图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: ISL28006FH20Z-T7A
  • 制造商: Intersil
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

ISL28006FH20Z-T7A产品简介:

ICGOO电子元器件商城为您提供ISL28006FH20Z-T7A由Intersil设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ISL28006FH20Z-T7A价格参考¥16.99-¥36.68。IntersilISL28006FH20Z-T7A封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 电流检测 放大器 1 电路 SOT-23-5。您可以下载ISL28006FH20Z-T7A参考资料、Datasheet数据手册功能说明书,资料中有ISL28006FH20Z-T7A 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

180kHz

产品目录

集成电路 (IC)

描述

IC OPAMP CURR SENSE SOT23-5

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Intersil

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

ISL28006FH20Z-T7A

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25534http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=25593

供应商器件封装

SOT-23-5

其它名称

ISL28006FH20Z-T7ACT

包装

剪切带 (CT)

压摆率

0.67 V/µs

增益带宽积

-

安装类型

表面贴装

封装/外壳

SC-74A,SOT-753

工作温度

-40°C ~ 125°C

应用说明

点击此处下载产品Datasheet

放大器类型

电流检测

标准包装

1

电压-电源,单/双 (±)

2.7 V ~ 28 V

电压-输入失调

1.2mV

电流-电源

50µA

电流-输入偏置

4.7µA

电流-输出/通道

8.7mA

电路数

1

输出类型

-

推荐商品

型号:LMH6644MTX/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX4128EUA+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:MAX4194ESA-T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:AD8009AR-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD8010ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD795JRZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD8607ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:OPA132U

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
ISL28006FH20Z-T7A 相关产品

OPA2705UAG4

品牌:Texas Instruments

价格:¥8.53-¥17.36

TLE2082ACDRG4

品牌:Texas Instruments

价格:

HCPL-7800A-000E

品牌:Broadcom Limited

价格:

EL5462ISZ-T7

品牌:Renesas Electronics America Inc.

价格:

AD8546ARMZ

品牌:Analog Devices Inc.

价格:¥8.54-¥8.87

EL5175IS

品牌:Renesas Electronics America Inc.

价格:

THS3125IDRG4

品牌:Texas Instruments

价格:

LT1168IS8

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

DATASHEET ISL28006 FN6548 Micropower, Rail to Rail Input Current Sense Amplifier with Voltage Output Rev 6.00 November 22, 2013 The ISL28006 is a micropower, uni-directional high-side and Features low-side current sense amplifier featuring a proprietary rail-to-rail input current sensing amplifier. The ISL28006 is • Low Power Consumption. . . . . . . . . . . . . . . . . . . . . . 50µA, Typ ideal for high-side current sense applications where the sense • Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 28V voltage is usually much higher than the amplifier supply • Wide Common Mode Input. . . . . . . . . . . . . . . . . . . . 0V to 28V voltage. The device can be used to sense voltages as high as 28V when operating from a supply voltage as low as 2.7V. The • Gain Versions micropower ISL28006 consumes only 50µA of supply current - ISL28006-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/V when operating from a 2.7V to 28V supply. - ISL28006-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50V/V The ISL28006 features a common-mode input voltage range - ISL28006-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/V from 0V to 28V. The proprietary architecture extends the input - ISL28006-ADJ . . . . . . . . . . . . . . . . ADJ (Min Gain = 20V/V) voltage sensing range down to 0V, making it an excellent • Operating Temperature Range. . . . . . . . . . . .-40°C to +125°C choice for low-side ground sensing applications. The benefit of this architecture is that a high degree of total output accuracy • Packages. . . . . . . . . . . . . . . . . . . . . .5 Ld SOT-23, 6 Ld SOT-23 is maintained over the entire 0V to 28V common mode input Applications voltage range. The ISL28006 is available in fixed (100V/V, 50V/V, 20V/V and • Power Management/Monitors Adjustable) gains in the space saving 5 Ld SOT-23 package • Power Distribution and Safety and the 6 Ld SOT-23 package for the adjustable gain part. The • DC/DC, AC/DC Converters parts operate over the extended temperature range from -40°C to +125°C. • Battery Management/Charging • Automotive Power Distribution Related Literature • See AN1532 for “ISL28006 Evaluation Board User’s Guide” SENSE +12VDC +12VDC RSENSE OUTPUT - +5VDC ISL28006 ISENSE 0.6 +12VDC +100°C -40°C +25°C +125°C GAIN 100 + 0.4 SENSE +5VDC 0.2 +5VDC OUTPUT RSENSE - +5VDC %) 0 ISL28006 ISENSE CY ( -0.2 + +5VDC RA -0.4 SENSE CU -0.6 +1.0VDC RSENSE +O1U.0TVPDUCT AC -0.8 MULTIPLE - +5VDC -1 OUTPUT ISL28006 ISENSE POWER SUPPLY + +1.0VDC -1.2 -1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 GND VRS+ (V) FIGURE 1. TYPICAL APPLICATION FIGURE 2. GAIN ACCURACY vs VRS+ = 0V TO 28V FN6548 Rev 6.00 Page 1 of 26 November 22, 2013

