图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IXYH40N120C3D1
  • 制造商: IXYS
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IXYH40N120C3D1产品简介:

ICGOO电子元器件商城为您提供IXYH40N120C3D1由IXYS设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IXYH40N120C3D1价格参考。IXYSIXYH40N120C3D1封装/规格:晶体管 - UGBT,MOSFET - 单, IGBT 1200V 64A 480W Through Hole TO-247 (IXYH)。您可以下载IXYH40N120C3D1参考资料、Datasheet数据手册功能说明书,资料中有IXYH40N120C3D1 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
25°C时Td(开/关)值

24ns/125ns

产品目录

分立半导体产品

Current-CollectorPulsed(Icm)

105A

描述

IGBT 1200V 64A 480W TO247IGBT 晶体管 XPT 1200V IGBT GenX5 XPT IGBT

产品分类

IGBT - 单路分离式半导体

GateCharge

85nC

IGBT类型

-

品牌

IXYS

产品手册

点击此处下载产品Datasheet

产品图片

产品系列

晶体管,IGBT 晶体管,IXYS IXYH40N120C3D1GenX3™, XPT™

数据手册

点击此处下载产品Datasheet

产品型号

IXYH40N120C3D1

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

SwitchingEnergy

3.9mJ (开), 660µJ (关)

TestCondition

600V, 40A, 10 欧姆, 15V

不同 Vge、Ic时的 Vce(on)

4V @ 15V,40A

产品种类

IGBT 晶体管

供应商器件封装

TO-247 (IXYH)

功率-最大值

480W

功率耗散

480 W

包装

管件

反向恢复时间(trr)

195ns

商标

IXYS

商标名

XPT

在25C的连续集电极电流

64 A

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

TO-247-3

封装/箱体

TO-247-3

工厂包装数量

30

最大工作温度

+ 150 C

最小工作温度

- 55 C

栅极/发射极最大电压

30 V

栅极—射极漏泄电流

100 nA

标准包装

30

电压-集射极击穿(最大值)

1200V

电流-集电极(Ic)(最大值)

64A

系列

IXYH40N120

输入类型

标准

配置

Single

集电极—发射极最大电压VCEO

1200 V

集电极—射极饱和电压

4.8 V

集电极最大连续电流Ic

64 A

推荐商品

型号:STGD10NC60KDT4

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:IRGPS60B120KDP

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:IXA45IF1200HB

品牌:IXYS

产品名称:分立半导体产品

获取报价

型号:FGP30N6S2D

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IXGT30N120B3D1

品牌:IXYS

产品名称:分立半导体产品

获取报价

型号:ISL9V2040D3ST

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IXGX120N60B

品牌:IXYS

产品名称:分立半导体产品

获取报价

型号:IKD10N60R

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IXYH40N120C3D1 相关产品

IRG4BC10SD-S

品牌:Infineon Technologies

价格:

SGL50N60RUFDTU

品牌:ON Semiconductor

价格:¥50.57-¥67.62

IRG4PC60UPBF

品牌:Infineon Technologies

价格:

IRG4PC50FDPBF

品牌:Infineon Technologies

价格:

SKB02N120ATMA1

品牌:Infineon Technologies

价格:

STGWA40M120DF3

品牌:STMicroelectronics

价格:

FGA90N30TU

品牌:ON Semiconductor

价格:

