1.8V, f = 1.0MHz, unloaded — 3 — mA CCO V = 3.3V, f = 10MHz — 11 — mA C CCP PLL Power Supply Current N I V = 2.5V, f = 10MHz — 11 — mA CCP (per PLL Bank) CCP V = 1.8V, f = 10MHz — 3 — mA CCP E V = 3.3V — 1 — mA CCJ O Standby IEEE 1149.1 TAP Power I V = 2.5V — 1 — mA CCJ Supply Current CCJ V = 1.8V — 1 — mA L CCJ ispXPLD 5768 C V = 3.3V, f = 1.0MHz — 40 — mA CC E I 1,2 Operating Power Supply Current V = 2.5V, f = 1.0MHz — 40 — mA CC CC S V = 1.8V, f = 1.0MHz — 30 — mA CC S V = 3.3V, f = 1.0MHz, unloaded — 4 — mA CCO Standby Power Supply Current I V = 2.5V, f = 1.0MHz, unloaded — 4 — mA CCO (per I/O Bank) I CCO V = 1.8V, f = 1.0MHz, unloaded — 3 — mA D CCO V = 3.3V, f = 10MHz — 11 — mA CCP PLL Power Supply Current I V = 2.5V, f = 10MHz — 11 — mA CCP (per PLL Bank) CCP V = 1.8V, f = 10MHz — 3 — mA CCP V = 3.3V — 1 — mA CCJ Standby IEEE 1149.1 TAP Power I V = 2.5V — 1 — mA CCJ Supply Current CCJ V = 1.8V — 1 — mA CCJ 24

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Supply Current (Continued) Symbol Parameter Condition Min. Typ.3 Max. Units ispXPLD 51024 VCC = 3.3V, f = 1.0MHz — 75 S— mA I 1,2 Operating Power Supply Current V = 2.5V, f = 1.0MHz — 75 — mA CC CC V = 1.8V, f = 1.0MHz — 55 — mA CC E V = 3.3V, f = 1.0MHz, unloaded — 4 — mA CCO Standby Power Supply Current I V = 2.5V, f = 1.0MHz, unloaded — 4 — mA CCO (per I/O Bank) CCO V = 1.8V, f = 1.0MHz, unloaded —C 3 — mA CCO V = 3.3V, f = 10MHz — 11 — mA CCP D PLL Power Supply Current I V = 2.5V, f = 10MHz — 11 — mA CCP (per PLL Bank) CCP I V = 1.8V, f = 10MHz — 3 — mA CCP V V = 3.3V — 1 E— mA CCJ Standby IEEE 1149.1 TAP Power I V = 2.5V — 1 — mA CCJ Supply Current CCJ VCCJ = 1.8V E — U1 — mA 1. Device configured with 16-bit counters. 2. ICC varies with specific device configuration and operating frequency. 3. TA = 25°C D N I T T C N E O L C E S S I D 25

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet sysIO Recommended Operating Conditions V (V)2 V (V) CCO REF Standard Min. Typ. Max. Min. Typ. Max. LVCMOS 3.3 3.0 3.3 3.6 — — S — LVCMOS 2.5 2.3 2.5 2.7 — — — LVCMOS 1.81 1.65 1.8 1.95 — — — E LVTTL 3.0 3.3 3.6 — — — PCI 3.3 3.0 3.3 3.6 — — — C AGP-1X 3.15 3.3 3.45 — — — SSTL 2 2.3 2.5 2.7 1.15 1.25 1D.35 SSTL 3 3.0 3.3 3.6 1.3 1.5 1.7 I CTT 3.3 3.0 3.3 3.6 1.35 1.5 1.65 V E CTT 2.5 2.3 2.5 2.7 1.35 1.5 1.65 HSTL Class I 1.4 1.5 1.6 0.68 0.75 0.9 HSTL Class III 1.4 1.5 1.6 E — U0.9 — HSTL Class IV 1.4 1.5 1.6 — 0.9 — GTL+ 1.4 — 3.6 0.882 1.0 1.122 D N LVDS 2.3 2.5/3.3 3.6 — — — 1. Design tools default setting. 2. Inputs are independent of VCCO setting. However, VC CO must be set within the valid operating range for one of the supported standards. I T T C N E O L C E S S I D 26

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet sysIO Single Ended DC Electrical Characteristics Over Recommended Operating Conditions Input/Output VIL VIH V V I 2 I 2 OL OH OL OH Standard Min (V) Max (V) Min (V) Max (V) Max (V) Min (V) (mAS) (mA) 20, 16, 12, -20, -16, -12, 0.4 2.4 LVCMOS 3.3 -0.3 0.8 2.0 5.5 8, 5.33, 4 -8, -5.33, -4 0.2 V - 0.2E 0.1 -0.1 CCO 0.4 2.4 4 -4 LVTTL -0.3 0.8 2.0 5.5 0.2 V - 0.2 0.1 -0.1 CCCO 16, 12, 8, -16, -12, -8, 0.4 V - 0.4 LVCMOS 2.5 -0.3 0.7 1.7 3.6 CCO 5.33, 4 D-5.33, -4 0.2IVCCO - 0.2 0.1 -0.1 LVCMOS 1.81, 3 -0.3 0.68 1.07 3.6 0.4 V - 0.4 8 -8 V CCO E 0.4 V -0.4 12, 5.33, 4 -12, -5.33, -4 LVCMOS 1.83 -0.3 0.68 1.07 3.6 CCO 0.2 V - 0.2 0.1 -0.1 CCO E PCI 3.34 -0.3 1.08 1.5 3.6 0.1 V 0.9 V U 1.5 -0.5 CCO CCO AGP-1X4 -0.3 1.08 1.5 3.6 0.1 V 0.9 V 1.5 -0.5 CCO CCO SSTL3 class I -0.3 VREF - 0.2 VREF + 0.2 D3.6 0.7 VCCO - 1.1 8 -8 N SSTL3 class II -0.3 V - 0.2 V + 0.2 3.6 0.5 V - 0.9 16 -16 REF REF CCO SSTL2 class I -0.3 V - 0.18 V + 0.18 3.6 0.54 V - 0.62 7.6 -7.6 REF REF CCO SSTL2 class II -0.3 V - 0.18 V + 0.18 3.6 0.35 V - 0.43 15.2 -15.2 REF REF ICCO T CTT 3.3 -0.3 V - 0.2 V + 0.2 3.6 V - 0.4 V + 0.4 8 -8 REF REF RTEF REF CTT 2.5 -0.3 V - 0.3 V + 0.2 3.6 V - 0.4 V + 0.4 8 -8 REF REF REF REF HSTL class I -0.3 V - C0.1 V + 0.1 3.6 0.4 V - 0.4 8 -8 REF REF N CCO HSTL class III -0.3 V - 0.2 V + 0.1 3.6 0.4 V - 0.4 24 -8 REF REF CCO HSTL class IV -0.3 V - 0.3 V + 0.1 3.6 0.4 V - 0.4 48 -8 REF REF CCO E GTL+ -0.3 VREF - 0.2 VREF + 0.2 O 3.6 0.6 n/a 36 n/a 1. Software default setting. 2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the L I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND con- C nections or between the last GND in a bank and the end of a bank. 3. For 1.8V devices (ispXPLD 5000MC) these specifications are V = 0.35 * V and V = 0.65 * V E IL CC IH CC. 4. For 1.8V devices (ispXPLD 5000MC) these specifications are V = 0.3 * V * 3.3/1.8, V = 0.5 * V * 3.3/1.8. IL CC IH CC S S I D 27

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet sysIO Differential DC Electrical Characteristics Over Recommended Operating Conditions Parameter Description Test Conditions Min. Typ. Max. S LVDS V Input Voltage 0V — 2.4V INP VTHD Differential Input Threshold 0.2 ð VCM ð 1.8V +/-100mEV — — I Input Current Power On — — +/-10uA IN V Output High Voltage for V or V RT = 100 Ohm — 1.38V 1.60V OH OP OM C V Output Low Voltage for V or V RT = 100 Ohm 0.9V 1.03V — OL OP OM V Output Voltage Differential (V - V ), R = 100 Ohm 250mV 350mV D450mV OD OP OM T VOD Change in VOD Between High and Low I — — 50mV V Output Voltage Offset (V - V )/2, R = 100 Ohm 1.125V 1.20V 1.375V OS OP OM T V E V Change in V Between H and L — — 50mV OS OS I Output Short Circuit Current V = 0V Driver outputs OSD OD — — 24mA shorted E U D N LVPECL1 DC Parameter Parameter Description Min. Max. Min. Max. Min. Max. Units I T V 3.0 3.3 3.6 V CCO T V Input Voltage High 1.49 2.72 1.49 2.72 1.49 2.72 V IH V Input Voltage CLow 0.86 2.125 0.86 2.125 0.86 2.125 V IL N V Output Voltage High 1.7 2.11 1.92 2.28 2.03 2.41 V OH V Output Voltage Low 0.96 1.27 1.06 1.43 1.3 1.57 V OL E VDIFF2 Differential Input voltage 0O.3 — 0.3 — 0.3 — V 1. These values are valid at the output of the source termination pack as shown above with 100-ohm differential load only (see Figure19). The V levels are 200mV below the standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges. OH L 2. Valid for 0.2 ð V ð 1.8V CM C Figure19.LEVPECL Driver with Three Resistor Pack S 1/4 of Bourns P/N ispXPLD Emulated CAT 16-PC4F12 S LVPECL Buffer I A Rs Zo D 0 to LVPECL 0 D 1 differential R = RT receiver Rs Zo 28

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family External Switching Characteristics 1, 2, 3 Over Recommended Operating Conditions -4 -45 -5 -52 -75 S Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Data Propagation Delay, t — 4.0 — 4.5 — 5.0 — 5.2 — 7.5 ns PD 5-PT Bypass E t Data propagation delay — 4.8 — 5.7 — 6.0 — 6.5 — 9.5 ns PD_PTSA MFB Register Setup Time t 2.2 — 2.8 — 2.8 — 3.0 — 4.5 — ns S Before Clock, 5-PT Bypass C MFB Register Setup Time tS_PTSA Before Clock 2.5 — 3.1 — 3.1 — 3.6 — 5.5 —D ns MFB Register Setup Time I t Before Clock, Input Register 1.0 — 1.0 — 1.0 — 0.5 — 1.7 — ns SIR V Path E MFB Register Hold Time t 0.0 — 0.0 — 0.0 — 0.0 — 0.0 — ns H Before Clock, 5-PT Bypass E U MFB Register Hold Time t 0.0 — 0.0 — 0.0 — 0.0 — 0.0 — ns H_PTSA Before Clock MFB Register Hold Time D t Before Clock, Input Register 0.5 — 0.5 — 0.5 —N1.0 — 1.3 — ns HIR Path MFB Register Clock-to-Out- t — 2.8 — 3.0 — 3.2 — 3.7 — 5.0 ns CO put Delay I T External Reset Pin to Output T t — 4.0 — 4.5 — 5.0 — 5.0 — 7.5 ns R Delay tRW Reset Pulse Duration C 1.8 — 1.8 — 1.8 — 2.0 — 3.0 — ns N Input to Output Local Product t — 6.0 — 7.0 — 7.5 — 8.5 — 10.5 ns LPTOE/DIS Term Output Enable/Disable Input to OutpEut Shared t Product Term Output Enable/ — 6.0O — 7.0 — 7.5 — 8.5 — 10.5 ns SPTOE/DIS Disable GlobLal OE Input to Output t — 4.5 — 5.5 — 5.5 — 6.5 — 7.5 ns GOE/DIS Enable/Disable C t Clock Width, High or Low 1.5 — 1.5 — 1.5 — 1.8 — 2.5 — ns CW E Gate Width Low (for Low tGW Transparent) or High (fSor 1.5 — 1.5 — 1.5 — 1.8 — 2.5 — ns High Transparent) S Input Register Clock Width, t 1.5 — 1.5 — 1.5 — 1.8 — 2.5 — ns WIR High or Low I Clock-to-ODut Skew, Block t — 0.6 — 0.6 — 0.6 — 0.6 — 1.0 ns SKEW Level Clock Frequency with f 4 — 300 — 275 — 250 — 250 — 150 MHz MAX Internal Feedback Clock Frequency with f (Ext.) External Feedback, — 200 — 171 — 166 — 149 — 105 MHz MAX 1/ (t + t ) S CO Clock Frequency Max. f (Tog.) — 333 — 333 — 333 — 277 — 200 MHz MAX Toggle Clock Frequency to CAM f (CAMC)5 — 280 — 280 — 230 — 230 — 168 MHz MAX (Configure Mode) Clock Frequency to CAM f (CAM)5 — 150 — 150 — 150 — 135 — 90 MHz MAX (Compare Mode) 29

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family External Switching Characteristics (Continued)1, 2, 3 Over Recommended Operating Conditions -4 -45 -5 -52 -75 Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. MSin. Max. Units Clock Frequency to RAM in: Single Port Mode — 155 — 155 — 155 — 155 — 93 MHz f (RAM)5 E MAX Dual Port Mode — 155 — 155 — 155 — 155 — 93 MHz Pseudo Dual Port Mode — 180 — 180 — 160 — 160 — 106 MHz C f (FIFO)5 Clock Frequency to FIFO — 225 — 220 — 210 — 210 — 132 MHz MAX tPWR_ON Power-on Time — 200 — 200 — 200 — 200 — 20D0 µs Timing v.1.8 I 1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate timing for other standards. 2. Measured using standard switching circuit, global routing loading of 1, worst case PVTSA loading and 1 output switching. E 3. Pulse widths and clock widths less than minimum will cause unknown behavior. 4. Standard 16-bit counter using GRP feedback. 5. CAM, FIFO, RAM fMAX specification used shared PT Clk. E U D N I T T C N E O L C E S S I D 30

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Timing Model The task of determining timing in a ispXPLD 5000MX device is relatively simple. The timing model show in Figure20 shows the specific delay paths. Once the implementation of a given function is determin ed either con- ceptually or from the software report file, the delay path of a function can easily be determined from the timing S model. The Lattice design tools report the timing delays based on the same timing model. Note that internal timing parameters are for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. E Figure20.ispXPLD 5000MX Timing Model Diagram C From Feedback t PDb Feedback t t D PDi FBK t IN ttIIONI t tRtROttOCBULAUTASETCEMF FMunecmtioornys ttCCItItCCSEPOUXOTMMPSMAFCB VDIATA Q tOSA EtttBIEOUNOF OUT INREG t t DIS INDIO E U tGCLK tPTCLK GCLK tGCtLK_IN tBCLK C.E. IOI t tPLL_DELAY D PLL_SEC_DELAY t N PTSR t S/R BSR 3 CLK, CE and Reset Only MCReg. t RST tRST I IOI T t T PTOE t SPTOE t OE tGtIOOIE C GPTONE Path only available for Some paths not available in memory FIFO Flags mode. Refer to timing tables for details. E O L C E S S I D 31

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base S Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units In/Out Delays tIN Input Buffer Delay — — 0.70 — 0.91 — 0.96 —E1.11 — 1.30 ns Global Clock Input t — — 0.40 — 0.35 — 0.35 — 0.35 — 0.55 ns GCLK_IN Buffer Delay Global RESET Pin C t — — 3.77 — 4.24 — 4.71 — 4.71 — 7.07 ns RST Delay D Global OE Pin t — — 1.98 — 2.66 — 2.34 — 2.87 — 3.27 ns GOE Delay I Delay through V t — — 1.16 — 1.30 — 1.45 — 1.60 E— 2.17 ns BUF Output Buffer t Output Enable Time — — 2.52 — 2.84 — 3.16 — 3.63 — 4.23 ns EN E Output Disable U t — — 1.92 — 2.40 — 2.40 — 2.40 — 3.60 ns DIS Time Routing Delays D t Delay through SRP — — 1.95 — 2.06 — 2.N34 — 2.24 — 3.66 ns ROUTE Input Buffer to t Macrocell Register — — 0.60 — 0.60 — 0.60 — 0.47 — 1.63 ns INREG Delay I T t Product Term — — 0.50 — 0.5T0 — 0.53 — 0.83 — 1.34 ns PTSA Sharing Array Delay t Internal Feedback C — — 0.19 — 0.02 — 0.39 — 0.03 — 0.60 ns FBK Delay N Global Clock Tree t — — 0.52 — 0.32 — 0.72 — 0.82 — 0.78 ns GCLK Delay E Block PT Clock O t — — 0.12 — 0.14 — 0.15 — 0.15 — 0.23 ns BCLK Delay MacrLocell PT Clock t — — 0.12 — 0.14 — 0.15 — 0.15 — 0.23 ns PTCLK Delay C Programmable PLL tPLL_DELAY EDelay Increment — — 0.30 — 0.30 — 0.30 — 0.30 — 0.30 ns t Block PT Reset S— — 0.72 — 0.81 — 0.90 — 0.94 — 1.35 ns BSR Delay S Macrocell PT Set/ t — — 0.60 — 0.75 — 0.75 — 0.75 — 1.13 ns PTSR Reset Delay I t Macrocell PDT OE — — 0.83 — 1.19 — 1.04 — 1.52 — 1.31 ns LPTOE Delay Segment PT OE t — — 0.83 — 1.19 — 1.04 — 1.52 — 1.31 ns SPTOE Delay Output Sharing t — — 0.80 — 0.90 — 1.00 — 1.00 — 1.50 ns OSA Array Delay t Global PT OE Delay — — 0.83 — 1.04 — 1.04 — 1.04 — 1.56 ns PTOE 5-PT Bypass t — — 0.20 — 0.23 — 0.25 — 0.25 — 0.38 ns PDB Propagation Delay Macrocell t — — 0.50 — 0.93 — 0.72 — 0.72 — 1.04 ns PDI Propagation Delay 32

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units Registered Delays D-Register Setup t — 0.28 — 0.31 — 0.35 — 0.55E— 0.52 — ns S Time, Global Clock D-Register Setup t — -0.13 — -0.11 — -0.10 — -0.10 — -0.07 — ns S_PT Time, PT Clock C D-Register Hold tH Time — 1.90 — 2.56 — 2.50 — 2.40 — 4.00 D— ns Register Clock to I t — — 0.72 — 1.03 — 0.68 — 0.93 — 1.50 ns COi OSA Time V E Clock Enable Setup t — 1.07 — 1.20 — 1.33 — 1.33 — 2.00 — ns CESi Time tCEHi CTilmocek Enable Hold — 0.00 — 0.E00 — 0.00 — 0.00U — 0.00 — ns D-Input Register tSIR Setup Time, Global — 0.66 D— 0.20 — 0.53 — 0.12 — 0.08 — ns Clock N D-Input Register t Setup Time, PT — 0.42 — 0.37 — 0.34 — 0.34 — 0.22 — ns SIR_PT Clock I T D-Input Register T t Hold Time, Global — 0.84 — 1.31 — 1.01 — 1.41 — 2.91 — ns HIR Clock C D-Input Register N t Hold Time, PT — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — ns HIR_PT Clock E Latched Delays O Latch Setup Time, t — 0.18 — 0.00 — 0.00 — 0.00 — 0.00 — ns SL Global Clock L Latch Setup Time, t — C0.18 — 0.00 — 0.00 — 0.00 — 0.34 — ns SL_PT PT Clock t ELatch Hold Time — -0.06 — 0.00 — 0.00 — 0.00 — -0.03 — ns HL t Latch Gate to OSA S— — 0.07 — 0.08 — 0.08 — 0.08 — 0.13 ns GOi Time S Propagation Delay tPDLi through Latch Ito — — 0.52 — 0.58 — 0.65 — 0.65 — 0.97 ns OSA Transparent D Reset and Set Delays Asynchronous t Reset or Set to OSA — — 0.23 — 0.26 — 0.29 — 0.29 — 0.43 ns SRi Delay Asynchronous t Reset or Set — — 0.42 — 0.47 — 0.53 — 0.55 — 0.79 ns SRR Recovery eXtended Function Routing Delays Delay through SRP t when Implementing — — 2.00 — 2.25 — 2.51 — 2.61 — 3.76 ns ROUTEMF Memory Functions 33