ISL28006 Block Diagram VCC VCC I = 2.86µA I = 2.86µA VSENSE VSENSE RS+ HIG AHN-SDI DE RS+ HIG AHN-SDI DE R1 LOW-SIDE R1 LOW-SIDE gmHI SENSING gmHI SENSING RS- RS- R2 R2 + + 1.35V - Rf OUT 1.35V - OUT Rf VCC VCC FB R3 IMIRROR R5 Rg R3 IMIRROR R5 Rg gmLO gmLO VSENSE VSENSE R4 R4 GND GND FIXED GAIN PARTS ADJUSTABLE GAIN PART Pin Configurations ISL28006-100, 50, 20 ISL28006-ADJ (5 LD SOT-23) (6 LD SOT-23) TOP VIEW TOP VIEW GND 1 5 RS- FB 1 6 GND FIXED ADJ. OUT 2 OUT 2 5 RS- GAIN GAIN VCC 3 4 RS+ VCC 3 4 RS+ Pin Descriptions ISL28006-100, 50, 20 ISL28006-ADJ (5 LD SOT-23) (6 LD SOT-23) PIN NAME DESCRIPTION 1 6 GND Power Ground 1 FB Input Pin for External Resistors 2 2 OUT Amplifier Output 3 3 VCC Positive Power Supply 4 4 RS+ Sense Voltage Non-inverting Input 5 5 RS- Sense Voltage Inverting Input FB VCC RS- CCAAPPAACCIITTIIVVEELLYY CCOOUUPPLLEEDD OUT EESSDD CCLLAAMMPP RS+ GND FN6548 Rev 6.00 Page 2 of 26 November 22, 2013

ISL28006 Ordering Information PACKAGE PART NUMBER PART Tape & Reel PKG. (Notes 1, 2, 3) GAIN MARKING (Pb-Free) DWG. # ISL28006FH100Z-T7 100V/V BDJA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH100Z-T7A 100V/V BDJA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH50Z-T7 50V/V BDHA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH50Z-T7A 50V/V BDHA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH20Z-T7 20V/V BDGA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH20Z-T7A 20V/V BDGA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FHADJZ-T7 ADJ BDFA (Note 4) 6 Ld SOT-23 P6.064 ISL28006FHADJZ-T7A ADJ BDFA (Note 4) 6 Ld SOT-23 P6.064 ISL28006FH-100EVAL1Z 100V/V Evaluation Board ISL28006FH-50EVAL1Z 50V/V Evaluation Board ISL28006FH-20EVAL1Z 20V/V Evaluation Board ISL28006FH-ADJEVAL1Z Adjustable Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28006. For more information on MSL please see techbrief TB363. 4. The part marking is located on the bottom of the part. FN6548 Rev 6.00 Page 3 of 26 November 22, 2013