IRG4BC20WPBF

品牌:Infineon Technologies

价格:¥5.65-¥7.06

PDF Datasheet 数据手册内容提取

1200V XPTTM IGBT IXYH40N120C3D1 V = 1200V CES GenX3TM w/ Diode I = 40A C90 V  3.5V CE(sat) t = 50ns High-Speed IGBT fi(typ) for 20-50 kHz Switching TO-247 AD Symbol Test Conditions Maximum Ratings V T = 25°C to 150°C 1200 V CES J V T = 25°C to 150°C, R = 1M 1200 V CGR J GE V Continuous ±20 V G GES C Tab V Transient ±30 V E GEM I T = 25°C (Chip Capability) 80 A C25 C I T = 90°C 40 A G = Gate C = Collector IC90 TC = 110°C 25 A E = Emitter Tab = Collector F110 C I T = 25°C, 1ms 160 A CM C I T = 25°C 20 A A C E T = 25°C 400 mJ AS C SSOA V = 15V, T = 150°C, R = 10 I = 80 A Features GE VJ G CM (RBSOA) Clamped Inductive Load @V  V CE CES  Optimized for Low Switching Losses P T = 25°C 480 W C C  Square RBSOA T -55 ... +150 °C  Positive Thermal Coefficient of J T 150 °C Vce(sat) JM T -55 ... +150 °C  Anti-Parallel Ultra Fast Diode stg  Avalanche Rated T Maximum Lead Temperature for Soldering 300 °C  High Current Handling Capability L T 1.6 mm (0.062in.) from Case for 10s 260 °C  International Standard Package SOLD M Mounting Torque 1.13/10 Nm/lb.in. d Weight 6 g Advantages  High Power Density  Low Gate Drive Requirement Applications Symbol Test Conditions Characteristic Values  High Frequency Power Inverters (T = 25C, Unless Otherwise Specified) Min. Typ. Max. J  UPS BV I = 250A, V = 0V 1200 V  Motor Drives CES C GE  SMPS V I = 250A, V = V 3.0 5.0 V GE(th) C CE GE  PFC Circuits I V = V ,V = 0V 25 A  Battery Chargers CES CE CES GE  Welding Machines T = 125C 750 μA J  Lamp Ballasts I V = 0V, V = 20V 100 nA GES CE GE V I = 40A, V = 15V, Note 1 2.9 3.5 V CE(sat) C GE T = 150C 3.7 V J © 2016 IXYS CORPORATION, All Rights Reserved DS100417C(5/16)

IXYH40N120C3D1 Symbol Test Conditions Characteristic Values TO-247 (IXYH) Outline (T = 25°C Unless Otherwise Specified) Min. Typ. Max. J D A g I = 40A, V = 10V, Note 1 11 18 S A2A E B 0P 0K M D B M fs C CE Q C 1870 pF R S D2 ies D1 C V = 25V, V = 0V, f = 1MHz 107 pF D oes CE GE RRRR1111 0P1 4 C 38 pF res 1 2 3 IXYS OPTION L1 Q 80 nC C g(on) E1 Q I = 40A, V = 15V, V = 0.5 • V 14 nC L ge C GE CE CES Q 37 nC gc A1 b t 18 ns c b2 d(on) b4 1 - Gate t Inductive load, T = 25°C 64 ns e 2,4 - Collector ri J J M C A M 3 - Emitter E I = 40A, V = 15V 3.8 mJ on C GE t V = 0.5 • V , R = 10 133 ns d(off) CE CES G t 50 ns fi Note 2 E 1.1 mJ off t 22 ns d(on) t Inductive load, T = 150°C 73 ns ri J E I = 40A, V = 15V 6.6 mJ on C GE t V = 0.5 • V , R = 10 160 ns d(off) CE CES G t Note 2 143 ns fi E 2.1 mJ off R 0.26 °C/W thJC R 0.21 °C/W thCS Reverse Diode (FRED) (T = 25°C, Unless Otherwise Specified) Characteristic Value J Symbol Test Conditions Min. Typ. Max. V 3.00 V F I = 30A,V = 0V, Note 1 F GE T = 150°C 1.75 V J I 9 A RM I = 30A,V = 0V, -di /dt = 100A/μs, T = 100°C F GE F J t V = 600V T = 1 0 0 ° C 195 ns rr R J R 0.90 °C/W thJC Notes: 1. Pulse test, t  300μs, duty cycle, d  2%. 2. Switching times & energy losses may increase for higher V (clamp), T or R . CE J G IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2 by one or more of the following U.S. patents:4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2 4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B27,071,537