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units Additional Delay for t PT Cascading — — 0.71 — 0.80 — 0.89 — 0.92 — 1.33 ns CASC between MFBs E Carry Chain Delay, t — — 0.35 — 0.39 — 0.44 — 0.46 — 0.66 ns CICOMFB MFB to MFB C Carry Chain Delay, tCICOMC Macro-Cell to — — 0.10 — 0.11 — 0.13 — 0.13 — 0D.19 ns Macro-Cell I Routing Delay for t Extended Function — — 2.62 — 2.94V— 3.27 — 3.40 — 4.91 ns FLAG E Flags Additional Flag t , FLAGFULL Delay when t E t FLAGAFULL, — 2.57 — 2.89 — 3.21 —U3.34 — 4.82 ns FLAGEXP Expanding Data t , FLAGEMPTY Widths t FLAGAEMPTY t Counter Sum Delay t — D0.80 — 0.90 — 1.00 — 1.04 — 1.50 ns SUM PTSA N Optional Adjusters Block Loading t t — 0.04 — 0.04 — 0.05 — 0.05 — 0.07 ns BLA Adder ROUTE I t PT Expander Adder t T — 0.53 — 0.60 — 0.66 — 0.69 — 0.99 ns EXP ROUTE T Additional Delay for t t — 0.50 — 0.56 — 0.63 — 0.65 — 0.94 ns INDIO the Input Register INREG C Secondary PLL N t t — 0.91 — 0.91 — 0.91 — 0.91 — 0.91 ns PLL_SEC_DELAY Output Delay PLL_DELAY t MFB Input Extender t — 0.62 — 0.70 — 0.78 — 0.81 — 1.16 ns INEXP E ROUTE Input and Output Buffer Delays O Input Buffer Selec- t t t GCLK_IN, IN, ns IOI tion ALdder tGOE, tRST Refer to sysIO Adjuster Tables Output Buffer C t t ns IOO Selection Adder BUF E FIFO Write Data Setup S t before Write Clock — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns FIFOSWCLKS Time Write Data HolId tFIFOWCLKH after Write DClock — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns Time Opposite Clock t — — 1.40 — 1.40 — 1.76 — 1.76 — 1.83 ns FIFOCLKSKEW Cycle Delay Write Clock to Full t — — 3.08 — 3.08 — 3.85 — 3.85 — 4.00 ns FIFOFULL Flag Delay Write Clock to t Almost Full Flag — — 3.08 — 3.08 — 3.86 — 3.86 — 4.01 ns FIFOAFULL Delay Read Clock to t — — 3.08 — 3.08 — 3.86 — 3.86 — 4.01 ns FIFOEMPTY Empty Flag Delay Read Clock to t Almost Empty Flag — — 3.08 — 3.08 — 3.86 — 3.86 — 4.01 ns FIFOAEMPTY Delay 34

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units Write-Enable setup t — 2.33 — 2.33 — 2.91 — 2.91 — 3.03 — ns FIFOWES before Write Clock E Write-Enable hold t — -2.95 — -2.95 — -2.36 — -2.36 — -2.27 — ns FIFOWEH after Write Clock Read-Enable setup t — 2.69 — 2.35 — 2.79 —C 2.38 — 4.14 — ns FIFORES before Read Clock Read-Enable hold D t — -3.17 — -3.17 — -2.53 — -2.53 — -2.44 — ns FIFOREH after Read Clock I Reset to Output tFIFORSTO Delay — — 3.30 — 3.30V— 4.13 — 4.13 E— 4.29 ns Reset Recovery t — 1.20 — 1.20 — 1.50 — 1.50 — 1.56 — ns FIFORSTR Time E U t Reset Pulse Width — 0.14 — 0.14 — 0.18 — 0.18 — 0.19 — ns FIFORSTPW Read Clock to FIFO t — — 3.73 — 3.73 — 4.66 — 4.66 — 4.84 ns FIFORCLKO Out Delay D N CAM – Update Mode Memory Select t — 1.40 — 0.70 — 1.50 — 1.40 — 1.44 — ns CAMMSS Setup before CLK I Memory Select T t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMMSH Hold after CLK T Enable Mask t Register Setup C — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns CAMENMSKS N Time before CLK Enable Mask tCAMENMSKH Register SetuEp — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns Time after CLK O Address Setup t — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns CAMADDS TimeL before Clock Address Hold Time C t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMADDH after Clock E Data Setup Time t — -0.41 — -0.41 — -0.33 — -0.33 — -0.31 — ns CAMDATAS before Clock S Data Hold Time t S — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMDATAH after Clock “Don’t Care” SIetup t — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns CAMDCS Time beforDe Clock “Don’t Care” Hold t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMDCH Time after Clock R/W Setup Time t — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns CAMRWS before Clock R/W Enable Hold t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMRWH Time after Clock Clock Enable Setup t — 1.55 — 1.55 — 1.94 — 1.94 — 2.02 — ns CAMCES Time before Clock Clock Enable Hold t — -2.95 — -2.95 — -2.36 — -2.36 — -2.27 — ns CAMCEH Time after Clock 35

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units Write Mask t Register Setup — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns CAMWMSKS Time before Clock E Write Mask t Register Setup — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMWMSKH Time after Clock C Reset to CAM D t — — 3.30 — 3.30 — 4.13 — 4.13 — 4.29 ns CAMRSTO Output Delay I Reset Recovery t — 1.20 — 1.20 — 1.50 — 1.50 — 1.56 — ns CAMRSTR Time V E t Reset Pulse Width — 0.14 — 0.14 — 0.18 — 0.18 — 0.19 — ns CAMRSTPW CAM – Compare Mode E U Data Setup Time t — -0.41 — -0.41 — -0.33 — -0.33 — -0.31 — ns CAMDATAS before Clock t Data Hold Time — -0.01 D— -0.01 — -0.01 — -0.01 — -0.01 — ns CAMDATAH after Clock N Enable Mask t Register Setup — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns CAMENMSKS Time before Clock I T Enable Mask T t Register Setup — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns CAMENMSKH Time after Clock C CAM Width N t — — 0.40 — 0.40 — 0.50 — 0.50 — 0.51 ns CAMCASC Expansion Delay Clock to Output E tCAMCO (Address Out) — — O6.19 — 6.13 — 6.81 — 6.61 — 9.63 ns Delay Clock to Match Flag t L — — 6.19 — 6.13 — 6.07 — 6.61 — 10.22 ns CAMMATCH Delay C Clock to Multi- t — — 5.50 — 5.50 — 6.38 — 6.38 — 7.72 ns CAMMMATCHEMatch Flag Delay CAM Reset to Flags tCAMRSTFLAG Delay S— — 3.16 — 3.16 — 3.95 — 3.95 — 4.11 ns SingSle Port RAM t Address to DaIta — — 5.97 — 5.97 — 5.97 — 5.97 — 7.76 ns SPADDDATA Delay D Memory Select t Setup Before Clock — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns SPMSS Time Memory Select t Hold time after — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns SPMSH Clock Time Clock Enable Setup t — 2.30 — 2.30 — 2.30 — 2.30 — 9.80 — ns SPCES before Clock Time Clock Enable Hold t time after Clock — -2.95 — -2.95 — -2.95 — -2.95 — -2.27 — ns SPCEH Time Address Setup t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns SPADDS before Clock Time 36

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units Address Hold time t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns SPADDH after Clock Time E R/W Setup before t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns SPRWS Clock Time R/W Hold time after t — -0.01 — -0.01 — -0.01 —C-0.01 — -0.01 — ns SPRWH Clock Time Data Setup before D t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns SPDATAS Clock Time I Data Hold time after tSPDATAH Clock Time — -0.01 — -0.01 —V-0.01 — -0.01 — E-0.01 — ns Clock to Output t — — 5.97 — 5.97 — 5.97 — 5.97 — 9.86 ns SPCLKO Delay E U Reset to RAM t — — 3.30 — 3.30 — 3.30 — 3.30 — 4.29 ns SPRSTO Output Delay t Reset Recovery — 1.20 D— 1.20 — 1.20 — 1.20 — 1.56 — ns SPRSTR Time N t Reset Pulse Width — 0.14 — 0.14 — 0.14 — 0.14 — 0.19 — ns SPRSTPW Pseudo Dual Port RAM I Memory Select T t — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns PDPMSS Setup Before Clock T Memory Select t Hold time after C — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns PDPMSH N Clock Clock Enable Setup tPDPRCES before Read CElock — 2.33 — 2.33 — 2.91 — 2.91 — 3.03 — ns Time O Clock Enable Hold tPDPRCEH time Lafter Read — -2.95 — -2.95 — -2.36 — -2.36 — -2.27 — ns Clock Time C Clock Enable Setup t Ebefore Write Clock — 1.87 — 1.87 — 2.34 — 2.34 — 2.43 — ns PDPWCES Time S Clock Enable Hold t S time after Write — -2.95 — -2.95 — -2.36 — -2.36 — -2.27 — ns PDPWCEH Clock Time I Read Address D t Setup before Read — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns PDPRADDS Clock Time Read Address Hold t after Read Clock — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns PDPRADDH Time Write Address t Setup before Write — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns PDPWADDS Clock Time Write Address Hold t after Write Clock — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns PDPWADDH Time R/W Setup before t — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns PDPRWS Clock Time 37

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units R/W Hold time after t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns PDPRWH Clock Time E Data Setup before t — -0.27 — -0.27 — -0.22 — -0.22 — -0.21 — ns PDPDATAS Clock Time Data Hold time after t — -0.01 — -0.01 — -0.01 —C-0.01 — -0.01 — ns PDPDATAH Clock Time Read Clock to D t — — 5.08 — 5.02 — 5.66 — 5.45 — 8.54 ns PDPRCLKO Output Delay I Opposite Clock tPDPCLKSKEW Cycle Delay — 1.40 — 1.40 —V1.76 — 1.76 — E1.83 — ns Reset to RAM t — — 3.30 — 3.30 — 4.13 — 4.13 — 4.29 ns PDPRSTO Output Delay E U Reset Recovery t — 1.20 — 1.20 — 1.50 — 1.50 — 1.56 — ns PDPRSTR Time tPDPRSTPW Reset Pulse Width — 0.14 D— 0.14 — 0.18 — 0.18 — 0.19 — ns N Dual Port RAM Memory Select A tDPMSAS Setup Before R/W A — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns Time I T Memory Select T t Hold time after R/W — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns DPMSAH A Time C N Clock Enable A t Setup before Clock — 3.72 — 3.72 — 3.72 — 3.72 — 4.84 — ns DPCEAS A Time E Clock Enable A O t Hold time after — -2.95 — -2.95 — -2.95 — -2.95 — -2.27 — ns DPCEAH Clock A Time L Address A Setup t — C-0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns DPADDAS before Clock A Time EAddress A Hold t time after Clock A — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns DPADDAH S Time S R/W A Setup before t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns DPRWAS Clock A Time I R/W A Hold time tDPRWAH after ClockD A Time — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns Write Data A Setup t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns DPDATAAS before Clock A Time Write Data A Hold t time after Clock A — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns DPDATAAH Time Memory Select B t Setup Before R/W B — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns DPMSBS Time Memory Select t Hold time after R/W — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns DPMSBH B Time 38

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Internal Switching Characteristics (Continued) Over Recommended Operating Conditions -4 -45 -5 -52 -75 Base Parameter Description Parameter Min. Max. Min. Max. Min. Max. Min. Max. SMin. Max. Units Clock Enable B t Setup before Clock — 2.33 — 2.33 — 2.33 — 2.33 — 3.03 — ns DPCEBS B Time E Clock Enable Hold t B after Clock B — -2.95 — -2.95 — -2.95 — -2.95 — -2.27 — ns DPCEBH Time C Address B Setup D t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns DPADDBS before Clock B Time I Address B Hold t time after Clock B — -0.01 — -0.01 —V-0.01 — -0.01 — -0.01 — ns DPADDBH E Time R/W B Setup before t — -0.27 — -0.27 — -0.27 — -0.27 — -0.21 — ns DPRWBS Clock B Time E U R/W B Hold time t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns DPRWBH after Clock B Time D Write Data B Setup t — -0.27 — -0.27 — -0.27 —N -0.27 — -0.21 — ns DPDATABS before Clock B Time Write Data B Hold t — -0.01 — -0.01 — -0.01 — -0.01 — -0.01 — ns DPDATABH after Clock B Time I Read Clock A to T tDPRCLKAO Output Delay — — 5.97 — 5.9T2 — 5.86 — 5.65 — 9.86 ns Read Clock B to tDPRCLKBO Output Delay C — — 5.16 — 5.16 — 5.16 — 5.16 — 6.71 ns N Opposite Clock t — 1.40 — 1.40 — 1.40 — 1.40 — 1.83 — ns DPCLKSKEW Cycle Delay E t Reset to RAM — — O3.30 — 3.30 — 3.30 — 3.30 — 4.29 ns DPRSTO Output Delay Reset Recovery t L — 1.20 — 1.20 — 1.20 — 1.20 — 1.56 — ns DPRSTR Time C t Reset Pulse Width — 0.14 — 0.14 — 0.14 — 0.14 — 0.19 — ns DPRSTPW E Timing v.1.8 1. The PT-delay to clock of RAM/FIFO/CAM should be t instead of t BCLK PTCLK. S 2. The PT-delay to set/reset of RAM/FIFO/CAM should be t instead of t BSR PTSR. S I D 39

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Timing Adders -4 -45 -5 -52 -75 Base Parameter Description Param. Min. Max. Min. Max. Min. Max. Min. Max. Mi n. Max. Units t Input Adjusters S IOI LVTTL_in Using 3.3V TTL t — 0.0 — 0.0 — 0.0 — 0.0 — 0.0 ns IOIN Using 1.8V LVCMOS_18_in t — 0.0 — 0.0 — 0.0 —E0.0 — 0.0 ns CMOS IOIN Using 2.5V LVCMOS_25_in t — 0.0 — 0.0 — 0.0 — 0.0 — 0.0 ns CMOS IOIN C Using 3.3V LVCMOS_33_in t — 0.0 — 0.0 — 0.0 — 0.0 — 0.0 ns CMOS IOIN D AGP_1X_in Using AGP 1x tIOIN — 1.0 — 1.0I— 1.0 — 1.0 — 1.0 ns CTT25_in Using CTT 2.5V t — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 ns IOIN V E CTT33_in Using CTT 3.3V t — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 ns IOIN GTL+_in Using GTL+ t — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns IOIN E Using HSTL 2.5V, U HSTL_I_in t — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns Class I IOIN Using HSTL 2.5V, HSTL_III_in t —D 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Class III IOIN N Using HSTL 2.5V, HSTL_IV_in t — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Class IV IOIN Using Low Volt- I LVDS_in age Differential Tt — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns IOIN T Signaling (LVDS) Using Low LVPECL_in C t — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns Voltage PECL IOIN N PCI_in Using PCI t — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 ns IOIN Using SSTL 2.5V, SSTL2_I_in E t — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns Class I IOIN O Using SSTL 2.5V, SSTL2_II_in t — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns Class II IOIN L SSTL3_I_in Using SSTL 3.3V, t C — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Class I IOIN E Using SSTL 3.3V, SSTL3_II_in t — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Class II IOIN S t Output Adjusters – Output Signal Modifiers IOO S Using Slow Slew Slow Slew (LVITTL and tIOBUF, — 0.9 — 0.9 — 0.9 — 0.9 — 0.9 ns LVCMOS t D IOEN Outputs Only) t Output Adjusters – Output Configurations IOO t Using 3.3V TTL IOBUF, LVTTL_out t , — 1.2 — 1.2 — 1.2 — 1.2 — 1.2 ns Drive IOEN t IODIS Using 1.8V t IOBUF, LVCMOS_18_4mA_out CMOS Standard, t , — 0.3 — 0.3 — 0.3 — 0.3 — 0.3 ns IOEN 4mA Drive t IODIS Using 1.8V t IOBUF, LVCMOS_18_5.33mA_out CMOS Standard, t , — 0.3 — 0.3 — 0.3 — 0.3 — 0.3 ns IOEN 5.33mA Drive t IODIS 40

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Timing Adders (Continued) -4 -45 -5 -52 -75 Base Parameter Description Param. Min. Max. Min. Max. Min. Max. Min. Max. Mi n. Max. Units Using 1.8V t S IOBUF, LVCMOS_18_8mA_out CMOS Standard, t , — 0.0 — 0.0 — 0.0 — 0.0 — 0.0 ns IOEN 8mA Drive t IODIS Using 1.8V t E IOBUF, LVCMOS_18_12mA_out CMOS Standard, t , — 0.0 — 0.0 — 0.0 — 0.0 — 0.0 ns IOEN 12mA Drive t IODIS Using 2.5V t C IOBUF, LVCMOS_25_4mA_out CMOS Standard, t , — 1.2 — 1.2 — 1.2 — 1.2 — 1.2 ns IOEN 4mA Drive t D IODIS Using 2.5V tIOBUF, I LVCMOS_25_5.33mA_out CMOS Standard, t , — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 ns IOEN 5.33 mA Drive tIODIS V E Using 2.5V t IOBUF, LVCMOS_25_8mA_out CMOS Standard, t , — 0.4 — 0.4 — 0.4 — 0.4 — 0.4 ns IOEN 8mA Drive tIODIS E U Using 2.5V t IOBUF, LVCMOS_25_12mA_out CMOS Standard, t , — 0.4 — 0.4 — 0.4 — 0.4 — 0.4 ns IOEN 12mA Drive t D IODIS N Using 2.5V t IOBUF, LVCMOS_25_16mA_out CMOS Standard, t , — 0.4 — 0.4 — 0.4 — 0.4 — 0.4 ns IOEN 16mA Drive t IODIS I Using 3.3V Tt IOBUF, LVCMOS_33_4mA_out CMOS Standard, t , — 1.2 — T1.2 — 1.2 — 1.2 — 1.2 ns IOEN 4mA Drive t IODIS Using 3.3VC t IOBUF, N LVCMOS_33_5.33mA_out CMOS Standard, t , — 1.2 — 1.2 — 1.2 — 1.2 — 1.2 ns IOEN 5.33mA Drive t IODIS UEsing 3.3V t IOBUF, LVCMOS_33_8mA_out CMOS Standard, t , —O 0.8 — 0.8 — 0.8 — 0.8 — 0.8 ns IOEN 8mA Drive t IODIS L Using 3.3V t IOBUF, LVCMOS_33_12mA_out CMOS Standard, tIOCEN, — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns 12mA Drive t IODIS E Using 3.3V t IOBUF, LVCMOS_33_16mA_out CMOS Standard, t , — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns S IOEN 16mA Drive t IODIS S Using 3.3V t IOBUF, LVCMOS_33_20mA_out CMOS Standard, t , — 0.3 — 0.3 — 0.3 — 0.3 — 0.3 ns I IOEN 20mA Drive t IODIS D t Using AGP 1x IOBUF, AGP_1X_out t , — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Standard IOEN t IODIS t IOBUF, CTT25_out Using CTT 2.5V t , — 0.3 — 0.3 — 0.3 — 0.3 — 0.3 ns IOEN t IODIS t IOBUF, CTT33_out Using CTT 3.3V t , — 0.2 — 0.2 — 0.2 — 0.2 — 0.2 ns IOEN t IODIS t IOBUF, GTL+_out Using GTL+ t , — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns IOEN t IODIS 41

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Family Timing Adders (Continued) -4 -45 -5 -52 -75 Base Parameter Description Param. Min. Max. Min. Max. Min. Max. Min. Max. Mi n. Max. Units t S Using HSTL 2.5V, IOBUF, HSTL_I_out t , — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns Class I IOEN t IODIS t E Using HSTL 2.5V, IOBUF, HSTL_III_out t , — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Class III IOEN t IODIS t C Using HSTL 2.5V, IOBUF, HSTL_IV_out t , — 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Class IV IOEN t D IODIS Using Low t I Voltage Differen- IOBUF, LVDS_out tial Signaling tIOEN, — 0.8 — V0.8 — 0.8 — 0.8 E— 0.8 ns t (LVDS) IODIS t LVPECL_out UVoslitnagg eL oPwE CL tIIOOBEUNF, , — 0.3 E— 0.3 — 0.3 —U 0.3 — 0.3 ns t IODIS t PCI_out Using PCI tIOBUF, , —D 0.6 — 0.6 — 0.6 — 0.6 — 0.6 ns Standard IOEN N t IODIS t Using SSTL 2.5V, IOBUF, SSTL2_I_out t , — 0.3 — 0.3 — 0.3 — 0.3 — 0.3 ns Class I tIOEN I TIODIS t T Using SSTL 2.5V, IOBUF, SSTL2_II_out t , — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 ns Class II IOEN C tIODIS N t Using SSTL 3.3V, IOBUF, SSTL3_I_out t , — 0.2 — 0.2 — 0.2 — 0.2 — 0.2 ns Class I IOEN t E IODIS t O Using SSTL 3.3V, IOBUF, SSTL3_II_out t , — 0.4 — 0.4 — 0.4 — 0.4 — 0.4 ns Class II IOEN t L IODIS C Timing v.1.8 E S S I D 42

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet sysCLOCK PLL Timing Over Recommended Operating Conditions Symbol Parameter Conditions Min Max Units tPWH Input clock, high time 80% to 80% 1.2 S — ns t Input clock, low time 20% to 20% 1.2 — ns PWL t , t Input Clock, rise and fall time 20% to 80% — 3.0 ns R F E t Input clock stability, cycle to cycle (peak) — +/- 250 ps INSTB f M Divider input, frequency range 10 320 MHz MDIVIN f M Divider output, frequency range C 10 320 MHz MDIVOUT f N Divider input, frequency range 10 320 MHz NDIVIN D f N Divider output, frequency range 10 320 MHz NDIVOUT I f V Divider input, frequency range 100 400 MHz VDIVIN V f V Divider output, frequency range 10 E320 MHz VDIVOUT t Output clock, duty cycle 40 60 % OUTDUTY CleanE reference. U 10 MHz < f < 20 MHz or — +/- 250 ps MDIVOUT 100MHz < f < 160 MHz1 VDIVIN t Output clock, cycle to cycle jitter (peak) JIT(CC) DClean reference. 20 MHz < f < 320 NMHz and — +/- 150 ps MDIVOUT 160MHz < f < 320 MHz1 VDIVIN Clean reference. 10 MHz < fMDIVOIUT < 20 MHz or — +/- 300 ps T 100MHz < f < 160 MHz1 T 2 Output clock, period jitter (peak) VDTIVIN JIT(PERIOD) Clean reference. 20 MHz < f < 320 MHz and — +/- 150 ps C MDIVOUT 160MNHz < fVDIVIN < 320 MHz1 t Input clock to CLK_OUT delay Internal feedback — 3.0 ns CLK_OUT_DLY t Input clock to external feedback delta External feedback — 600 ps PHASE E t Time to acquire phase lock after input stabOle — 25 us LOCK t Delay increment (Lead/Lag) Typical = +/- 250ps +/- 120 +/- 550 ps PLL_DELAY L t Total output delay range (lead/lag) +/- 0.84 +/- 3.85 ns RANGE C t Minimum reset pulse width — 1.8 ns PLL_RSTW t 3 EGlobal clock input delay — 1.0 ns CLK_IN t Secondary PLL output delay (t ) — 1.5 ns PLL_SEC_DELAY S PLL_DELAY 1. This condition assures that the output phase jitter will remain within specification. S 2. Accumulated jitter measured over 10,000 waveform samples. 3. Internal timing for reference only. I D 43

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXP sysCONFIG Port Timing Specifications Symbol Timing Parameter Min. Max. Units sysCONFIG Write Cycle Timing t Input setup time of CS to CCLK rise 10 S— ns SUCS t Hold time of CS to CCLK rise 1 — ns HCS t Input setup time of write data to CCLK rise 10 — ns SUWD E t Hold time of write data to CCLK rise 0 — ns HWD t Low time to reset device SRAM 5 50 ns PRGM C t INIT delay time — 5 ms DINIT tIODISS User I/O disable — — D ns t User I/O enable — — ns IOENSS I t Write clock High pulse width 18 — ns WH V E t Write clock Low pulse width 18 — ns WL f Write f — 27 MHz MAXW MAX sysCONFIG Read Cycle Timing E U t Hold time of READ to CCLK rise 1 — ns HREAD t Input setup time of READ High to CCLK rise 15 — ns SUREAD D N t READ clock high pulse width 18 — ns RH t READ clock low pulse width 18 — ns RL f Read f — 27 MHz MAXR MAX I t Clock to out foTr read data — 25 ns CORD T C N E O L C E S S I D 44

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Boundary Scan Timing Specifications Over Recommended Operating Conditions Parameter Description Min Max Units S t TCK [BSCAN] clock pulse width 40 — ns BTCP t TCK [BSCAN] clock pulse width high 20 — ns BTCPH tBTCPL TCK [BSCAN] clock pulse width low E20 — ns t TCK [BSCAN] setup time 8 — ns BTS t TCK [BSCAN] hold time 10 — ns BTH C t TCK [BSCAN] rise/fall time 50 — mV/ns BTRF t TAP controller falling edge of clock to valid output — 10 D ns BTCO tBTCODIS TAP controller falling edge of clock to valid disable I — 10 ns t TAP controller falling edge of clock to valid enable — 10 ns BTCOEN V E t BSCAN test capture register setup time 8 — ns BTCRS t BSCAN test capture register hold time 10 — ns BTCRH E t BSCAN test update register, falling edge of clock to valid output U— 25 ns BUTCO t BSCAN test update register, falling edge of clock to valid disable — 25 ns BTUODIS tBTUPOEN BSCAN test update register, falling edge of cDlock to valid enable — 25 ns N I T T C N E O L C E S S I D 45

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Power Consumption ispXPLD 5000MC Typical ICC vs. Frequency ispXPLD 5000MV/B Typical ICC vs. Frequency 800 800 51024V/B 51024MC S 700 700 600 600 5768MV/B A) A) E m 500 5768MC m 500 (C (C C 400 C 400 ax. I 300 5512MC ax. I 300 C 5512V/B M M 5256DV/B 200 5256MC 200 I 100 100 V 0 0 E 0 100 200 400 0 100 200 400 Operating Frequency (MHz) Operating Frequency (MHz) E U Note: The device is configured with maximum Note: The device is configured with maximum number of 16-bit counters, no PLL, typical D number of 16-bit counters, no PLL, typical current at 1.8V, 25°C. current at 3.N3V (MV) or 2.5V (MB), 25°C. Power Estimation Coefficients I DC T T ispXPLD ispXPLD Device K0 K1 K2 K3 K4 K5 K6 K7 5000MC 5000MV/B ispXPLD 5256 2.2 8.4C 7 12 100 0.1379 0.0433 6.476 16 24 N ispXPLD 5512 2.2 8.4 9.4 18 151 0.1379 0.0433 6.476 17 25 ispXPLD 5768 2.2 8.4 10.2 21 170 0.1379 0.0433 6.476 27 36 E ispXPLD 51024 2.2 8.4 13 27.6O 200 0.1379 0.0433 6.476 35 43 Note: For further information about the use of these coefficients, refer to TN1031 – Power Estimation in ispXPLD 5000MX Devices. L Memory Coefficients C Device K8 K9 K10 K11 E ispXPLD 5256 0.004719 0.0924 4.4 2.9 S ispXPLD 5512 0.004719 0.0924 4.4 2.9 S ispXPLD 5768 0.004719 0.0924 4.4 2.9 IispXPLD 51024 0.004719 0.0924 4.4 2.9 D (cid:129) K0 = Current per MFB input (µA/MHz) (cid:129) K1 = Current per Product Term (µA/MHz) (cid:129) K2 = Current per GRP from MFB (µA/MHz) (cid:129) K3 = Current per GRP from I/O (µA/MHz) (cid:129) K4 = Global clock tree current (µA/MHz) (cid:129) K5 = PLL digital (mA/MHz) (cid:129) K6 = PLL analog (mA/MHz) (cid:129) K7 = PLL analog baseline (mA) (cid:129) DC = Baseline current at 0Mhz (mA) (cid:129) K8 = CAM frequency component (mA/MHz) (cid:129) K9 = CAM DC component (mA) (cid:129) K10 = Current per row decoder (µA/MHz) (cid:129) K11 = Current per column driver (µA/MHz) 46

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Power Estimation Equations ICC = ICC_DC + IMFB_CPLD + IMFB_ SRAM/PDPRAM/FIFO + IMFB_DPRAM + IMFB_CAM + IPLL_D ICC_DC S Use the appropriate value for 5000MC (1.8V power supply) or 5000MV/B (2.5V/3.3V power supply) from the data sheet. E IMFB_CPLD = ((K0 * CPLD MFB inputs + K1 * CPLD Logical Product Terms + K2 * CPLD GRP from MFB + K3 * CPLD GRP from IFB) * AF+ K4) * FREQ / 1000µA/mA C IMFB_CAM D = CAM Memory MFBs * ((FREQ * K8) + K9) (CAM operating in typical mode) I IMFB_ SRAM/PDPRAM/FIFO V E = (WR_ PERCENT * (K1 + WR_ PERCENT * 8 * K0 + K10 + K11) + RD_ PERCENT * (K1 + 128 * RD_PERCENT * K0 + 8 * OSW_PERCENT * K2)) * SRAM/PDPRAM/FIFO Memory MFBs * FREQ / 1000µA/mA E U IMFB_ DPRAM = (WR_ PERCENT * (2 * K1 + 2 * WR_ PERCENT * 8 * K0 + K10 + K11) + RD_ PERCENT * (2 * K1 + 2 * 128 * RD_PERCENT * K0 + 8 * OSW_PERCENT * K2)) * DDPRAM Memory MFBs * FREQ / 1000µA/mA N IPLL_D = K5 * PLL_FREQ * number of PLLs used. IPPL_D is the PLL digital component of the VCC supply current. I Analog portion of PLL supply current consTumption, from PLL power pin: T IPLL_A = (K6 * PLL_FREQ + K7) * number of PLLs used C N Notes: (cid:129) ICC = Current consuEmption of VCC power supply (mA) O (cid:129) ICC-DC = ICC DC component – Current consumption at 0Mhz (mA) (cid:129) IMFB_CPLD = CPLD (non-memory logic) current consumption (mA) L (cid:129) IMFB_SRAM/PDPRAM/FIFO = Current consumption for SRAM, PDPRAM, and FIFO (mA) C (cid:129) IMFB_DPRAM = Current consumption for DPRAM (mA) E (cid:129) IMFB_CAM = Current consumption for CAM (mA) S (cid:129) IPLL_D = PLL Current consumption of digital VCC power supply (mA) S (cid:129) IPLL_A = PLL analog power pin current consumption (VCCP pin) I D 47

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Switching Test Conditions Figure21 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table14. S Figure21.Output Test Load, LVTTL and LVCMOS Standards E C D I V E E U Table14.Test Fixture Required Components D N Test Condition R R C Timing Ref. V 1 2 L CCO Default LVCMOS 1.8 I/O (L -> H, H -> L) 106 106 35pF V /2 1.8V CCO LVCMIOS3.3 = 1.5V LVCMOS3.3 = 3.0V T LVCMOS I/O (L -> H, H -> L) — — 35pF LVCTMOS2.5 = V /2 LVCMOS2.5 = 2.3V CCO LVCMOS1.8 = V /2 LVCMOS1.8 = 1.65V CCO C Default LVCMOS 1.8 I/O (Z -> H) — 106 35pFN V /2 1.65V CCO Default LVCMOS 1.8 I/O (Z -> L) 106 — 35pF V /2 1.65V CCO Default LVCMOS 1.8 I/O (H ->E Z) — 106 5pF VOH - 0.15 1.65V O Default LVCMOS 1.8 I/O (L -> Z) 106 — 5pF V + 0.15 1.65V OL Note: Output test conditions for all other interfaces are determined by the respective standards. L C E S S I D 48

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Signal Descriptions Signal Names Descriptions TMS Input – This pin is the Test Mode Select input, which is used to control th e IEEE 1149.1 state machine. S TCK Input – This pin is the Test Clock input pin, used to clock the IEEE 1149.1 state machine. TDI Input – This pin is the IEEE 1149.1 Test Data in pin, used toE load data. TDO Output – This pin is the IEEE 1149.1 Test Data out pin used to shift data out. TOE Input – Test Output Enable pin. TOE tristates all I/O pins when driven low. C GOE0, GOE1 Input – Global output enable inputs. D RESET Input – This pin resets all the registers in the device. The global polarity for this pin is selectable on a global basis.þ The default is active low. An external pull-down is I required when polarity is set to active high. V yzz Input/Output – These are the general purpose I/O used by the logicE array. y is the MFB reference (alpha) and z is the macrocell reference (numeric) y: A-X (768 macrocells) y: A-P (512 macrocells) E U y: A-H (256 macrocells) z: 0-31 GND GND – Ground D N NC No connect V V – The power supply pins for core logic. CC CC V V V V V – The power supply pins for I/O banIks 0, 1, 2, and 3. CCO0, CCO1, CCO2, CCO3 CC T V V V V Input – This pin defines the referenceT voltage for I/O banks 0, 1, 2, and 3. REF0, REF1, REF2, REF3 GCLK0, GCLK1, GCLK2, GCLK3 Input – Global clock/clock enable inputs (see Figure14 for differential pairing). C CLK_OUT0, CLK_OUT1 Output – Optional clock outpNut from PLL 0 and 1. PLL_RST0, PLL_RST1 Input – Optional input resets the M divider in PLL 0 and 1. PLL_FBK0, PLL_FBK1 Input – Optional feedback input for PLL 0 and 1. E GNDP GND – Ground for POLLs. V V – The power supply pin for PLLs. CCP CC L V V – The power supply for the IEEE 1149.1 interface. CCJ CC C DATAx I/O – sysCONFIG data pins, bit x. CSB E Input – sysCONFIG interface chip select. Drive low to select sysCONFIG interface. CFG0 Input – Defines SRAM configuration mode. Low: sysCONFIG port, high: E2CMOS or S IEEE 1149.1 TAP. S PROGRAMB Input – Controls the programming of SRAM. Hold high for normal operation. Toggle low to reload SRAM from E2 memory. I CCLK1 Input – Clock for sysCONFIG interface. Reads and writes occur on the rising edge of D the clock. READ1 Input – Drive high to perform reads from the sysCONFIG interface. INITB I/O – Indicates status of configuration. Can be driven low to inhibit configuration. DONE Output (open drain) – Indicates status of configuration. 1. These inputs should not toggle during power up for proper power-up configuration. 49

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MX Power Supply and NC Connections1 S E C D I V E E U D N I T T C N E O L C E S S I D 50

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Signals 208 PQFP4 256 fpBGA3, 5 484 fpBGA, 53 672 fpBGA3, 5 VCC 10, 49, 76, 114, D4, D13, F6, F11, L6, A17, A6, AA2, AA21, AB17, AA21, AA6, F21, F6, G20, G7, J13, 153, 180 L11, N4, N13 AB6, B2, B21, D19, D4, F1, J14, K13, K14, L13, L14, M13, M14, F22, G10, G11, G12, G13, K16, N10, N11, N12, N15, N 16, N17, N18, K7, L16, L7, M16, M7, T10, N9, P10, P11, P12,S P15, P16, P17, T11, T12, T13, T14, T9, U1, P18, P9, R13, R14, T13, T14, U13, U22, W19, W4 U14, V13, V14, Y20, Y7 VCCO0 5, 17, 189, 204 A1, F7, G6 B9, C3, G8, G9, H7, J2, J7, P4 H10, H11, EH8, H9, J8, J9, K8, L8, M8, N8 VCCO1 42, 57, 72 K6, L7, T1 AA9, R7, T3, T8, Y3 P8, R8, T8, U8, V8, V9, W10, W11, WC8, W9 VCCO2 85, 100, 107, K11, L10, T16 AA14, R16, T15, T20, Y20 P19, R19, T19, U19, V18, V19, W12, D 121 W13, W14, W15, W16, W17, W18, W19 I VCCO3 146, 161, 176 A16, F10, G11 B14, C20, G14, G15, H16, J16, H12, H13, H14, H15, H16, H17, H18, V J21, P19 H19, J18, J19, K19E, L19, M19, N19 VCCP 136 J16 M22 N25 VCCJ 27 J1 M1 E N4 U GND 15, 29, 44, 81, K1, C3, C14, E5, E12, N1, A1, A2, A21, A22, AA1, A11, A16, A2, A25, AE1, AE2, AE25, 119, 148, 185, G7, G8, G9, G10, H7, AA22, AB1, AB22, B1, B22, AE26, AF11, AF16, AF2, AF25, B1, 7, 19, 191, 205, H8, H9, H10, J7, J8, J9, C15, DC8, D11, D12, E18, E5, B2, B25, B26, J10, J11, J12, J15, J16, 40, 56, 70, 87, J10, K7, K8, K9, K10, F17, F6, G16, G7, H10, H11, JN17, K10, K11, K12, K15, K16, K17, 101, 109, 123, M5, M12, P3 H12, H13, H14, H15, H20, H3, K18, K9, L1, L10, L11, L12, L15, L16, 144, 160, 174 H8, H9, J10, J11, J12, J13, J14, L17, L18, L26, L9, M10, M11, M12, J15, J8, J9, K10, K11, K12, M15, M16, M17, M18, M9, N13, N14, I T K13, K14, K15, K8, K9, L10, P13, P14, R10, R11, R12, R15, R16, L11, L12, L13, L14, LT15, L19, R17, R18, R9, T1, T10, T11, T12, L4, L8, L9, M10, M11, M12, T15, T16, T17, T18, T26, T9, U10, M13, M14, M19, M4, M9, N10, U11, U12, U15, U16, U17, U18, U9, C N11, N12, N1N3, N14, N9, P10, V10, V11, V12, V15, V16, V17 P11, P12, P13, P14, P9, R10, R11, R12, R13, R14, R15, R8, E R9, T16, T7, W11, W12, Y15, Y8 O GNDP 134 K16 N22 P26 L NC2 — 5256MX: A2, A11, A12, 5512MX: P1, AA19, AB2, AB21, A12, A13, A14, A15, AA10, AA11, A15, B2, B12, B15,C J17, J6, K1, K17, K18, K19, K2, AA12, AA13, AA14, AA15, AA16, B16, C4, C12, C15, K20, K21, K22, K3, K4, K5, K6, AA17, AA7, AB10, AB11, AB12, E C16, D1, D11, D14, L1, L17, L18, L2, L20, L21, L22, AB13, AB14, AB15, AB16, AB17, D15, D16, E1, E4, E10, L3, L5, L6, M15, M17, M18, M2, AC10, AC11, AC12, AC13, AC14, S E11, E13, E14, F4, F5, M20, M21, M3, M5, M6, M8, AC15, AC16, AC17, AD11, AD12, S F12, F13, L1, L4, M3, N15, N17, N18, N19, N2, N20, AD13, AD14, AD15, AD16, AE11, M7, M13, N2, N6, P1, N21, N3, N4, N5, N6, N8, P15, AE12, AE13, AE14, AE15, AE16, PI2, P5, P6, P13, P14, P17, P18, P2, P21, P22, P5, AF12, AF13, AF14, AF15, B11, B12, P15, P16, R1, R2, R4, P6, P8, U17, U6, V18, V5, W6 B13, B14, B15, B16, C11, C12, C13, D R5, R6, R16, T2, T3, C14, C15, C16, C3, D10, D11, D12, 5768MX/51024MX: None T4, T5, T6 D13, D14, D15, D16, D17, E10, E11, E12, E13, E14, E15, E16, E17, E6, 5512MX/5768MX: L1 E7, E8, F10, F11, F12, F13, F14, F15, F16, F17, G10, G11, G12, G13, G14, G15, G16, G17, Y10, Y11, Y12, Y13, Y14, Y15, Y16, Y17 1. All grounds must be electrically connected at the board level. 2. NC pins should not be connected to any active signals, V or GND. CC 3. Balls for GND, V and V are connected within the substrate to their respective common signals. Pin orientation A1 starts from the CC CCOX upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally. 4. Pin orientation follows the conventional counter-clockwise order from pin 1 marking of the topside view. 5. Internal GNDs and I/O GNDs (Bank 0 - Bank 3)þare connected inside package. V balls connect to four power planes within the pack- CCO age, one each for V CCOX. 51