IXYH40N120C3D1 Fig. 1. Output Characteristics @ TJ = 25ºC Fig. 2. Extended Output Characteristics @ TJ = 25ºC 80 180 70 V G E = 1135VV 11V 160 VGE = 15V 12V 14V 140 60 10V 13V 120 mperes 4500 9V mperes 100 12V I - AC 30 8V - IAC 6800 11V10V 20 9V 40 7V 8V 10 20 6V 7V 0 0 6V 0 1 2 3 4 5 6 0 5 10 15 20 25 30 V - Volts V - Volts CE CE Fig. 4. Dependence of VCE(sat) on Fig. 3. Output Characteristics @ TJ = 150ºC Junction Temperature 80 2.2 70 V G E = 1135VV 11V 2.0 VGE = 15V 12V 60 1.8 I C = 80A 10V d ze 1.6 s 50 ali mpere 40 9V Norm 1.4 I - AC 30 8V V - CE(sat) 11..02 I C = 40A 20 0.8 7V I C = 20A 10 0.6 0 6V 0.4 0 1 2 3 4 5 6 7 8 -50 -25 0 25 50 75 100 125 150 175 VCE - Volts TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Fig. 6. Input Admittance Gate-to-Emitter Voltage 10 100 TJ = - 40ºC 9 TJ = 25ºC 25ºC 80 150ºC 8 7 Volts 6 I C = 80A peres 60 V - CE 5 - AmC 40 4 I 40A 3 20 2 20A 1 0 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 VGE - Volts VGE - Volts © 2016 IXYS CORPORATION, All Rights Reserved

IXYH40N120C3D1 Fig. 7. Transconductance Fig. 8. Gate Charge 28 16 24 TJ = - 40ºC 14 VI CC =E =4 06A00V 25ºC 12 I G = 10mA 20 ns 150ºC 10 g - Sieme f s 1126 V - VoltsGE 68 8 4 4 2 0 0 0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 IC - Amperes QG - NanoCoulombs Fig. 9. Capacitance Fig. 10. Reverse-Bias Safe Operating Area 10,000 90 80 Cies s 70 d a Far1,000 60 o s c e Pi er 50 e - mp c A citan Coes I - C 40 a 100 30 p a C 20 TJ = 150ºC RG = 10Ω f = 1 MHz Cres 10 dv / dt < 10V / ns 10 0 0 5 10 15 20 25 30 35 40 200 300 400 500 600 700 800 900 1000 1100 1200 1300 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance 1 W 0.1 K / - C h)J Z(t 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 Pulse Width - Second IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYH40N120C3D1 Fig. 12. Inductive Switching Energy Loss vs. Fig. 13. Inductive Switching Energy Loss vs. Gate Resistance Collector Current 7 28 5 20 Eoff Eon Eoff Eon 6 24 TJ = 150ºC , VGE = 15V I C = 80A 4 RG = 10ΩVGE = 15V 16 VCE = 600V VCE = 600V TJ = 150ºC 5 20 E - MilliJoulesoff 34 1126onE - MilliJoules E - MilliJoulesoff 23 TJ = 25ºC 812onE - MilliJoules 2 8 I C = 40A 1 4 1 4 0 0 0 0 10 15 20 25 30 35 40 45 50 55 20 30 40 50 60 70 80 RG - Ohms IC - Amperes Fig. 14. Inductive Switching Energy Loss vs. Fig. 15. Inductive Turn-off Switching Times vs. Junction Temperature Gate Resistance 5 20 200 500 Eoff Eon 180 t f i td(off) 450 4 RG = 10ΩVGE = 15V I C = 80A 16 TJ = 150ºC, VGE = 15V VCE = 600V 160 VCE = 600V 400 E - MilliJoulesoff 23 812onE - MilliJoules t - Nanoseconds f i111024000 I C = 40A 233505000 d(off)t - Nanosecond 80 200 s 1 I C = 40A 4 I C = 80A 60 150 0 0 40 100 25 50 75 100 125 150 10 15 20 25 30 35 40 45 50 55 TJ - Degrees Centigrade RG - Ohms Fig. 16. Inductive Turn-off Switching Times vs. Fig. 17. Inductive Turn-off Switching Times vs. Collector Current Junction Temperature 240 220 160 170 t f i td(off) t f i td(off) 200 RG = 10Ω, VGE = 15V 200 140 RG = 10Ω, VGE = 15V 160 VCE = 600V VCE = 600V I C = 40A t - Nanoseconds f i11268000 TJ = 150ºC 111468000 d(off)t - Nanosecond t - Nanosecondsf i 11028000 I C = 80A 111345000 d(off)t - Nanosecon s d s 40 TJ = 25ºC 120 60 120 0 100 40 110 20 30 40 50 60 70 80 25 50 75 100 125 150 I - Amperes T - Degrees Centigrade C J © 2016 IXYS CORPORATION, All Rights Reserved