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5256MX Logic Signal Connections Alternate Outputs Primary Macrocell/ 256 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Alternate Input Ball Number 0 61N H30 G17 H17 H31 S B1 0 61P H28 G16 H16 H29 C1 0 62N H26 G15 H15 H27 D3 E 0 62P H24 G14 H14 H25 C2 0 63N H22 G13 H13 H23 E3 C 0 63P H21 G12 H12 - D2 - - VCC - - - VDCC 0 64N H20 G11 H11 - E2 I 0 64P H18/CLK_OUT0 G10 H10 H19 F2 V E 0 65N H16 G9 H9 H17 F1 0 65P H14 G8 H8 H15 G1 - - GND - E - U- GND 0 66N H12 G7 H7 H13 F3 - - VCCO0 - - - VCCO0 D N 0 66P H10 G6 H6 H11 G5 - - GND (Bank 0) - - - GND (Bank 0) 0 67N H8 G5 H5 H9 H5 I 0 67P H6/PLL_RSTT0 G4 H4 H7 G4 T 0 68N H5 - - - G3 0 68P H4/PLCL_FBK0 - - - H3 N 0 69N H2 - - H3 G2 0 69P H0 - - H1 H1 E - GCLK0P GCLK0 - - - H2 O - - VCCJ - - - See Power Supply and NC Connections Table - GCLKL0N GCLK1 - - - J2 - - GND C - - - GND - E - TDI - - - H6 - - TMS - - - H4 S - - TCK - - - J6 S - - TDO - - - K2 1 0P IA0/DATA0 A0 B0 A1 K3 1 0N D A2/DATA1 A1 B1 A3 J3 1 1P A4/DATA2 A2 B2 - J5 1 1N A5/DATA3 A3 B3 - J4 1 2P A6/DATA4 A4 B4 A7 L2 1 2N A8/DATA5 A5 B5 A9 M1 - - GND (Bank 1) - - - GND (Bank 1) 1 3P A10/DATA6 A6 B6 A11 K4 - - VCCO1 - - - VCCO1 1 3N A12/DATA7 A7 B7 A13 L3 - - GND - - - GND 1 4P A14/INITB A8 B8 A15 K5 52

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5256MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ 256 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Alternate Input Ball Number 1 4N A16/CSB A9 B9 A17 S L5 1 5P A18/READ A10 B10 A19 N1 1 5N A20/CCLK A11 B11 A21 M2 E - - VCC - - - VCC - - DONE - - - M4 1 6P A22 A12 B12 C A23 N3 1 6N A24 A13 B13 A25 DP4 1 7P A26 A14 B14 A27 N5 I 1 7N A28 A15 B15 A29 M6 V - - PROGRAMB - - - E R3 - - GND (Bank 1) - - - GND (Bank 1) - - VCCO1 - E - - VCC01 U - - CFG0 - - - L8 1 8P B2 A16 B16 B3 T7 D 1 8N B4 A17 B17 N - R7 1 9P B5 A18 B18 - N7 1 9N B6 A19 B19 B7 P7 I 1 10P B8 T A20 B20 B9 T8 T 1 10N B10 A21 B21 B11 R8 1 11P B12 A22 B22 B13 M8 C N 1 11N B14 A23 B23 B15 P8 1 - B16/VREF1 - - B17 L9 1 12P E B18 A24 B24 B19 N8 O 1 12N B20 A25 B25 - M9 - - GND (Bank 1) - - - GND (Bank 1) L 1 13P B21 C A26 B26 - N10 - - VCCO1 - - - VCCO1 E 1 13N B22 A27 B27 B23 T9 1 14P BS24 A28 B28 B25 T10 S1 14N B26 A29 B29 B27 R9 - - VCC - - - VCC I 1 15P B28 A30 B30 B29 P9 D 1 15N B30 A31 B31 B31 N9 2 16P C0 C0 D0 C1 T11 2 16N C2 C1 D1 C3 T12 2 17P C4 C2 D2 - P10 2 17N C5 C3 D3 - R10 2 18P C6 C4 D4 C7 R11 - - VCCO2 - - - VCCO2 2 18N C8 C5 D5 C9 M10 - - GND (Bank 2) - - - GND (Bank 2) 2 19P C10 C6 D6 C11 M11 2 19N C12 C7 D7 C13 T13 53

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5256MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ 256 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Alternate Input Ball Number 2 20P C14 - - C15 S P11 2 20N C16/VREF2 - - C17 T14 2 21P C18 C8 D8 C19 R12 E 2 21N C20 C9 D9 - R13 2 22P C21 C10 D10 - N11 2 22N C22 C11 D11 C C23 T15 2 23P C24 C12 D12 C25 RD14 2 23N C26 C13 D13 C27 N12 I 2 24P C28 C14 D14 C29 P12 V 2 24N C30 C15 D15 C31 E R15 - - VCCO2 - - - VCCO2 - - GND (Bank 2) - E - - GND (Bank 2) U 2 25P D0 - - D1 N15 2 25N D2 - - D3 N14 D 2 26P D4 C16 D16 N - N16 2 26N D5 C17 D17 - M16 2 27P D6 C18 D18 D7 M14 I 2 27N D8 T C19 D19 D9 M15 T - - VCC - - - VCC 2 28P D10 C20 D20 D11 L13 C N 2 28N D12 C21 D21 D13 L12 2 29P D14 C22 D22 D15 L15 2 29N E D16 C23 D23 D17 L16 O - - GND - - - GND 2 30P D18 C24 D24 D19 L14 L - - VCCO2 C - - - VCCO2 2 30N D20 C25 D25 - K15 E - - GND (Bank 2) - - - GND (Bank 2) 2 31P DS21 C26 D26 - K14 S2 31N D22 C27 D27 D23 K12 2 32P D24 C28 D28 D25 K13 I 2 32N D26 C29 D29 D27 J13 D 2 33P D28 C30 D30 D29 J14 2 33N D30 C31 D31 D31 J12 - - TOE - - - J15 - - RESET - - - J11 - - GOE0 - - - H11 - - GOE1 - - - H13 - - GNDP - - - See Power Supply and NC Connections Table - GCLK3N GCLK2 - - - H15 - - VCCP - - - See Power Supply and NC Connections Table - GCLK3P GCLK3 - - - H16 54

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5256MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ 256 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Alternate Input Ball Number 3 34N E30 - - E31 S H14 3 34P E28 - - E29 G16 3 35N E26 - - E27 G15 E 3 35P E24/PLL_FBK1 - - E25 F15 3 36N E22/PLL_RST1 E27 F27 E23 H12 3 36P E21 E26 F26 C - G14 - - GND (Bank 3) - - - GND D(Bank 3) 3 37N E20 E25 F25 - F16 I - - VCCO3 - - - VCCO3 V 3 37P E18 E24 F24 E19 E E16 - - GND - - - GND 3 38N E16 E23 E F23 E17 G13 U 3 38P E14 E22 F22 E15 G12 3 39N E12 E21 F21 E13 F14 D 3 39P E10/CLK_OUT1 E20 F20 N E11 E15 - - VCC - - - VCC 3 40N E8 E19 F19 E9 D12 I 3 40P E6 T E18 F18 E7 B14 T 3 41N E5 E17 F17 - C13 3 41P E4 E16 F16 - A14 C N 3 42N E2 E31 F31 E3 A13 3 42P E0 E30 F30 E1 B13 - - EGND (Bank 3) - - - GND (Bank 3) O - - VCCO3 - - - VCCO3 3 43N F30 E15 F15 F31 B11 L 3 43P F28 C E14 F14 F29 C11 3 44N F26 E13 F13 F27 B10 E 3 44P F24 E12 F12 F25 A10 3 45N FS22 E11 F11 F23 C10 S3 45P F21 E10 F10 - D10 3 46N F20 E9 F9 - C9 I 3 46P F18 E8 F8 F19 E9 D 3 47N F16/VREF3 E29 F29 F17 D9 3 47P F14 E28 F28 F15 F9 3 48N F12 E7 F7 F13 A9 3 48P F10 E6 F6 F11 F8 - - GND (Bank 3) - - - GND (Bank 3) 3 49N F8 E5 F5 F9 E8 - - VCCO3 - - - VCCO3 3 49P F6 E4 F4 F7 A8 3 50N F5 E3 F3 - B9 3 50P F4 E2 F2 - D8 - - VCC - - - VCC 55

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5256MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ 256 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Alternate Input Ball Number 3 51N F2 E1 F1 F3 S B8 3 51P F0 E0 F0 F1 C8 0 52N G30 G31 H31 G31 B7 E 0 52P G28 G30 H30 G29 A7 - - GND - - - NC 0 53N G26 G29 H29 C G27 D7 0 53P G24 G28 H28 G25 DC7 0 54N G22 G27 H27 G23 B6 I - - VCCO0 - - - VCCO0 V 0 54P G21 G26 H26 - E E7 - - GND (Bank 0) - - - GND (Bank 0) 0 55N G20 G25 E H25 - E6 U 0 55P G18 G24 H24 G19 A6 0 56N G16/VREF0 G3 H3 G17 A5 D 0 56P G14 G2 H2 N G15 A4 0 57N G12 G23 H23 G13 B5 0 57P G10 G22 H22 G11 A3 I 0 58N G8 T G21 H21 G9 B4 T 0 58P G6 G20 H20 G7 B3 0 59N G5 G19 H19 - C5 C N 0 59P G4 G18 H18 - C6 0 60N G2 G1 H1 G3 D5 0 60P E G0 G0 H0 G1 D6 O - - VCCO0 - - - VCCO0 - - GND (Bank 0) - - - GND (Bank 0) L C Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to receive diffeErential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs S S I D 56

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number 0 109N O30 O11 P18 O31 208 C4 S B4 0 109P O28 O10 P16 O29 1 E4 A4 0 110N O26 M17 O17 O27 2 B1 B3 E 0 110P O24 M16 O16 O25 3 C1 A3 0 111N O22 M15 O15 O23 4 D3 F5 — — V — — — 5C V V CCO0 CCO0 CCO0 0 111P O20 M14 O14 O21 6 C2 DG6 — — GND (Bank 0) — — — 7 GND (Bank 0) GND (Bank 0) I 0 112N O18 M13 O13 O19 8 E3 H6 V 0 112P O16 M12 O12 O17 9 D2 E G5 0 113N O14 O9 P14 O15 — — D3 0 113P O12 O8 P12 E O13 — — D2 U 0 114N O10 O7 P10 O11 — — E4 0 114P O8 O6 P8 O9 — — E3 D 0 115N O6 O5 P6 O7 —N — F4 0 115P O4 O4 P4 O5 — — G4 0 116N O2 O 3 P2 O3 — — C2 I — — V T— — — — V V CCO0 CCO0 CCO0 T 0 116P O0 O2 P0 O1 — — C1 — — GND (Bank 0) — — — — GND (Bank 0) GND (Bank 0) C N 0 117N P30 O1 — P31 — D1 F3 0 117P P28 O0 — P29 — E1 G3 0 118N EP26 O31 — P27 — F4 H4 O — — V — — — 10 V V CC CC CC 0 118P P24 O30 — P25 — F5 J4 L 0 119N P22 CM11 O11 P23 11 E2 H5 0 119P P20/CLK_OUT0 M10 O10 P21 12 F2 J5 E 0 120N P18 M9 O9 P19 13 F1 E2 0 120P P16 S M8 O8 P17 14 G1 F2 —S — GND — — — 15 GND GND 0 121N P14 M7 O7 P15 16 F3 D1 I — — V — — — 17 V V DCCO0 CCO0 CCO0 0 121P P12 M6 O6 P13 18 G5 E1 — — GND (Bank 0) — — — 19 GND (Bank 0) GND (Bank 0) 0 122N P10 M5 O5 P11 20 H5 J3 0 122P P8/PLL_RST0 M4 O4 P9 21 G4 H2 0 123N P6 — — P7 22 G3 G2 0 123P P4/PLL_FBK0 — — P5 23 H3 G1 0 124N P2 — — P3 24 G2 H1 0 124P P0 — — P1 25 H1 J1 — GCLK0P GCLK0 — — — 26 H2 N7 See Power Supply and — — V — — — CCJ NC Connections Table 57

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number — GCLK0N GCLK1 — — — 28 J2 S P7 — — GND — — — 29 GND GND — — TDI — — — 30 H6 R1 E — — TMS — — — 31 H4 R2 — — TCK — — — 32 J6 T1 — — TDO — — — 33C K2 V1 1 0P A0/DATA0 B0 D0 A1 34 K3 DW1 1 0N A2/DATA1 B1 D1 A3 35 J3 Y1 I 1 1P A4/DATA2 B2 D2 A5 36 J5 P3 V 1 1N A6/DATA3 B3 D3 A7 37 J4 E R3 1 2P A8/DATA4 B4 D4 A9 38 L2 T2 1 2N A10/DATA5 B5 D5 E A11 39 M1 U2 U — — GND (Bank 1) — — — 40 GND (Bank 1) GND (Bank 1) 1 3P A12/DATA6 B6 D6 A13 41 K4 V2 D — — V — — — 4N2 V V CCO1 CCO1 CCO1 1 3N A14/DATA7 B7 D7 A15 43 L3 W2 — — GND — — — 44 GND GND I 1 4P A16/INITB TB8 D8 A17 45 K5 R4 T 1 4N A18/CSB B9 D9 A19 46 L5 T4 1 5P A20/READ B10 D10 A21 47 N1 R6 C N 1 5N A22/CCLK B11 D11 A23 48 M2 R5 1 6P A24 — — A25 — — U3 — — EVCC — — — 49 VCC VCC O 1 6N A26 — — A27 — P11 V3 1 7P A28 — — A29 — M3 Y2 L 1 7N A30 C— — A31 — L4 W3 1 8P B0 A0 — B1 — N2 U5 E 1 8N B2 A2 — B3 — P2 T5 — — GND (Bank 1)S — — — — GND (Bank 1) GND (Bank 1) S1 9P B4 A4 — — — R1 U4 — — V — — — — V V ICCO1 CCO1 CCO1 1 9N B5 A6 — — — R2 V4 D 1 10P B6 A8 — B7 — T2 AA3 1 10N B8 A10 — B9 — T3 AB3 1 — B10 A12 — B11 — — Y4 — — DONE — — — 50 M4 AA4 1 11P B14 B12 D12 B15 51 N3 AB4 1 11N B16 B13 D13 B17 52 P4 AB5 1 12P B18 B14 D14 B19 53 N5 T6 1 12N B20 B15 D15 B21 54 M6 U7 — — PROGRAMB — — — 55 R3 W5 1 — B22 A14 — B23 — P5 U8 — — GND (Bank 1) — — — 56 GND (Bank 1) GND (Bank 1) 58

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number 1 13P B24 A16 — B25 — T4 S V6 — — V — — — 57 V V CCO1 CCO1 CCO1 1 13N B26 A18 — B27 — T5 V7 E 1 14P B28 A20 — B29 — R4 Y5 1 14N B30 A22 — B31 — N6 AA5 1 15P C0 — — C1 —C R5 Y6 1 15N C2 — — C3 — P6 DY7 1 16P C4 — — C5 — — AA6 I 1 16N C8 — — C9 — — AA7 V 1 17P C10 — — C11 — — E W7 1 17N C12 — — C13 — M71 V8 1 18P C16 — — E C17 — T6 W8 U 1 18N C18 — — C19 — R6 U9 — — GND0 (Bank 1) — — — — GND (Bank 1) GND (Bank 1) D — — CFG0 — — — 5N8 L8 U10 — — V — — — — V V CCO1 CCO1 CCO1 1 19P C24 B 16 D16 C25 59 T7 AB7 I 1 19N C26 TB17 D17 C27 60 R7 AA8 T 1 20P C28 B18 D18 C29 61 N7 AB8 1 20N D0 B19 D19 D1 62 P7 AB9 C N 1 21P D2 B20 D20 D3 63 T8 W9 1 21N D4 B21 D21 D5 64 R8 Y9 1 22P ED6 B22 D22 D7 65 M8 AB10 O 1 22N D8 B23 D23 D9 66 P8 AA10 1 — D10/V — — D11 67 L9 W10 L REF1 1 23P D12 CB24 D24 D13 68 N8 Y10 1 23N D16 B25 D25 D17 69 M9 Y11 E — — GND (Bank 1) — — — 70 GND (Bank 1) GND (Bank 1) 1 24P D18 S B26 D26 D19 71 N10 V9 —S — VCCO1 — — — 72 V V CCO1 CCO1 1 24N D20 B27 D27 D21 73 T9 V10 I 1 25P D22 B28 D28 D23 74 T10 AA11 D 1 25N D24 B29 D29 D25 75 R9 AB11 — — VCC — — — 76 VCC VCC 1 26P D26 B30 D30 D27 77 P9 U11 1 26N D28 B31 D31 D29 78 N9 V11 2 27P E0 F0 H0 E1 79 T11 AB12 2 27N E2 F1 H1 E3 80 T12 AA12 — — GND — — — 81 NC GND — — GND — — — — GND GND 2 28P E4 F2 H2 E5 82 P10 Y12 2 28N E6 F3 H3 E7 83 R10 AA13 2 29P E8 F4 H4 E9 84 R11 V12 59

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number — — V — — — 85 V S V CCO2 CCO2 CCO2 2 29N E10 F5 H5 E11 86 M10 U12 — — GND (Bank 2) — — — 87 GND (Bank 2) GND (Bank 2) E 2 30P E12 F6 H6 E13 88 M11 AB13 2 30N E16 F7 H7 E17 89 T13 Y13 2 31P E18 — — E19 90C P11 V13 2 31N E20/VREF2 — — E21 91 T14 DW13 2 32P E22 F8 H8 E23 92 R12 V14 I 2 32N E24 F9 H9 E25 93 R13 W14 V 2 33P E26 F10 H10 E27 94 N11 E Y14 2 33N E28 F11 H11 E29 95 T15 AB14 2 34P F0 F12 H12 E F1 96 R14 AB15 U 2 34N F2 F13 H13 F3 97 N12 AA15 2 35P F4 F14 H14 F5 98 P12 U13 D — — V — — — —N V V CCO2 CCO2 CCO2 2 35N F6 F15 H15 F7 99 R15 U14 — — GND (Bank 2) — — — — GND (Bank 2) GND (Bank 2) I 2 36P F8 TE0 — F9 — — W15 T 2 36N F10 E2 — F11 — — W16 2 37P F12 E4 — F13 — — Y16 C N 2 37N F16 E6 — F17 — — AA16 2 38P F18 E8 — F19 — — AB16 2 38N EF20 E10 — F21 — — AA17 O 2 39P F22 E12 — F23 — — Y17 2 39N F24 E16 — F25 — — AA18 L 2 40P F26 CE20 — F27 — — W17 2 40N F28 E22 — F29 — — W18 E 2 41P G0 — — G1 — — V15 — — V S — — — 100 V V CCO2 CCO2 CCO2 S2 41N G2 — — G3 — — U15 — — GND (Bank 2) — — — 101 GND (Bank 2) GND (Bank 2) I 2 42P G4 — — G5 102 P13 Y18 D 2 42N G6 — — G7 103 P15 V17 2 43P G8 — — G9 — M13 V16 2 43N G10 — — G11 — P14 U16 2 44P G12 — — G13 — — AB18 2 44N G14 — — G15 — — AB19 2 45P G16 — — G17 — — U18 2 45N G18 — — G19 — — T17 2 46P G20 — — G21 104 R16 AB20 2 46N G22 — — G23 105 P16 AA20 2 47P G24 — — G25 106 N15 Y19 — — V — — — 107 V V CCO2 CCO2 CCO2 60

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number 2 47N G26 — — G27 108 N14 S V19 — — GND (Bank 2) — — — 109 GND (Bank 2) GND (Bank 2) 2 48P G28 F16 H16 G29 110 N16 T18 E 2 48N G30 F17 H17 G31 111 M16 R17 2 49P H0 F18 H18 H1 112 M14 U19 2 49N H2 F19 H19 H3 113C M15 T19 2 50P H4 E24 — H5 — — DV20 — — V — — — 114 VCC VCC CC I 2 50N H6 E26 — H7 — NC U20 V 2 51P H8 F20 H20 H9 115 L13 E W20 2 51N H10 F21 H21 H11 116 L12 Y21 2 52P H12 F22 H22 E H13 117 L15 R18 U 2 52N H14 F23 H23 H15 118 L16 R19 — — GND — — — 119 GND GND D 2 53P H16 F24 H24 H17 12N0 L14 W21 — — V — — — 121 V V CCO2 CCO2 CCO2 2 53N H18 F 25 H25 H19 122 K15 Y22 I — — GND (Bank 2) T— — — 123 GND (Bank 2) GND (Bank 2) T 2 54P H20 F26 H26 H21 124 K14 R20 2 54N H22 F27 H27 H23 125 K12 P20 C N 2 55P H24 F28 H28 H25 126 K13 T21 2 55N H26 F29 H29 H27 127 J13 R21 2 56P EH28 F30 H30 H29 128 J14 U21 O 2 56N H30 F31 H31 H31 129 J12 V21 — — TOE — — — 130 J15 W22 L — — RESET C— — — 131 J11 V22 — — GOE0 — — — 132 H11 T22 E — — GOE1 — — — 133 H13 R22 — — GNDP S — — — See Power Supply and NC Connections Table —S GCLK3N GCLK2 — — — 135 H15 P16 — — V — — — See Power Supply and NC Connections Table ICCP — GCLK3P GCLK3 — — — 137 H16 N16 D 3 57N I30 — — I31 138 H14 J22 3 57P I28 — — I29 139 G16 H22 3 58N I26 — — I27 140 G15 E22 3 58P I24/PLL_FBK1 — — I25 141 F15 E21 3 59N I22/PLL_RST1 I27 K27 I23 142 H12 G22 3 59P I20 I26 K26 I21 143 G14 F21 — — GND (Bank 3) — — — 144 GND (Bank 3) GND (Bank 3) 3 60N I18 I25 K25 I19 145 F16 H21 — — VCCO3 — — — 146 V V CCO3 CCO3 3 60P I16 I24 K24 I17 147 E16 G21 — — GND — — — 148 GND GND 61

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number 3 61N I14 I23 K23 I15 149 G13 S D22 3 61P I12 I22 K22 I13 150 G12 D21 3 62N I10 I21 K21 I11 151 F14 J20 E 3 62P I8/CLK_OUT1 I20 K20 I9 152 E15 J19 3 63N I6 K31 — I7 — F12 E20 — — V — — — 153C VCC VCC CC 3 63P I4 K30 L30 I5 — F13 DF20 3 64N I2 K29 L28 I3 — D16 H17 I 3 64P I0 K28 L26 I1 — D15 H18 V — — GND (Bank 3) — — — — GND (BanEk 3) GND (Bank 3) 3 65N J30 K27 — J31 — — J18 — — V — — E — — V V CCO3 UCCO3 CCO3 3 65P J28 K26 — J29 — — H19 3 66N J26 K25 — J27 — — G20 D 3 66P J24 K24 — J25 —N — G19 3 67N J22 K23 — J23 — — C22 3 67P J20 K 22 — J21 — — C21 I 3 68N J18 TK21 — J19 — — D20 T 3 68P J16 K20 — J17 — — C19 3 69N J14 K19 — J15 — C16 F19 C N 3 69P J12 K18 — J13 — B16 E19 — — GND (Bank 3) — — — — GND (Bank 3) GND (Bank 3) 3 70N EJ10 K17 — J11 — C15 G18 O — — V — — — — V V CCO3 CCO3 CCO3 3 70P J8 K16 — J9 — B15 F18 L 3 71N J6 CK15 — J7 — E14 B20 3 71P J4 K14 — J5 — D14 B19 E 3 72N J2 K13 — J3 — E13 A20 3 72P J0 S K12 — J1 — A15 A19 S3 73N K30 I19 K19 K31 154 D12 D18 3 73P K28 I18 K18 K29 155 B14 C18 I 3 74N K26 I17 K17 K27 156 C13 G17 D 3 74P K24 I16 K16 K25 157 A14 F16 3 75N K22 I31 K31 K23 158 A13 E17 3 75P K21 I30 K30 — 159 B13 D17 — — GND (Bank 3) — — — 160 GND (Bank 3) GND (Bank 3) 3 76N K20 K11 L21 — — D11 B18 — — V — — — 161 V V CCO3 CCO3 CCO3 3 76P K18 K10 L20 K19 — B12 A18 3 77N K16 K9 L18 K17 — C12 C17 3 77P K14 K8 L16 K15 — E11 B17 3 78N K12 K7 L12 K13 — — C16 3 78P K10 K6 L10 K11 — — B16 62

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number 3 79N K8 K5 L8 K9 — — S F13 3 79P K6 K4 L6 K7 — — F15 3 80N K5 K3 L5 — — — D16 E 3 80P K4 K2 L4 — — E101 E16 3 81N K2 K1 L2 K3 — A12 A16 3 81P K0 K0 L0 K1 —C A11 A15 — — GND (Bank 3) — — — — GND (Bank 3) GNDD (Bank 3) 3 82N L30 I15 K15 L31 162 B11 B15 I — — V — — — — V V CCO3 CCO3 CCO3 V 3 82P L28 I14 K14 L29 163 C11 E A14 3 83N L26 I13 K13 L27 164 B10 D15 3 83P L24 I12 K12 E L25 165 A10 E15 U 3 84N L22 I11 K11 L23 166 C10 D14 3 84P L21 I10 K10 — 167 D10 F14 D 3 85N L20 I9 K9 — 16N8 C9 A13 3 85P L18 I8 K8 L19 169 E9 B13 3 86N L16/VREF3 I2 9 K29 L17 170 D9 C14 I 3 86P L14 TI28 K28 L15 171 F9 E14 T 3 87N L12 I7 K7 L13 172 A9 E13 3 87P L10 I6 K6 L11 173 F8 F12 C N — — GND (Bank 3) — — — 174 GND (Bank 3) GND (Bank 3) 3 88N L8 I5 K5 L9 175 E8 D13 — — EV — — — 176 V V CCO3 O CCO3 CCO3 3 88P L6 I4 K4 L7 177 A8 C13 3 89N L5 I3 K3 — 178 B9 E12 L 3 89P L4 CI2 K2 — 179 D8 C12 — — VCC — — — 180 VCC VCC E 3 90N L2 I1 K1 L3 181 B8 B12 3 90P L0 S I0 K0 L1 182 C8 A12 S0 91N M30 M31 O31 M31 183 B7 E11 0 91P M28 M30 O30 M29 184 A7 C11 I — — GND — — — 185 — GND D — — GND — — — — GND GND 0 92N M26 M29 O29 M27 186 D7 B11 0 92P M24 M28 O28 M25 187 C7 A11 0 93N M22 M27 O27 M23 188 B6 F11 — — V — — — 189 V V CCO0 CCO0 CCO0 0 93P M21 M26 O26 M22 190 E7 F10 — — GND (Bank 0) — — — 191 GND (Bank 0) GND (Bank 0) 0 94N M20 M25 O25 M21 192 E6 E10 0 94P M18 M24 O24 M19 193 A6 C10 0 95N M16/V M3 O3 M17 194 A5 D10 REF0 0 95P M14 M2 O2 M15 195 A4 B10 63

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5512MX Logic Signal Connections (Continued) Alternate Outputs sysIO LVDS Primary Macrocell/ Alternate 208 PQFP 256 fpBGA 484 fpBGA Bank Pair Function Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number 0 96N M12 M23 O23 M13 196 B5 S A10 0 96P M10 M22 O22 M11 197 A3 A9 0 97N M8 M21 O21 M9 198 B4 C9 E 0 97P M6 M20 O20 M7 199 B3 D9 0 98N M5 M19 O19 — 200 C5 F9 0 98P M4 M18 O18 — 201C C6 E9 0 99N M2 M1 O1 M3 202 D5 DA8 — — V — — — — V V CCO0 CCO0 CCO0 I 0 99P M0 M0 O0 M1 203 D6 B8 V — — GND (Bank 0) — — — — GND (BanEk 0) GND (Bank 0) 0 100N N30 O29 — N31 — — A7 0 100P N28 O28 — E N29 — — B7 U 0 101N N26 O27 — N27 — — A5 0 101P N24 O26 — N25 — — B5 D 0 102N N22 O25 — N23 —N — B6 0 102P N21 O24 — — — — C7 0 103N N20 O 23 — — — — E8 I 0 103P N18 TO22 — N19 — — E7 T 0 104N N16 O21 — N17 — — E6 0 104P N14 O20 — N15 — — D6 C N 0 105N N12 O19 — N13 — — D8 — — V — — — 204 V V CCO0 CCO0 CCO0 0 105P EN10 O18 — N11 — — F8 O — — GND (Bank 0) — — — 205 GND (Bank 0) GND (Bank 0) 0 106N N8 O17 — N9 — — F7 L 0 106P N6 CO16 — N7 — — D7 0 107N N5 O15 — — 206 A2 C6 E 0 107P N4 O14 — — 207 B2 C5 0 108N N2 S O13 — N3 — — C4 S0 108P N0 O12 — N1 — — D5 1. Not available for differential pair. I Global Clock LVDS pair Doptions: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to receive differential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs. 64

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 0 127N S22 S11 T18 S23 C4 S B4 0 127P S20 S10 T16 S21 E4 A4 0 128N S18 Q17 S17 S19 B1 B3 E 0 128P S16 Q16 S16 S17 C1 A3 0 129N S14 Q15 S15 S15 D3 F5 C - - VCCO0 - - - VCCO0 VCCO0 0 129P S12 Q14 S14 S13 C2 DG6 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) I 0 130N S10 Q13 S13 S11 E3 H6 V E 0 130P S8 Q12 S12 S9 D2 G5 0 131N S6 S9 T14 S7 — D3 0 131P S4 S8 ET12 S5 U— D2 0 132N S2 S7 T10 S3 — E4 - - VCC - - - VCC VCC D N 0 132P S0 S6 T8 S1 — E3 - - GND - - - GND GND 0 133N T30 S5 T6 T31 — F4 I 0 133P T28 T S4 T4 T29 — G4 T 0 134N T26 S3 T2 T27 — C2 - - VCCOC0 - - - VCCO0 VCCO0 N 0 134P T24 S2 T0 T25 — C1 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) E 0 135N T22 S1 - T23 D1 F3 O 0 135P T20 S0 - T21 E1 G3 0 136LN T18 S31 - T19 F4 H4 - - VCC C - - - VCC VCC 0 136P T16 S30 - T17 F5 J4 E 0 137N T14 Q11 S11 T15 E2 H5 S 0 137P T12/CLK_OUT0 Q10 S10 T13 F2 J5 S 0 138N T10 Q9 S9 T11 F1 E2 0 138P IT8 Q8 S8 T9 G1 F2 - - D GND - - - GND GND 0 139N T6 Q7 S7 T7 F3 D1 - - VCCO0 - - - VCCO0 VCCO0 0 139P T4 Q6 S6 T5 G5 E1 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 140N T2 Q5 S5 T3 H5 J3 0 140P T0/PLL_RST0 Q4 S4 T1 G4 H2 0 141N U30 U31 W31 U31 G3 G2 0 141P U28/PLL_FBK0 U30 W30 U29 H3 G1 0 142N U26 U29 W29 U27 — J6 0 142P U24 U28 W28 U25 — K4 65

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 0 143N U22 U27 W27 U23 — S K6 - - VCCO0 - - - VCCO0 VCCO0 0 143P U20 U26 W26 U21 — K3 E - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 144N U18 U25 W25 U19 — K5 0 144P U16 U24 W24 U17C — K2 0 145N U14 U23 W23 U15 — DL5 0 145P U12 U22 W22 U13 — K1 I 0 146N U10 U21 W21 U11 — L6 V 0 146P U8 U20 W20 U9 — E L1 0 147N U6 U19 W19 U7 — M5 0 147P U4 U18 EW18 U5 — L2 U 0 148N U2 U17 W17 U3 — N5 - - VCCO0 - - - VCCO0 VCCO0 D 0 148P U0 U16 W16 U1N — L3 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 149N W30 U15 W15 W31 — M6 I 0 149P W28 T U14 W14 W29 — M2 T 0 150N W26 U13 W13 W27 — P5 - - VCC - - - VCC VCC C N 0 150P W24 U12 W12 W25 — P6 0 151N W22 U11 W11 W23 — M3 0 151P E W20 U10 W10 W21 — N6 O 0 152N W18 U9 W9 W19 — N2 0 152P W16 U8 W8 W17 — P1 L - - GND C - - - GND GND 0 153N W14 U7 W7 W15 — N3 E - - VCCO0 - - - VCCO0 VCCO0 0 153P W12S U6 W6 W13 — M8 S- - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 154N W10 U5 W5 W11 — N8 I 0 154P W8 U4 W4 - — P2 D 0 155N W6 U3 W3 W7 — P8 0 155P W4 U2 W2 W5 — N4 0 156N W2 U1 W1 W3 G2 H1 0 156P W0 U0 W0 W1 H1 J1 - GCLK0P GCLK0 - - - H2 N7 - - VCCJ - - - See Power Supply and NC Connections Table - GCLK0N GCLK1 - - - J2 P7 - - GND - - - GND GND - - TDI - - - H6 R1 - - TMS - - - H4 R2 66

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number - - TCK - - - J6 S T1 - - TDO - - - K2 V1 1 0P A30/DATA0 C0 A0 A31 K3 W1 E 1 0N A28/DATA1 C1 A1 A29 J3 Y1 1 1P A26/DATA2 C2 A2 A27 J5 P3 1 1N A24/DATA3 C3 A3 A25C J4 R3 1 2P A22/DATA4 C4 A4 A23 L2 DT2 1 2N A20/DATA5 C5 A5 A21 M1 U2 I - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) V 1 3P A18/DATA6 C6 A6 A19 K4 E V2 - - VCCO1 - - - VCCO1 VCCO1 1 3N A16/DATA7 C7 EA7 A17 L3 W2 U - - GND - - - GND GND 1 4P A14/INITB C8 A8 A15 K5 R4 D 1 4N A12/CSB C9 A9 A13N L5 T4 1 5P A10/READ C10 A10 A11 N1 R6 1 5N A8/CCLK C11 A11 A9 M2 R5 I 1 6P A6 T - - A7 — U3 T - - VCC - - - VCC VCC 1 6N A4 - - A5 P1 V3 C N 1 7P A2 - - A3 M3 Y2 1 7N A0 - - A1 L4 W3 1 8P E B30 D0 - B31 N2 U5 O 1 8N B28 D2 - B29 P2 T5 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) L 1 9P B26 C D4 - B27 R1 U4 - - VCCO1 - - - VCCO1 VCCO1 E 1 9N B24 D6 - B25 R2 V4 1 10P B22S D8 - B23 T2 AA3 S1 10N B20 D10 - B21 T3 AB3 1 - B18 D12 - B19 — Y4 I - - DONE - - - M4 AA4 D 1 11P B14 - - B15 — AB2 1 11N B12 - - B13 — U6 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) 1 12P B10 - - B11 — V5 - - VCCO1 - - - VCCO1 VCCO1 1 12N B8 - - B9 — W6 1 13P B6 C12 A12 B7 N3 AB4 1 13N B4 C13 A13 B5 P4 AB5 1 14P B2 C14 A14 B3 N5 T6 1 14N B0 C15 A15 B1 M6 U7 - - PROGRAMB - - - R3 W5 67

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 1 - C28 D14 - C29 P5 S U8 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) 1 15P C26 D16 - C27 T4 V6 E - - VCCO1 - - - VCCO1 VCCO1 1 15N C24 D18 - C25 T5 V7 - - GND - - - C GND GND 1 16P C22 D20 - C23 R4 DY5 - - VCC - - - VCC VCC I 1 16N C20 D22 - C21 N6 AA5 V 1 17P C18 - - C19 R5 E Y6 1 17N C16 - - C17 P6 Y7 1 18P C14 - E- C15 — AA6 U 1 18N C12 - - C13 — AA7 1 19P C10 - - C11 — W7 D 1 19N C8 - - C9N M7 V8 1 20P C6 - - C7 T6 W8 1 20N C4 - - C5 R6 U9 I - - GND (Bank 1) T - - - GND (Bank 1) GND (Bank 1) T - - CFG0 - - - L8 U10 - - VCCO1 - - - VCCO1 VCCO1 C N 1 21P C0 C16 A16 C1 T7 AB7 1 21N D30 C17 A17 D31 R7 AA8 1 22P E D28 C18 A18 D29 N7 AB8 O 1 22N D26 C19 A19 D27 P7 AB9 1 23P D24 C20 A20 D25 T8 W9 L 1 23N D22 C C21 A21 D23 R8 Y9 1 24P D20 C22 A22 D21 M8 AB10 E 1 24N D18 C23 A23 D19 P8 AA10 1 - D16/VRSEF1 - - D17 L9 W10 S1 25P D14 C24 A24 D15 N8 Y10 1 25N D12 C25 A25 D13 M9 Y11 I - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) D 1 26P D10 C26 A26 D11 N10 V9 - - VCCO1 - - - VCCO1 VCCO1 1 26N D8 C27 A27 D9 T9 V10 1 27P D6 C28 A28 D7 T10 AA11 - - GND - - - GND GND 1 27N D4 C29 A29 D5 R9 AB11 - - VCC - - - VCC VCC 1 28P D2 C30 A30 D3 P9 U11 1 28N D0 C31 A31 D1 N9 V11 2 29P E0 F0 H0 E1 T11 AB12 - - VCC - - - VCC VCC 68

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 2 29N E2 F1 H1 E3 T12 S AA12 - - GND - - - GND GND 2 30P E4 F2 H2 E5 P10 Y12 E 2 30N E6 F3 H3 E7 R10 AA13 2 31P E8 F4 H4 E9 R11 V12 - - VCCO2 - - - C VCCO2 VCCO2 2 31N E10 F5 H5 E11 M10 DU12 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) I 2 32P E12 F6 H6 E13 M11 AB13 V 2 32N E14 F7 H7 E15 T13 E Y13 2 33P E16 H0 - E17 P11 V13 2 33N E18/VREF2 H1 E- E19 T14 W13 U 2 34P E20 F8 H8 E21 R12 V14 2 34N E22 F9 H9 E23 R13 W14 D 2 35P E24 F10 H10 E25N N11 Y14 2 35N E26 F11 H11 E27 T15 AB14 2 36P E28 F12 H12 E29 R14 AB15 I 2 36N E30 T F13 H13 E31 N12 AA15 T 2 37P F0 F14 H14 F1 P12 U13 - - VCCO2 - - - VCCO2 VCCO2 C N 2 37N F2 F15 H15 F3 R15 U14 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 38P E F4 H2 E0 F5 — W15 O 2 38N F6 H3 E2 F7 — W16 2 39P F8 H4 E4 F9 — Y16 L 2 39N F10 C H5 E6 F11 — AA16 2 40P F12 H6 E8 F13 — AB16 E 2 40N F14 H7 E10 F15 — AA17 2 41P F16S H8 E12 F17 — Y17 S2 41N F18 H9 E16 F19 — AA18 2 42P F20 H10 E20 F21 — W17 I - - VCC - - - VCC VCC D 2 42N F22 H11 E22 F23 — W18 - - GND - - - GND GND 2 43P F24 H12 - F25 — V15 - - VCCO2 - - - VCCO2 VCCO2 2 43N F26 H13 - F27 — U15 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 44P F28 H14 - F29 P13 Y18 2 44N F30 H15 - F31 P15 V17 2 45P G0 H16 - G1 M13 V16 2 45N G2 H17 - G3 P14 U16 2 46P G4 H18 - G5 — AB18 69