IXYH40N120C3D1 Fig. 18. Inductive Turn-on Switching Times vs. Fig. 19. Inductive Turn-on Switching Times vs. Gate Resistance Collector Current 400 90 200 39 350 t r i td(on) 80 180 t r i td(on) 36 TJ = 150ºC, VGE = 15V RG = 10Ω, VGE = 15V 160 33 300 VCE = 600V 70 VCE = 600V t - Nanoseconds r i112205050000 I C =I C4 0=A 80A 34560000 d(on)t - Nanoseconds t - Nanosecondsr i 1116802400000 TJ = 15T0J º=C 25ºC 1222381470 d(on)t - Nanoseconds 40 15 50 20 20 12 0 10 0 9 10 15 20 25 30 35 40 45 50 55 20 30 40 50 60 70 80 RG - Ohms IC - Amperes Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 280 40 t r i td(on) 240 36 RG = 10Ω, VGE = 15V VCE = 600V noseconds126000 I C = 80A 2382 d(on)t - Nan t - Nar i 18200 2204 oseconds 40 I C = 40A 16 0 12 25 50 75 100 125 150 T - Degrees Centigrade J Fig. 21. Maximum Transient Thermal Impedance (Diode) 1 0.1 W C / - ºC 0.01 h)J Z(t 0.001 0.0001 0.00001 0.0001 0.001 0.01 0.1 1 Pulse Width - Second IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: IXY_40N120C3(4A-Z92) 5-09-16-A

IXYH40N120C3D1 Fig. 22. Forward Current IF vs VF Fig. 23. Reverse Recovery Charge QRM vs. -diF/dt 70 5 TVJ = 100ºC 60 4 VR = 600V 50 TVJ = 150ºC IF = 60A 100ºC 3 40 25ºC I Q F RM [A] [µC] 30A 30 2 15A 20 1 10 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 100 500 1000 V [V] F -di /dt [A/µs] F Fig. 24. Peak Reverse Current IRM vs. -diF/dt Fig. 25. Dynamic Parameters QRM, IRM vs. TVJ 60 2 TVJ = 100ºC 50 VR = 600V d] 1.5 e 40 aliz m I[RAM] 30 IF = 60A, 30A, 15A [norM 1 QR IRM & 20 M R I 0.5 QRM 10 0 0 0 200 400 600 800 1000 20 40 60 80 100 120 140 160 -diF/dt [A/µs] TVJ [ºC] Fig. 26. Recovery Time trr vs. -diF/dt Fig. 27. Peak Forward Voltage VFR, trr vs -diF/dt 220 120 1.2 TVJ = 100ºC TVJ = 100ºC 200 VR = 600V 100 IF = 30A 1 80 trr 0.8 180 [tnrrs] IF = 60A VFR 60 0.6 trr 30A [V] [µs] 160 15A VFR 40 0.4 140 20 0.2 120 0 0 0 200 400 600 800 1000 0 100 200 300 400 500 600 700 800 900 1000 -diF/dt [A/µs] -diF/dt [A/µs] © 2016 IXYS CORPORATION, All Rights Reserved

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.