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 2 46N G6 H19 - G7 — S AB19 2 47P G8 H20 - G9 — AA19 - - VCCO2 - - - VCCO2 VCCO2 E 2 47N G10 H21 - G11 — U17 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 48P G12 H22 - G13C — V18 2 48N G14 H23 - G15 — DAB21 2 49P G16 H24 - G17 — U18 I 2 49N G18 H25 - G19 — T17 V 2 50P G20 H26 - G21 R16 E AB20 2 50N G22 H27 - G23 P16 AA20 2 51P G24 H28 E- G25 N15 Y19 U - - VCCO2 - - - VCCO2 VCCO2 2 51N G26 H29 - G27 N14 V19 D - - GND (Bank 2) - - -N GND (Bank 2) GND (Bank 2) 2 52P G28 F16 H16 G29 N16 T18 2 52N G30 F17 H17 G31 M16 R17 I 2 53P H0 T F18 H18 H1 M14 U19 T 2 53N H2 F19 H19 H3 M15 T19 2 54P H4 H30 E24 H5 — V20 C N - - VCC - - - VCC VCC 2 54N H6 H31 E26 H7 — U20 2 55P E H8 F20 H20 H9 L13 W20 O 2 55N H10 F21 H21 H11 L12 Y21 2 56P H12 F22 H22 H13 L15 R18 L 2 56N H14 C F23 H23 H15 L16 R19 - - GND - - - GND GND E 2 57P H16 F24 H24 H17 L14 W21 - - VCCOS2 - - - VCCO2 VCCO2 S2 57N H18 F25 H25 H19 K15 Y22 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) I 2 58P H20 F26 H26 H21 K14 R20 D 2 58N H22 F27 H27 H23 K12 P20 2 59P H24 F28 H28 H25 K13 T21 2 59N H26 F29 H29 H27 J13 R21 2 60P H28 F30 H30 H29 J14 U21 2 60N H30 F31 H31 H31 J12 V21 - - TOE - - - J15 W22 - - RESET - - - J11 V22 - - GOE0 - - - H11 T22 - - GOE1 - - - H13 R22 - - GNDP - - - See Power Supply and NC Connections Table 70

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number - GCLK3N GCLK2 - - - H15 S P16 - - VCCP - - - See Power Supply and NC Connections Table - GCLK3P GCLK3 - - - EH16 N16 3 61N J0 L31 J31 - H14 J22 3 61P J2 L30 J30 J3 G16 H22 C 3 62N J4 L29 J29 J5 — N19 3 62P J6 L28 J28 J7 — DP15 3 63N J8 L27 J27 IJ9 — P21 3 63P J10 L26 J26 V J11 — N15 E - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 64N J12 L25 J25 J13 — M15 E - - VCCO3 - - - UVCCO3 VCCO3 3 64P J14 L24 J24 J15 — N20 - - GND - D - - GND GND N 3 65N J16 L23 J23 J17 — P22 3 65P J18 L22 J22 J19 — N21 3 66N J20 L21 J21 IJ21 — N17 T 3 66P J22 L20 J20 T J23 — M20 3 67N J24 L19 J19 J25 — P17 - - VCCC - - - VCC VCC N 3 67P J26 L18 J18 J27 — P18 3 68N J28 L17 J17 J29 — M21 E 3 68P J30 L16O J16 J31 — M17 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 69NL L0 L15 J15 - — L20 - - VCCO3 C - - - VCCO3 VCCO3 3 E69P L2 L14 J14 L3 — N18 3 70N L4 L13 J13 L5 — L21 S 3 70P L6 L12 J12 L7 — M18 S 3 71N L8 L11 J11 L9 — L22 3 71P IL10 L10 J10 L11 — L17 3 72N D L12 L9 J9 L13 — K22 3 72P L14 L8 J8 L15 — L18 3 73N L16 L7 J7 L17 — K21 3 73P L18 L6 J6 L19 — K18 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 74N L20 L5 J5 L21 — K20 - - VCCO3 - - - VCCO3 VCCO3 3 74P L22 L4 J4 L23 — K17 3 75N L24 L3 J3 L25 — K19 3 75P L26 L2 J2 L27 — J17 3 76N L28 L1 J1 L29 G15 E22 71

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 3 76P L30/PLL_FBK1 L0 J0 L31 F15 S E21 3 77N M0/PLL_RST1 P27 N27 M1 H12 G22 3 77P M2 P26 N26 M3 G14 F21 E - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 78N M4 P25 N25 M5 F16 H21 - - VCCO3 - - - C VCCO3 VCCO3 3 78P M6 P24 N24 - E16 DG21 - - GND - - - GND GND I 3 79N M8 P23 N23 M9 G13 D22 V 3 79P M10 P22 N22 M11 G12 E D21 3 80N M12 P21 N21 M13 F14 J20 3 80P M14/CLK_OUT1 P20 EN20 M15 E15 J19 U 3 81N M16 N31 - M17 F12 E20 - - VCC - - - VCC VCC D 3 81P M18 N30 M30 M19N F13 F20 3 82N M20 N29 M28 M21 D16 H17 3 82P M22 N28 M26 M23 D15 H18 I - - GND (Bank 3) T - - - GND (Bank 3) GND (Bank 3) T 3 83N M24 N27 - M25 — J18 - - VCCO3 - - - VCCO3 VCCO3 C N 3 83P M26 N26 - M27 — H19 3 84N M28 N25 - M29 — G20 3 84P E M30 N24 - M31 — G19 O - - GND - - - GND GND 3 85N N0 N23 - N1 — C22 L - - VCC C - - - VCC VCC 3 85P N2 N22 - N3 — C21 E 3 86N N4 N21 - - — D20 3 86P N6S N20 - - — C19 S3 87N N8 N19 - N9 C16 F19 3 87P N10 N18 - N11 B16 E19 I - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) D 3 88N N12 N17 - N13 C15 G18 - - VCCO3 - - - VCCO3 VCCO3 3 88P N14 N16 - N15 B15 F18 3 89N N16 N15 - N17 E14 B20 3 89P N18 N14 - N19 D14 B19 3 90N N20 N13 - N21 E13 A20 3 90P N22 N12 - N23 A15 A19 3 91N N24 P19 N19 N25 D12 D18 3 91P N26 P18 N18 N27 B14 C18 3 92N N28 P17 N17 N29 C13 G17 3 92P N30 P16 N16 N31 A14 F16 72

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 3 93N O0 P31 N31 O1 A13 S E17 3 93P O2 P30 N30 O3 B13 D17 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) E 3 94N O4 N11 M21 O5 D11 B18 - - VCCO3 - - - VCCO3 VCCO3 3 94P O6 N10 M20 O7C B12 A18 - - GND - - - GND DGND 3 95N O8 N9 M18 O9 C12 C17 I - - VCC - - - VCC VCC V 3 95P O10 N8 M16 O11 E11 E B17 3 96N O12 N7 M12 O13 — C16 3 96P O14 N6 EM10 O15 — B16 U 3 97N O16 N5 M8 O17 — F13 3 97P O18 N4 M6 O19 — F15 D 3 98N O20 N3 M5 O21N — D16 3 98P O22 N2 M4 O23 E10 E16 3 99N O24 N1 M2 O25 A12 A16 I 3 99P O26 T N0 M0 O27 A11 A15 T - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 100N O28 P15 N15 O29 B11 B15 C N - - VCCO3 - - - VCCO3 VCCO3 3 100P O30 P14 N14 O31 C11 A14 3 101N E P0 P13 N13 P1 B10 D15 O 3 101P P2 P12 N12 P3 A10 E15 3 102N P4 P11 N11 P5 C10 D14 L 3 102P P6 C P10 N10 P7 D10 F14 3 103N P8 P9 N9 P9 C9 A13 E 3 103P P10 P8 N8 P11 E9 B13 3 104N P12/VRESF3 P29 N29 P13 D9 C14 S3 104P P14 P28 N28 P15 F9 E14 3 105N P16 P7 N7 P17 A9 E13 I 3 105P P18 P6 N6 P19 F8 F12 D - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 106N P20 P5 N5 P21 E8 D13 - - VCCO3 - - - VCCO3 VCCO3 3 106P P22 P4 N4 P23 A8 C13 3 107N P24 P3 N3 P25 B9 E12 - - GND - - - GND GND 3 107P P26 P2 N2 P27 D8 C12 - - VCC - - - VCC VCC 3 108N P28 P1 N1 P29 B8 B12 3 108P P30 P0 N0 P31 C8 A12 0 109N Q30 Q31 S31 Q31 B7 E11 73

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number - - VCC - - - VCC S VCC 0 109P Q28 Q30 S30 Q29 A7 C11 - - GND - - - GND GND E 0 110N Q26 Q29 S29 Q27 D7 B11 0 110P Q24 Q28 S28 Q25 C7 A11 0 111N Q22 Q27 S27 Q23C B6 F11 - - VCCO0 - - - VCCO0 VDCCO0 0 111P Q20 Q26 S26 Q21 E7 F10 I - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) V 0 112N Q18 Q25 S25 Q19 E6 E E10 0 112P Q16 Q24 S24 Q17 A6 C10 0 113N Q14/VREF0 Q3 ES3 Q15 A5 D10 U 0 113P Q12 Q2 S2 Q13 A4 B10 0 114N Q10 Q23 S23 Q11 B5 A10 D 0 114P Q8 Q22 S22 Q9N A3 A9 0 115N Q6 Q21 S21 Q7 B4 C9 0 115P Q4 Q20 S20 Q5 B3 D9 I 0 116N Q2 T Q19 S19 Q3 C5 F9 T 0 116P Q0 Q18 S18 Q1 C6 E9 0 117N R30 Q1 S1 R31 D5 A8 C N - - VCCO0 - - - VCCO0 VCCO0 0 117P R28 Q0 S0 R29 D6 B8 - - EGND (Bank 0) - - - GND (Bank 0) GND (Bank 0) O 0 118N R26 S29 - R27 — A7 0 118P R24 S28 - R25 — B7 L 0 119N R22 C S27 - R23 — A5 0 119P R20 S26 - R21 — B5 E 0 120N R18 S25 - R19 — B6 0 120P R16S S24 - R17 — C7 S0 121N R14 S23 - R15 — E8 0 121P R12 S22 - R13 — E7 I 0 122N R10 S21 - R11 — E6 D - - VCC - - - VCC VCC 0 122P R8 S20 - R9 — D6 - - GND - - - GND GND 0 123N R6 S19 - R7 — D8 - - VCCO0 - - - VCCO0 VCCO0 0 123P R4 S18 - R5 — F8 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 124N R2 S17 - R3 — F7 0 124P R0 S16 - R1 — D7 0 125N S30 S15 - S31 A2 C6 0 125P S28 S14 - S29 B2 C5 74

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5768MX Logic Signal Connections (Continued) Alternate Outputs Primary Macrocell/ Alternate 256 fpBGA 484 fpBGA sysIO Bank LVDS Pair Function Macrocell 1 Macrocell 2 Inputs Ball Number Ball Number 0 126N S26 S13 - S27 — S C4 0 126P S24 S12 - S25 — D5 Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, cEan be paired together to receive differential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs. C D I V E E U D N I T T C N E O L C E S S I D 75

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number 0 159N AA22 AA11 AB18 AA23 B4 S C2 0 159P AA20 AA10 AB16 AA21 A4 C1 0 160N AA18 Y17 AA17 AA19 B3 D4 E 0 160P AA16 Y16 AA16 AA17 A3 D3 0 161N AA14 Y15 AA15 AA15 F5 D2 C - - VCCO0 - - - VCCO0 VCCO0 0 161P AA12 Y14 AA14 AA13 G6 DD1 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) I 0 162N AA10 Y13 AA13 AA11 H6 E5 V E 0 162P AA8 Y12 AA12 AA9 G5 E4 0 163N AA6 AA9 AB14 AA7 D3 E3 0 163P AA4 AA8 EAB12 AA5 UD2 E2 0 164N AA2 AA7 AB10 AA3 E4 E1 - - VCC - - - VCC VCC D N 0 164P AA0 AA6 AB8 AA1 E3 F2 - - GND - - - GND GND 0 165N AB30 AA5 AB6 AB31 F4 F5 I 0 165P AB28 T AA4 AB4 AB29 G4 G6 T 0 166N AB26 AA3 AB2 AB27 C2 F4 - - VCCOC0 - - - VCCO0 VCCO0 N 0 166P AB24 AA2 AB0 AB25 C1 F3 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) E 0 167N AB22 AA1 - AB23 F3 F1 O 0 167P AB20 AA0 - AB21 G3 G1 0 168NL AB18 AA31 - AB19 H4 G5 - - VCC C - - VCC VCC 0 168P AB16 AA30 - AB17 J4 G4 E 0 169N AB14 Y11 AA11 AB15 H5 H7 S 0 169P AB12/CLK_OUT0 Y10 AA10 AB13 J5 J7 S 0 170N AB10 Y9 AA9 AB11 E2 G3 0 170P IAB8 Y8 AA8 AB9 F2 G2 - - D GND - - - GND GND 0 171N AB6 Y7 AA7 AB7 D1 H6 - - VCCO0 - - - VCCO0 VCCO0 0 171P AB4 Y6 AA6 AB5 E1 J6 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 172N AB2 Y5 AA5 AB3 J3 H5 0 172P AB0/PLL_RST0 Y4 AA4 AB1 H2 H4 0 173N AC30 AC31 AE31 AC31 G2 H3 0 173P AC28/PLL_FBK0 AC30 AE30 AC29 G1 H2 0 174N AC26 AC29 AE29 AC27 J6 H1 0 174P AC24 AC28 AE28 AC25 K4 J1 76

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number 0 175N AC22 AC27 AE27 AC23 K6 S J5 - - VCCO0 - - - VCCO0 VCCO0 0 175P AC20 AC26 AE26 AC21 K3 J4 E - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 176N AC18 AC25 AE25 AC19 K5 K7 0 176P AC16 AC24 AE24 AC17C K2 L7 0 177N AC14 AC23 AE23 AC15 L5 DJ3 0 177P AC12 AC22 AE22 AC13 K1 J2 I 0 178N AC10 AC21 AE21 AC11 L6 K6 V 0 178P AC8 AC20 AE20 AC9 L1 E L6 0 179N AC6 AC19 AE19 AC7 M5 K5 0 179P AC4 AC18 EAE18 AC5 L2 K4 U 0 180N AC2 AC17 AE17 AC3 N5 K3 - - VCCO0 - - - VCCO0 VCCO0 D 0 180P AC0 AC16 AE16 ACN1 L3 K2 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 181N AE30 AC15 AE15 AE31 M6 K1 I 0 181P AE28 T AC14 AE14 AE29 M2 L2 T 0 182N AE26 AC13 AE13 AE27 P5 L5 - - VCC - - - VCC VCC C N 0 182P AE24 AC12 AE12 AE25 P6 L4 0 183N AE22 AC11 AE11 AE23 M3 L3 0 183P E AE20 AC10 AE10 AE21 N6 M3 O 0 184N AE18 AC9 AE9 AE19 N2 M7 0 184P AE16 AC8 AE8 AE17 P1 N7 L - - GND C - - - GND GND 0 185N AE14 AC7 AE7 AE15 N3 M5 E - - VCCO0 - - - VCCO0 VCCO0 0 185P AE1S2 AC6 AE6 AE13 M8 M4 S- - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 186N AE10 AC5 AE5 AE11 N8 M6 I 0 186P AE8 AC4 AE4 AE9 P2 N6 D 0 187N AE6 AC3 AE3 AE7 P8 M2 0 187P AE4 AC2 AE2 AE5 N4 M1 0 188N AE2 AC1 AE1 AE3 H1 N1 0 188P AE0 AC0 AE0 AE1 J1 N2 - GCLK0P GCLK0 - - - N7 N5 - - VCCJ - - - See Power Supply and NC Connections Table - GCLK0N GCLK1 - - - P7 N3 - - GND - - - GND GND - - TDI - - - R1 P4 - - TMS - - - R2 P5 77

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number - - TCK - - - T1 S P3 - - TDO - - - V1 P2 1 0P A30 A0 C0 A31 — P1 E 1 0N A28 A1 C1 A29 — R1 1 1P A26 A2 C2 A27 — P6 1 1N A24 A3 C3 A25C — R6 1 2P A22 A4 C4 A23 — DP7 1 2N A20 A5 C5 A21 — R7 I - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) V 1 3P A18 A6 C6 A19 — E R4 - - VCCO1 - - - VCCO1 VCCO1 1 3N A16 A7 EC7 A17 — R5 U - - GND - - - GND GND 1 4P A14 A8 C8 A15 — R3 D - - VCC - - -N VCC VCC 1 4N A12 A9 C9 A13 — R2 1 5P A10 A10 C10 A11 — T2 I 1 5N A8 T A11 C11 A9 — T3 T 1 6P A6 A12 C12 A7 — T4 1 6N A4 A13 C13 A5 — T5 C N 1 7P A2 A14 C14 A3 — U2 1 7N A0 A15 C15 A1 — U3 - - EGND (Bank 1) - - - GND (Bank 1) GND (Bank 1) O 1 8P C30 A16 C16 C31 — U4 - - VCCO1 - - - VCCO1 VCCO1 L 1 8N C28 C A17 C17 C29 — U5 1 9P C26 A18 C18 C27 — T6 E 1 9N C24 A19 C19 C25 — U6 1 10P C22S A20 C20 C23 — T7 S1 10N C20 A21 C21 C21 — U7 1 11P C18 A22 C22 C19 — U1 I 1 11N C16 A23 C23 C17 — V1 D 1 12P C14 A24 C24 C15 — V2 1 12N C12 A25 C25 C13 — V3 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) 1 13P C10 A26 C26 C11 — V5 - - VCCO1 - - - VCCO1 VCCO1 1 13N C8 A27 C27 C9 — V4 - - GND - - - GND GND 1 14P C6 A28 C28 C7 — W2 - - VCC - - - VCC VCC 1 14N C4 A29 C29 C5 — W3 1 15P C2 A30 C30 C3 — W4 78

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number 1 15N C0 A31 C31 C1 — S W5 1 16P E30/DATA0 G0 E0 E31 W1 W1 1 16N E28/DATA1 G1 E1 E29 Y1 Y1 E 1 17P E26/DATA2 G2 E2 E27 P3 V6 1 17N E24/DATA3 G3 E3 E25 R3 W6 1 18P E22/DATA4 G4 E4 E23C T2 Y2 1 18N E20/DATA5 G5 E5 E21 U2 DY3 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) I 1 19P E18/DATA6 G6 E6 E19 V2 Y4 V - - VCCO1 - - - VCCO1E VCCO1 1 19N E16/DATA7 G7 E7 E17 W2 Y5 - - GND - E- - GND GND U 1 20P E14/INITB G8 E8 E15 R4 V7 1 20N E12/CSB G9 E9 E13 T4 W7 D 1 21P E10/READ G10 E10 E11N R6 AA1 1 21N E8/CCLK G11 E11 E9 R5 AA2 1 22P E6 - - E7 U3 AA3 I - - VCC T - - - VCC VCC T 1 22N E4 - - E5 V3 AA4 1 23P E2 - - E3 Y2 Y6 C N 1 23N E0 - - E1 W3 AA5 1 24P F30 H0 - F31 U5 AB2 1 24N E F28 H2 - F29 T5 AB3 O - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) 1 25P F26 H4 F27 U4 AB4 L - - VCCO1 C - - - VCCO1 VCCO1 1 25N F24 H6 - F25 V4 AB5 E 1 26P F22 H8 - F23 AA3 AB1 1 26N F20S H10 - F21 AB3 AC2 S1 - F18 H12 - F19 Y4 AC3 - - DONE - - - AA4 AC4 I 1 27P F14 - - F15 AB2 AC1 D 1 27N F12 - - F13 U6 AD1 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) 1 28P F10 F11 V5 AD2 - - VCCO1 - - - VCCO1 VCCO1 1 28N F8 F9 W6 AD3 1 29P F6 G12 E12 F7 AB4 Y8 1 29N F4 G13 E13 F5 AB5 Y9 1 30P F2 G14 E14 F3 T6 AA8 1 30N F0 G15 E15 F1 U7 AA9 - - PROGRAMB - - - W5 AB8 1 - G28 H14 - G29 U8 AB9 79

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number - - GND (Bank 1) - - - GND (BankS 1) GND (Bank 1) 1 31P G26 H16 - G27 V6 AB7 - - VCCO1 - - - VCCO1 VCCO1 E 1 31N G24 H18 - G25 V7 AC7 - - GND - - - GND GND 1 32P G22 H20 - G23C Y5 AB6 - - VCC - - - VCC DVCC 1 32N G20 H22 - G21 AA5 AC6 I 1 33P G18 - - G19 Y6 AC8 V 1 33N G16 - - G17 Y7 E AC9 1 34P G14 - - G15 AA6 AC5 1 34N G12 - E- G13 AA7 AD4 U 1 35P G10 - - G11 W7 AD5 1 35N G8 - - G9 V8 AD6 D 1 36P G6 - - G7N W8 AD7 1 36N G4 - - G5 U9 AD8 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) I - - CFG0 T - - - U10 AE3 T - - VCCO1 - - - VCCO1 VCCO1 1 37P G0 G16 E16 G1 AB7 AD9 C N 1 37N H30 G17 E17 H31 AA8 AD10 1 38P H28 G18 E18 H29 AB8 AE4 1 38N E H26 G19 E19 H27 AB9 AE5 O 1 39P H24 G20 E20 H25 W9 AE6 1 39N H22 G21 E21 H23 Y9 AE7 L 1 40P H20 C G22 E22 H21 AB10 AE8 1 40N H18 G23 E23 H19 AA10 AE9 E 1 - H16/VREF1 - - H17 W10 AE10 1 41P H14S G24 E24 H15 Y10 AF3 S1 41N H12 G25 E25 H13 Y11 AF4 - - GND (Bank 1) - - - GND (Bank 1) GND (Bank 1) I 1 42P H10 G26 E26 H11 V9 AF5 D - - VCCO1 - - - VCCO1 VCCO1 1 42N H8 G27 E27 H9 V10 AF6 1 43P H6 G28 E28 H7 AA11 AF7 - - GND - - - GND GND 1 43N H4 G29 E29 H5 AB11 AF8 - - VCC - - - VCC VCC 1 44P H2 G30 E30 H3 U11 AF9 1 44N H0 G31 E31 H1 V11 AF10 2 45P I0 J0 L0 I1 AB12 AF17 - - VCC - - - VCC VCC 2 45N I2 J1 L1 I3 AA12 AF18 80

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number - - GND - - - GND S GND 2 46P I4 J2 L2 I5 Y12 AF19 2 46N I6 J3 L3 I7 AA13 AF20 E 2 47P I8 J4 L4 I9 V12 AF21 - - VCCO2 - - - VCCO2 VCCO2 2 47N I10 J5 L5 I11C U12 AF22 - - GND (Bank 2) - - - GND (Bank 2) GNDD (Bank 2) 2 48P I12 J6 L6 I13 AB13 AF23 I 2 48N I14 J7 L7 I15 Y13 AF24 V 2 49P I16 L0 - I17 V13 E AE17 2 49N I18/VREF2 L1 - I19 W13 AE18 2 50P I20 J8 EL8 I21 V14 AE19 U 2 50N I22 J9 L9 I23 W14 AE20 2 51P I24 J10 L10 I25 Y14 AE21 D 2 51N I26 J11 L11 I27N AB14 AE22 2 52P I28 J12 L12 I29 AB15 AE23 2 52N I30 J13 L13 I31 AA15 AE24 I 2 53P J0 T J14 L14 J1 U13 AD17 T - - VCCO2 - - - VCCO2 VCCO2 2 53N J2 J15 L15 J3 U14 AD18 C N - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 54P J4 L2 I0 J5 W15 AD19 2 54N E J6 L3 I2 J7 W16 AD20 O 2 55P J8 L4 I4 J9 Y16 AD21 2 55N J10 L5 I6 J11 AA16 AD22 L 2 56P J12 C L6 I8 J13 AB16 AD23 2 56N J14 L7 I10 J15 AA17 AD24 E 2 57P J16 L8 I12 J17 Y17 AC22 2 57N J18S L9 I16 J19 AA18 AC21 S2 58P J20 L10 I20 J21 W17 AC18 - - VCC - - - VCC VCC I 2 58N J22 L11 I22 J23 W18 AC19 D - - GND - - - GND GND 2 59P J24 L12 - J25 V15 AC20 - - VCCO2 - - VCCO2 VCCO2 2 59N J26 L13 - J27 U15 AB21 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 60P J28 L14 - J29 Y18 AB18 2 60N J30 L15 - J31 V17 AB19 2 61P K0 L16 - K1 V16 AB20 2 61N K2 L17 - K3 U16 AA20 2 62P K4 L18 - K5 AB18 AA19 2 62N K6 L19 - K7 AB19 Y19 81

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number 2 63P K8 L20 - K9 AA19 S AA18 - - VCCO2 - - - VCCO2 VCCO2 2 63N K10 L21 - K11 U17 Y18 E - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 64P K12 L22 - K13 V18 AD25 2 64N K14 L23 - K15C AB21 AD26 2 65P K16 L24 - K17 U18 DAC23 2 65N K18 L25 - K19 T17 AC24 I 2 66P K20 L26 - K21 AB20 AC25 V 2 66N K22 L27 - K23 AA20E AC26 2 67P K24 L28 - K25 Y19 AB22 - - VCCO2 - E- - VCCO2 VCCO2 U 2 67N K26 L29 - K27 V19 AB23 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) D 2 68P K28 J16 L16 K29N T18 AB24 2 68N K30 J17 L17 K31 R17 AB25 2 69P L0 J18 L18 L1 U19 AB26 I 2 69N L2 T J19 L19 L3 T19 AA26 T 2 70P L4 L30 I24 L5 V20 AA22 - - VCC - - - VCC VCC C N 2 70N L6 L31 I26 L7 U20 Y21 2 71P L8 J20 L20 L9 W20 AA23 2 71N E L10 J21 L21 L11 Y21 AA24 O 2 72P L12 J22 L22 L13 R18 AA25 2 72N L14 J23 L23 L15 R19 Y26 L - - GND C - - - GND GND 2 73P L16 J24 L24 L17 W21 Y22 E - - VCCO2 - - - VCCO2 VCCO2 2 73N L18S J25 L25 L19 Y22 Y23 S- - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) 2 74P L20 J26 L26 L21 R20 W20 I 2 74N L22 J27 L27 L23 P20 V20 D 2 75P L24 J28 L28 L25 T21 W21 2 75N L26 J29 L29 L27 R21 V21 2 76P L28 J30 L30 L29 U21 Y24 2 76N L30 J31 L31 L31 V21 Y25 2 77P N0 P0 N0 N1 — W22 2 77N N2 P1 N1 N3 — W23 2 78P N4 P2 N2 N5 — W24 - - VCC - - - VCC VCC 2 78N N6 P3 N3 N7 — W25 - - GND - - - GND GND 2 79P N8 P4 N4 N9 — W26 82

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number - - VCCO2 - - - VCCO2S VCCO2 2 79N N10 P5 N5 N11 — V26 - - GND (Bank 2) - - - GND (Bank 2) GND (Bank 2) E 2 80P N12 P6 N6 N13 — V22 2 80N N14 P7 N7 N15 — V23 2 81P N16 P8 N8 N17C — V24 2 81N N18 P9 N9 N19 — DV25 2 82P N20 P10 N10 N21 — U20 I 2 82N N22 P11 N11 N23 — T20 V 2 83P N24 P12 N12 N25 — E U26 2 83N N26 P13 N13 N27 — U25 2 84P N28 P14 EN14 N29 — U21 U - - VCCO2 - - - VCCO2 VCCO2 2 84N N30 P15 N15 N31 — T21 D - - GND (Bank 2) - - -N GND (Bank 2) GND (Bank 2) 2 85P P0 P16 N16 P1 — U22 2 85N P2 P17 N17 P3 — U23 I 2 86P P4 T P18 N18 P5 — U24 T 2 86N P6 P19 N19 P7 — T24 2 87P P8 P20 N20 P9 — T23 C N 2 87N P10 P21 N21 P11 — T22 2 88P P12 P22 N22 P13 — T25 - - E VCC - - - VCC VCC O 2 88N P14 P23 N23 P15 — R26 - - GND - - - GND GND L 2 89P P16 C P24 N24 P17 — R25 - - VCCO2 - - - VCCO2 VCCO2 E 2 89N P18 P25 N25 P19 — R24 - - GND (BaSnk 2) - - - GND (Bank 2) GND (Bank 2) S2 90P P20 P26 N26 P21 — R21 2 90N P22 P27 N27 P23 — P21 I 2 91P P24 P28 N28 P25 — R22 D 2 91N P26 P29 N29 P27 — R23 2 92P P28 P30 N30 P29 — R20 2 92N P30 P31 N31 P31 — P20 - - TOE - - - W22 P25 - - RESET - - - V22 P24 - - GOE0 - - - T22 P23 - - GOE1 - - - R22 P22 See Power Supply and - - GNDP - - - NC Connections Table - GCLK3N GCLK2 - - - P16 N26 See Power Supply and - - VCCP - - - NC Connections Table 83

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number - GCLK3P GCLK3 - - - N16 S N24 3 93N R0 T31 R31 R1 J22 N23 3 93P R2 T30 R30 R3 H22 N22 E 3 94N R4 T29 R29 R5 N19 M26 3 94P R6 T28 R28 R7 P15 M25 3 95N R8 T27 R27 R9C P21 M23 3 95P R10 T26 R26 R11 N15 DM22 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) I 3 96N R12 T25 R25 R13 M15 N20 V - - VCCO3 - - - VCCO3E VCCO3 3 96P R14 T24 R24 R15 N20 M20 - - GND - E- - GND GND U 3 97N R16 T23 R23 R17 P22 N21 3 97P R18 T22 R22 R19 N21 M21 D 3 98N R20 T21 R21 R21N N17 M24 3 98P R22 T20 R20 R23 M20 L24 3 99N R24 T19 R19 R25 P17 L23 I - - VCC T - - - VCC VCC T 3 99P R26 T18 R18 R27 P18 L22 3 100N R28 T17 R17 R29 M21 L25 C N 3 100P R30 T16 R16 R31 M17 K26 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 101N E T0 T15 R15 T1 L20 K25 O - - VCCO3 - - - VCCO3 VCCO3 3 101P T2 T14 R14 T3 N18 K24 L 3 102N T4 C T13 R13 T5 L21 K23 3 102P T6 T12 R12 T7 M18 K22 E 3 103N T8 T11 R11 T9 L22 J25 3 103P T10S T10 R10 T11 L17 J24 S3 104N T12 T9 R9 T13 K22 L21 3 104P T14 T8 R8 T15 L18 K21 I 3 105N T16 T7 R7 T17 K21 L20 D 3 105P T18 T6 R6 T19 K18 K20 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 106N T20 T5 R5 T21 K20 J23 - - VCCO3 - - - VCCO3 VCCO3 3 106P T22 T4 R4 T23 K17 J22 3 107N T24 T3 R3 T25 K19 J26 3 107P T26 T2 R2 T27 J17 H26 3 108N T28 T1 R1 T29 E22 H25 3 108P T30/PLL_FBK1 T0 R0 T31 E21 H24 3 109N U0/PLL_RST1 X27 V27 U1 G22 H23 3 109P U2 X26 V26 U3 F21 H22 84

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number - - GND (Bank 3) - - - GND (BankS 3) GND (Bank 3) 3 110N U4 X25 V25 U5 H21 J21 - - VCCO3 - - - VCCO3 VCCO3 E 3 110P U6 X24 V24 U7 G21 H21 - - GND - - - GND GND 3 111N U8 X23 V23 U9C D22 G25 3 111P U10 X22 V22 U11 D21 DG24 3 112N U12 X21 V21 U13 J20 G23 I 3 112P U14/CLK_OUT1 X20 V20 U15 J19 G22 V 3 113N U16 V31 - U17 E20 E J20 - - VCC - - - VCC VCC 3 113P U18 V30 EU30 U19 F20 H20 U 3 114N U20 V29 U28 U21 H17 G26 3 114P U22 V28 U26 U23 H18 F25 D - - GND (Bank 3) - - -N GND (Bank 3) GND (Bank 3) 3 115N U24 V27 - U25 J18 F24 - - VCCO3 - - - VCCO3 VCCO3 I 3 115P U26 T V26 - U27 H19 F23 T 3 116N U28 V25 - U29 G20 G21 3 116P U30 V24 - U31 G19 F22 C N - - GND - - - GND GND 3 117N V0 V23 - V1 C22 F26 - - E VCC - - - VCC VCC O 3 117P V2 V22 - V3 C21 E26 3 118N V4 V21 - V5 D20 E25 L 3 118P V6 C V20 - V7 C19 E24 3 119N V8 V19 - V9 F19 E23 E 3 119P V10 V18 - V11 E19 E22 - - GND (BaSnk 3) - - - GND (Bank 3) GND (Bank 3) S3 120N V12 V17 - V13 G18 D26 - - VCCO3 - - - VCCO3 VCCO3 I 3 120P V14 V16 - V15 F18 D25 D 3 121N V16 V15 - V17 B20 D24 3 121P V18 V14 - V19 B19 D23 3 122N V20 V13 - V21 A20 C26 3 122P V22 V12 - V23 A19 C25 3 123N V24 X19 V19 V25 D18 G19 3 123P V26 X18 V18 V27 C18 F19 3 124N V28 X17 V17 V29 G17 G18 3 124P V30 X16 V16 V31 F16 F18 3 125N W0 X31 V31 W1 E17 F20 3 125P W2 X30 V30 W3 D17 E20 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 85

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number 3 126N W4 V11 U21 W5 B18 S E19 - - VCCO3 - - - VCCO3 VCCO3 3 126P W6 V10 U20 W7 A18 E18 E - - GND - - - GND GND 3 127N W8 V9 U18 W9 C17 C24 - - VCC - - - C VCC VCC 3 127P W10 V8 U16 W11 B17 DC23 3 128N W12 V7 U12 W13 C16 D22 I 3 128P W14 V6 U10 W15 B16 D21 V 3 129N W16 V5 U8 W17 F13 E E21 3 129P W18 V4 U6 W19 F15 D20 3 130N W20 V3 EU5 W21 D16 D19 U 3 130P W22 V2 U4 W23 E16 D18 3 131N W24 V1 U2 W25 A16 C22 D 3 131P W26 V0 U0 W2N7 A15 C21 - - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 132N W28 X15 V15 W29 B15 C20 I - - VCCO3 T - - - VCCO3 VCCO3 T 3 132P W30 X14 V14 W31 A14 C19 3 133N X0 X13 V13 X1 D15 C18 C N 3 133P X2 X12 V12 X3 E15 C17 3 134N X4 X11 V11 X5 D14 B24 3 134P E X6 X10 V10 X7 F14 B23 O 3 135N X8 X9 V9 X9 A13 B22 3 135P X10 X8 V8 X11 B13 B21 L 3 136N X12/VREF3 C X29 V29 X13 C14 B20 3 136P X14 X28 V28 X15 E14 B19 E 3 137N X16 X7 V7 X17 E13 B18 3 137P X18S X6 V6 X19 F12 B17 S- - GND (Bank 3) - - - GND (Bank 3) GND (Bank 3) 3 138N X20 X5 V5 X21 D13 A24 I - - VCCO3 - - - VCCO3 VCCO3 D 3 138P X22 X4 V4 X23 C13 A23 3 139N X24 X3 V3 X25 E12 A22 - - GND - - - GND GND 3 139P X26 X2 V2 X27 C12 A21 - - VCC - - - VCC VCC 3 140N X28 X1 V1 X29 B12 A20 3 140P X30 X0 V0 X31 A12 A19 0 141N Y30 Y31 AA31 Y31 E11 A18 - - VCC - - - VCC VCC 0 141P Y28 Y30 AA30 Y29 C11 A17 - - GND - - - GND GND 86

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 51024MX Logic Signal Connections (Continued) Alternate Outputs sysIO Primary Alternate 484 fpBGA 672 fpBGA Bank LVDS Pair Macrocell/Function Macrocell 1 Macrocell 2 Input Ball Number Ball Number 0 142N Y26 Y29 AA29 Y27 B11 S A10 0 142P Y24 Y28 AA28 Y25 A11 A9 0 143N Y22 Y27 AA27 Y23 F11 A8 E - - VCCO0 - - - VCCO0 VCCO0 0 143P Y20 Y26 AA26 Y21 F10 A7 - - GND (Bank 0) - - - C GND (Bank 0) GND (Bank 0) 0 144N Y18 Y25 AA25 Y19 E10 DA6 0 144P Y16 Y24 AA24 Y17 C10 A5 I 0 145N Y14/VREF0 Y3 AA3 Y15 D10 A4 V 0 145P Y12 Y2 AA2 Y13 B10 E A3 0 146N Y10 Y23 AA23 Y11 A10 B10 0 146P Y8 Y22 EAA22 Y9 A9 B9 U 0 147N Y6 Y21 AA21 Y7 C9 B8 0 147P Y4 Y20 AA20 Y5 D9 B7 D 0 148N Y2 Y19 AA19 Y3N F9 B6 0 148P Y0 Y18 AA18 Y1 E9 B5 0 149N Z30 Y1 AA1 Z31 A8 B4 I - - VCCO0 T - - - VCCO0 VCCO0 T 0 149P Z28 Y0 AA0 Z29 B8 B3 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) C N 0 150N Z26 AA29 - Z27 A7 C10 0 150P Z24 AA28 - Z25 B7 C9 0 151N E Z22 AA27 - Z23 A5 C8 O 0 151P Z20 AA26 - Z21 B5 C7 0 152N Z18 AA25 - Z19 B6 C6 L 0 152P Z16 C AA24 - Z17 C7 C5 0 153N Z14 AA23 - Z15 E8 C4 E 0 153P Z12 AA22 - Z13 E7 D5 0 154N Z10S AA21 - Z11 E6 D9 S- - VCC - - - VCC VCC 0 154P Z8 AA20 - Z9 D6 D8 I - - GND - - - GND GND D 0 155N Z6 AA19 - Z7 D8 D7 - - VCCO0 - - - VCCO0 VCCO0 0 155P Z4 AA18 - Z5 F8 D6 - - GND (Bank 0) - - - GND (Bank 0) GND (Bank 0) 0 156N Z2 AA17 - Z3 F7 F9 0 156P Z0 AA16 - Z1 D7 E9 0 157N AA30 AA15 - AA31 C6 F7 0 157P AA28 AA14 - AA29 C5 F8 0 158N AA26 AA13 - AA27 C4 G8 0 158P AA24 AA12 - AA25 D5 G9 87

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to receive differen- tial clocks; where GCLK0 and GCLK3 are the positive LVDS inputs. S E C D I V E E U D N I T T C N E O L C E S S I D 88

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Part Number Description LC XXXXX X X – XX XX XXX X Device Family Grade S LC C = Commercial D evice Number I = Industrial 5256 = 256 Macrocells E Pin/Ball Count 5512 = 512 Macrocells 208 5768 = 768 Macrocells 256 51024 = 1,024 Macrocells C 484 Memory 672 D M I Package Supply Voltage V F = fpBGA V = 3.3V E FN = Lead-Free fpBGA B = 2.5V Q = PQFP C = 1.8V E QN = Lead-Free PQFP U Speed 4 = 4.0ns 45 = 4.5ns D 5 = 5.0ns N 52 = 5.2ns 75 = 7.5ns I T T Ordering Information C Note: For voltage families offered in industrial temperature grades and for all but the slowest commercial speed N grade, the speed grades on these devices are dual marked. For example, the commercial speed grade -45XXXXC is also marked with the industrial grade -75I. The commercial grade is always one speed grade faster than the E associated dual mark industrial grade. The slowest commercial speed grade is marked as commercial grade only. O In addition, the fastest commercial speed grade (-5) for the LC5768MB/MV devices, at Lattice's discretion, will uti- lize either a commercial grade only single-mark or a dual-mark format in conjunction with the slower industrial L speed grade (-75). C Conventional Packaging E ispXPLD 5000MC (1.8V) Commercial Devices S Pin/Ball S Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5256MC-4F2I56C 256 1.8 4.0 fpBGA 256 141 C LC5256MC LC5256MC-D5F256C 256 1.8 5.0 fpBGA 256 141 C LC5256MC-75F256C 256 1.8 7.5 fpBGA 256 141 C LC5512MC-45Q208C 512 1.8 4.5 PQFP 208 149 C LC5512MC-75Q208C 512 1.8 7.5 PQFP 208 149 C LC5512MC-45F256C 512 1.8 4.5 fpBGA 256 193 C LC5512MC LC5512MC-75F256C 512 1.8 7.5 fpBGA 256 193 C LC5512MC-45F484C 512 1.8 4.5 fpBGA 484 253 C LC5512MC-75F484C 512 1.8 7.5 fpBGA 484 253 C 89

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MC (1.8V) Commercial Devices (Continued) Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5768MC-5F256C 768 1.8 5.0 fpBGA 256 193 C S LC5768MC-75F256C 768 1.8 7.5 fpBGA 256 193 C LC5768MC LC5768MC-5F484C 768 1.8 5.0 fpBGA 484 317 C LC5768MC-75F484C 768 1.8 7.5 fpBGA 4E84 317 C LC51024MC-52F484C 1024 1.8 5.2 fpBGA 484 317 C LC51024MC-75F484C 1024 1.8 7.5 fpBGA 484 317 C LC51024MC C LC51024MC-52F672C 1024 1.8 5.2 fpBGA 672 381 C D LC51024MC-75F672C 1024 1.8 7.5 fpBGA 672 381 C I ispXPLD 5000MC (1.8V) Industrial Devices V E Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5256MC-5F256I 256 1.8 E5.0 fpBGA 2U56 141 I LC5256MC LC5256MC-75F256I 256 1.8 7.5 fpBGA 256 141 I LC5512MC-75Q208I 512 1.8 7.5 PQFP 208 149 I D N LC5512MC LC5512MC-75F256I 512 1.8 7.5 fpBGA 256 193 I LC5512MC-75F484I 512 1.8 7.5 fpBGA 484 253 I LC5768MC-75F256I 768 1.8 7.5 fpBGA 256 193 I LC5768MC I LC5768MC-75F484I 768T 1.8 7.5 fpBGA 484 317 I T LC51024MC-75F484I 1024 1.8 7.5 fpBGA 484 317 I LC51024MC LC51024MC-75F672I C1024 1.8 7.5 fpBGA 672 381 I N ispXPLD 5000MB (2.5V) Commercial Devices E O Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5256MB-4F256C 256 2.5 4.0 fpBGA 256 141 C L LC5256MB LC5256MB-5F256C 256 2.5 5.0 fpBGA 256 141 C C LC5256MB-75F256C 256 2.5 7.5 fpBGA 256 141 C E LC5512MB-45Q208C 512 2.5 4.5 PQFP 208 149 C LC5512MB-75Q208C S512 2.5 7.5 PQFP 208 149 C S LC5512MB-45F256C 512 2.5 4.5 fpBGA 256 193 C LC5512MB LC5512MB-75F256C 512 2.5 7.5 fpBGA 256 193 C I LC5512MB-45F484C 512 2.5 4.5 fpBGA 484 253 C D LC5512MB-75F484C 512 2.5 7.5 fpBGA 484 253 C LC5768MB-5F256C 768 2.5 5.0 fpBGA 256 193 C LC5768MB-75F256C 768 2.5 7.5 fpBGA 256 193 C LC5768MB LC5768MB-5F484C 768 2.5 5.0 fpBGA 484 317 C LC5768MB-75F484C 768 2.5 7.5 fpBGA 484 317 C LC51024MB-52F484C 1024 2.5 5.2 fpBGA 484 317 C LC51024MB-75F484C 1024 2.5 7.5 fpBGA 484 317 C LC51024MB LC51024MB-52F672C 1024 2.5 5.2 fpBGA 672 381 C LC51024MB-75F672C 1024 2.5 7.5 fpBGA 672 381 C 90

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet ispXPLD 5000MB (2.5V) Industrial Devices Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5256MB-5F256I 256 2.5 5.0 fpBGA 256 141 I LC5256MB S LC5256MB-75F256I 256 2.5 7.5 fpBGA 256 141 I LC5512MB-75Q208I 512 2.5 7.5 PQFP 208 149 I LC5512MB LC5512MB-75F256I 512 2.5 7.5 fpBGA 2E56 193 I LC5512MB-75F484I 512 2.5 7.5 fpBGA 484 253 I LC5768MB-75F256I 768 2.5 7.5 fpBGA 256 193 I LC5768MB C LC5768MB-75F484I 768 2.5 7.5 fpBGA 484 317 I D LC51024MB-75F484I 1024 2.5 7.5 fpBGA 484 317 I LC51024MB LC51024MB-75F672I 1024 2.5 7.5 IfpBGA 672 381 I V E ispXPLD 5000MV (3.3V) Commercial Devices Pin/Ball E Device Part Number Macrocells Voltage (V) t (ns) Package CUount I/O Grade PD LC5256MV-4F256C 256 3.3 4.0 fpBGA 256 141 C LC5256MV LC5256MV-5F256C 256 3.3D 5.0 fpBGA 256 141 C N LC5256MV-75F256C 256 3.3 7.5 fpBGA 256 141 C LC5512MV-45Q208C 512 3.3 4.5 PQFP 208 149 C LC5512MV-75Q208C 512 3.3 7.5 IPQFP 208 149 C T LC5512MV-45F256C 512 3.3 4.5 T fpBGA 256 193 C LC5512MV LC5512MV-75F256C 512 3.3 7.5 fpBGA 256 193 C LC5512MV-45F484C C 512 3.3 4.5 fpBGA 484 253 C N LC5512MV-75F484C 512 3.3 7.5 fpBGA 484 253 C LC5768MV-5F256C 768 3.3 5.0 fpBGA 256 193 C E LC5768MV-75F256C 768 3O.3 7.5 fpBGA 256 193 C LC5768MV LC5768MV-5F484C 768 3.3 5.0 fpBGA 484 317 C LC576L8MV-75F484C 768 3.3 7.5 fpBGA 484 317 C LC51024MV-52F484C 1024C 3.3 5.2 fpBGA 484 317 C ELC51024MV-75F484C 1024 3.3 7.5 fpBGA 484 317 C LC51024MV LC51024MV-52F672C 1024 3.3 5.2 fpBGA 672 381 C S LC51024MV-75F672C 1024 3.3 7.5 fpBGA 672 381 C S I ispXPLD 5000MV (3.3V) Industrial Devices D Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5256MV-5F256I 256 3.3 5.0 fpBGA 256 141 I LC5256MV LC5256MV-75F256I 256 3.3 7.5 fpBGA 256 141 I LC5512MV-75Q208I 512 3.3 7.5 PQFP 208 149 I LC5512MV LC5512MV-75F256I 512 3.3 7.5 fpBGA 256 193 I LC5512MV-75F484I 512 3.3 7.5 fpBGA 484 253 I LC5768MV-75F256I 768 3.3 7.5 fpBGA 256 193 I LC5768MV LC5768MV-75F484I 768 3.3 7.5 fpBGA 484 317 I LC51024MV-75F484I 1024 3.3 7.5 fpBGA 484 317 I LC51024MV LC51024MV-75F672I 1024 3.3 7.5 fpBGA 672 381 I 91

Lattice Semiconductor ispXPLD 5000MX Family Data Sheet Lead-Free Packaging ispXPLD 5000MC (1.8V) Lead-Free Commercial Devices Pin/Ball Device Part Number Macrocells Voltage (V) tPD (ns) Package Count SI/O Grade LC5256MC-4FN256C 256 1.8 4.0 Lead-free fpBGA 256 141 C LC5256MC LC5256MC-5FN256C 256 1.8 5.0 Lead-free fpBGA 256 141 C E LC5256MC-75FN256C 256 1.8 7.5 Lead-free fpBGA 256 141 C LC5512MC-45QN208C 512 1.8 4.5 Lead-free PQFP 208 149 C LC5512MC-75QN208C 512 1.8 7.5 Lead-freeC PQFP 208 149 C LC5512MC-45FN256C 512 1.8 4.5 Lead-free fpBGA 256 193 C LC5512MC D LC5512MC-75FN256C 512 1.8 7.5 Lead-free fpBGA 256 193 C I LC5512MC-45FN484C 512 1.8 4.5 Lead-free fpBGA 484 253 C V LC5512MC-75FN484C 512 1.8 7.5 Lead-free fpBGA 484 E253 C LC5768MC-5FN256C 768 1.8 5.0 Lead-free fpBGA 256 193 C LC5768MC-75FN256C 768 1.8 E7.5 Lead-free fpBGA 256 193 C LC5768MC U LC5768MC-5FN484C 768 1.8 5.0 Lead-free fpBGA 484 317 C LC5768MC-75FN484C 768 1.8 7.5 Lead-free fpBGA 484 317 C D LC51024MC-52FN484C 1024 1.8 5.2 Lead-freeN fpBGA 484 317 C LC51024MC-75FN484C 1024 1.8 7.5 Lead-free fpBGA 484 317 C LC51024MC LC51024MC-52FN672C 1024 1.8 5.2 Lead-free fpBGA 672 381 C I LC51024MC-75FN672C 10T24 1.8 7.5 Lead-free fpBGA 672 381 C T C ispXPLD 5000MC (1.8V) Lead-FNree Industrial Devices Pin/Ball Device Part NumEber Macrocells Voltage (V) t (ns) Package Count I/O Grade PD O LC5256MC-5FN256I 256 1.8 5.0 Lead-free fpBGA 256 141 I LC5256MC LC5256MC-75FN256I 256 1.8 7.5 Lead-free fpBGA 256 141 I L LC5512MC-75QN208I 512 1.8 7.5 Lead-free PQFP 208 149 I C LC5512MC LC5512MC-75FN256I 512 1.8 7.5 Lead-free fpBGA 256 193 I E LC5512MC-75FN484I 512 1.8 7.5 Lead-free fpBGA 484 253 I LC5768MC-75FN256I S 768 1.8 7.5 Lead-free fpBGA 256 193 I LC5768MC S LC5768MC-75FN484I 768 1.8 7.5 Lead-free fpBGA 484 317 I LC51024MC-75FN484I 1024 1.8 7.5 Lead-free fpBGA 484 317 I LC51024MC I LC51024MC-75FN672I 1024 1.8 7.5 Lead-free fpBGA 672 381 I D 92

Lattice Semiconductor ispGDX2V/B/C Family Data Sheet ispXPLD 5000MB (2.5V) Lead-Free Commercial Devices Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD S LC5256MB-4FN256C 256 2.5 4.0 Lead-free fpBGA 256 141 C LC5256MB LC5256MB-5FN256C 256 2.5 5.0 Lead-free fpBGA 256 141 C LC5256MB-75FN256C 256 2.5 7.5 Lead-free fpBGA E256 141 C LC5512MB-45QN208C 512 2.5 4.5 Lead-free PQFP 208 149 C LC5512MB-75QN208C 512 2.5 7.5 Lead-free PQFP 208 149 C C LC5512MB-45FN256C 512 2.5 4.5 Lead-free fpBGA 256 193 C LC5512MB D LC5512MB-75FN256C 512 2.5 7.5 Lead-free fpBGA 256 193 C LC5512MB-45FN484C 512 2.5 4.5 LIead-free fpBGA 484 253 C LC5512MB-75FN484C 512 2.5 7.5 VLead-free fpBGA 484 253 C E LC5768MB-5FN256C 768 2.5 5.0 Lead-free fpBGA 256 193 C LC5768MB-75FN256C 768 2.5 7.5 Lead-free fpBGA 256 193 C LC5768MB E U LC5768MB-5FN484C 768 2.5 5.0 Lead-free fpBGA 484 317 C LC5768MB-75FN484C 768 2.5 7.5 Lead-free fpBGA 484 317 C LC51024MB-52FN484C 1024 D2.5 5.2 Lead-free fpBGA 484 317 C N LC51024MB-75FN484C 1024 2.5 7.5 Lead-free fpBGA 484 317 C LC51024MB LC51024MB-52FN672C 1024 2.5 5.2 Lead-free fpBGA 672 381 C LC51024MB-75FN672C 1024 2.5 7.5 ILead-free fpBGA 672 381 C T T ispXPLD 5000MB (2.5V) Lead-Free Industrial Devices C N Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD E LC5256MB-5FN256I 256 2.5 5.0 Lead-free fpBGA 256 141 I O LC5256MB LC5256MB-75FN256I 256 2.5 7.5 Lead-free fpBGA 256 141 I LC551L2MB-75QN208I 512 2.5 7.5 Lead-free PQFP 208 149 I LC5512MB LC5512MB-75FN256I 512C 2.5 7.5 Lead-free fpBGA 256 193 I LC5512MB-75FN484I 512 2.5 7.5 Lead-free fpBGA 484 253 I E LC5768MB-75FN256I 768 2.5 7.5 Lead-free fpBGA 256 193 I LC5768MB S LC5768MB-75FN484I 768 2.5 7.5 Lead-free fpBGA 484 317 I S LC51024MB-75FN484I 1024 2.5 7.5 Lead-free fpBGA 484 317 I LC51024MB LC51024MB-75IFN672I 1024 2.5 7.5 Lead-free fpBGA 672 381 I D ispXPLD 5000MV (3.3V) Lead-Free Commercial Devices Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5256MV-4FN256C 256 3.3 4.0 Lead-free fpBGA 256 141 C LC5256MV LC5256MV-5FN256C 256 3.3 5.0 Lead-free fpBGA 256 141 C LC5256MV-75FN256C 256 3.3 7.5 Lead-free fpBGA 256 141 C 93

Lattice Semiconductor ispGDX2V/B/C Family Data Sheet ispXPLD 5000MV (3.3V) Lead-Free Commercial Devices (Continued) Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD LC5512MV-45QN208C 512 3.3 4.5 Lead-free PQFP 208 149 C S LC5512MV-75QN208C 512 3.3 7.5 Lead-free PQFP 208 149 C LC5512MV-45FN256C 512 3.3 4.5 Lead-free fpBGA 256 193 C LC5512MV LC5512MV-75FN256C 512 3.3 7.5 Lead-free fpBGA E256 193 C LC5512MV-45FN484C 512 3.3 4.5 Lead-free fpBGA 484 253 C LC5512MV-75FN484C 512 3.3 7.5 Lead-free fpBGA 484 253 C C LC5768MV-5FN256C 768 3.3 5.0 Lead-free fpBGA 256 193 C D LC5768MV-75FN256C 768 3.3 7.5 Lead-free fpBGA 256 193 C LC5768MV LC5768MV-5FN484C 768 3.3 5.0 LIead-free fpBGA 484 317 C LC5768MV-75FN484C 768 3.3 7.5 VLead-free fpBGA 484 317 C E LC51024MV-52FN484C 1024 3.3 5.2 Lead-free fpBGA 484 317 C LC51024MV-75FN484C 1024 3.3 7.5 Lead-free fpBGA 484 317 C LC51024MV E LC51024MV-52FN672C 1024 3.3 5.2 Lead-free fpBGA U672 381 C LC51024MV-75FN672C 1024 3.3 7.5 Lead-free fpBGA 672 381 C D N ispXPLD 5000MV (3.3V) Lead-Free Industrial Devices Pin/Ball Device Part Number Macrocells Voltage (V) t (ns) Package Count I/O Grade PD I T LC5256MV-5FN256I 256 3.3 5.0 Lead-free fpBGA 256 141 I LC5256MV T LC5256MV-75FN256I 256 3.3 7.5 Lead-free fpBGA 256 141 I LC5512MV-75QN208I C 512 3.3 7.5 Lead-free PQFP 208 149 I N LC5512MV LC5512MV-75FN256I 512 3.3 7.5 Lead-free fpBGA 256 193 I LC5512MV-75FN484I 512 3.3 7.5 Lead-free fpBGA 484 253 I E LC5768MV-75FN256I 768 O3.3 7.5 Lead-free fpBGA 256 193 I LC5768MV LC5768MV-75FN484I 768 3.3 7.5 Lead-free fpBGA 484 317 I LC510L24MV-75FN484I 1024 3.3 7.5 Lead-free fpBGA 484 317 I LC51024MV LC51024MV-75FN672I 102C4 3.3 7.5 Lead-free fpBGA 672 381 I E For Further Information S In addition to this data sheet, the following technical S notes may be helpful when designing with the ispXPLD 5000MX family: I D (cid:129) TN1000 – sysIO Usage Guidelines for Lattice Devices (cid:129) TN1003 – sysCLOCK PLL Usage Guide for ispXPGA, ispGDX2, ispXPLD and ispMACH 5000VG Devices (cid:129) TN1031 – Power Estimation in ispXPLD 5000MX Devices (cid:129) TN1030 – Using Memory in ispXPLD 5000MX Devices (cid:129) TN1026 – ispXP Configuration Usage Guide- lines 94

Lattice Semiconductor ispGDX2V/B/C Family Data Sheet Revision History Date Version Change Summary — — Previous Lattice releases. December 2003 07 Added ispXPLD 5768MX information (supply current, timings, power consumpStion, power estima- tion coefficients, memory coefficients, logic signal connections, ordering part numbers). Updated ispXPLD 5000MX timing numbers (version v.1.7). E Added lead-free package designator. Removed ispXPLD 5000MC industrial temperature grade ordering part numbers. January 2004 08 Lead-free package release for the ispXPLD 5000MC and 50C00MV devices. Timing model parameter tCOi correction - Maximum specification instead of Minimum (no D changes in the timing numbers). March 2004 08.1 Updated the MFB Cascade Chain table for the ispXIPLD 5256MX device. May 2004 09 Updated the ispXPLD 5000MX timig numbers (vVersion v.1.8) E ispXPLD 5256MC, 5512MC and 51024MC industrial temperature grade devices release Updated typical supply current data and condition. E ispXPLD 5256MX 256-fpBGA logic signal connection tables: RemoveUd internal signal description for ball H5 and G14. August 2004 10 Added footnote "1, page 49. These inputs should not toggle during power up for proper power-up D configuration." to CCLK and READ. N Added ispXPLD 5768MC Industrial grade OPNs (Conventional and Lead-Free). October 2004 10.1 Figure 19, LVPECL D river with Three Resistor Pack has been updated (ispXPLD LVPECL Buffer changed to ispXPLD Emulated LVPECL Buffer) I T November 2004 11 Added ispXPLD 5000MB (2.5V) Lead-Free OrdTering Part Numbers. December 2004 11.1 Pin name RESETB has been updated to RESET. C March 2005 12 208-PQFP Lead-free package release for the ispXPLD 5512MV/B/C devices. N April 2005 12.1 Page 23, clarification of footnote regarding IDK specification. March 2006 12.2 Signal description for RESET has been updated. E April 2009 12.3 Ordering Information section Ohas been updated to describe alternate LC5768MB/MV top side marking format. February 2010 L12.4 References to "system gates" changed to "functional gates." C E S S I D 95