ISL28006 Absolute Maximum Ratings Thermal Information Max Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28V Thermal Resistance (Typical) JA (°C/W) JC (°C/W) Max Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA 5 Ld SOT-23 (Notes 5, 6) . . . . . . . . . . . . . . . 190 90 Max Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..±0.5V 6 Ld SOT-23 (Notes 5, 6) . . . . . . . . . . . . . . . 180 90 Max Input Voltage (RS+, RS-, FB) . . . . . . . . . . . . . . . . . . .GND - 0.5V to 30V Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C Max Input Current for Input Voltage <GND - 0.5V. . . . . . . . . . . . . . . . ±20mA Maximum Junction Temperature (TJMAX) . . . . . . . . . . . . . . . . . . . . .+150°C Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below Di-Electrically Isolated PR40 Process . . . . . . . . . . . . . . . . . . . Latch-up free http://www.intersil.com/pbfree/Pb-FreeReflow.asp ESD Rating Human Body Model (Tested per JESD22-A114F). . . . . . . . . . . . . . . . 4kV Recommended Operating Conditions Machine Model (Tested per EIA/JESD22-A115-A). . . . . . . . . . . . . .200V Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . . .1.5kV Ambient Temperature Range (TA) . . . . . . . . . . . . . . . . . . .-40°C to +125°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 5.  is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. JA 6. For JC, the “case temp” location is taken at the package top center. Electrical Specifications VCC = 12V, VRS+ = 0V to 28V, VSENSE = 0V, RLOAD = 1MΩ, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. MIN MAX PARAMETER DESCRIPTION CONDITIONS (Note 7) TYP (Note 7) UNIT VOS Gain = 100 VCC = VRS+ = 12V, VSENSE=20mV to 100mV -250 60 250 µV (Input Offset (Notes 8, 9) -300 300 µV Voltage) VCC = 12V, VRS+ = 0.2V, VSENSE = 20mV to 100mV -2.5 -1.2 2.5 mV -2.8 2.8 mV Gain = 50, Gain = 20 VCC = VRS+ = 12V, VSENSE=20mV to 100mV -300 60 300 µV (Notes 8, 9) -450 450 µV VCC = 12V, VRS+ = 0.2V, VSENSE = 20mV to 100mV -2.8 -1.2 2.8 mV -3.2 3.2 mV Adjustable, Gain = 21 VCC = VRS+ = 12V, VSENSE=20mV to 100mV -300 60 300 µV Rf = 100kΩ, Rg = 5kΩ -450 450 µV (Notes 8, 9) VCC = 12V, VRS+ = 0.2V, VSENSE = 20mV to 100mV -3.1 -1.2 3.1 mV -3.4 3.4 mV IRS+, IRS - Leakage Current VCC = 0V, VRS+ = 28V 0.041 1.2 µA 1.5 µA IRS+ Gain = 100 VRS+ = 2V, VSENSE = 5mV 4.7 6 µA (+ Input Bias 7 µA Current) VRS+ = 0V, VSENSE = 5mV -500 -432 nA -600 nA Gain = 50, Gain = 20 VRS+ = 2V, VSENSE = 5mV 4.7 6 µA 8 µA VRS+ = 0V, VSENSE = 5mV -700 -432 nA -840 nA ADJ Gain = 101 VRS+ = 2V, VSENSE = 5mV 4.7 6 µA Rf = 100kΩ, Rg = 1kΩ 7 µA VRS+ = 0V, VSENSE = 5mV -500 -432 nA -600 nA FN6548 Rev 6.00 Page 4 of 26 November 22, 2013

ISL28006 Electrical Specifications VCC = 12V, VRS+ = 0V to 28V, VSENSE = 0V, RLOAD = 1MΩ, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued) MIN MAX PARAMETER DESCRIPTION CONDITIONS (Note 7) TYP (Note 7) UNIT IRS - G = 100, 50, 20, ADJ VRS+ = 2V, VSENSE = 5mV 5 50 nA (- Input Bias 75 nA Current) VRS+ = 0V, VSENSE = 5mV -125 -45 nA -130 nA CMRR Common Mode Rejection Ratio VRS+ = 2V to 28V 105 115 dB PSRR Power Supply Rejection Ratio VCC = 2.7V to 28V, VRS+=2V 90 105 dB VFS Full-scale Sense Voltage VCC = 28V, VRS+ = 0.2V, 12V 200 mV G (Note 8) ISL28006-100 100 V/V (Gain) ISL28006-50 50 V/V ISL28006-20 20 V/V ISL28006-ADJ 20 V/V GA Gain = 100 VCC = VRS+ = 12V, VSENSE=20mV to 100mV -0.2 0.7 % (Gain Accuracy) (Note 10) -1 1 % VCC = 12V, VRS+ = 0.1V, VSENSE = 20mV to 100mV -0.25 % Gain = 50, Gain = 20 VCC = VRS+ = 12V, VSENSE=20mV to 100mV -0.35 0.7 % (Note 10) -1 1 % VCC = 12V, VRS+ = 0.1V, VSENSE = 20mV to 100mV -2.2 -0.33 2.2 % -2.3 2.3 % ADJ Gain = 21 VCC = VRS+ = 12V, VSENSE=20mV to 100mV -0.65 1 % Rf = 100kΩ, Rg = 5kΩ -1 1.05 % (Note 10) VCC = 12V, VRS+ = 0.1V, VSENSE = 20mV to 100mV -2.2 -0.33 2.2 % -2.3 2.3 VOA Gain = 100 VCC = VRS+ = 12V, VSENSE=100mV -0.7 0.7 % (Total Output (Note 11) -0.9 0.9 % Accuracy) VCC = 12V, VRS+ = 0.1V, VSENSE = 100mV -1.25 % Gain = 50, Gain = 20 VCC = VRS+ = 12V, VSENSE=100mV -0.7 0.7 % (Note 11) -0.9 0.9 % VCC = 12V, VRS+ = 0.1V, VSENSE = 100mV -4.7 -1.41 1.8 % -5.2 2.3 % ADJ Gain = 21 VCC = VRS+ = 12V, VSENSE=100mV -0.7 1.05 % Rf = 100kΩ, Rg = 5kΩ -0.9 1.2 % (Note 11) VCC = 12V, VRS+ = 0.1V, VSENSE = 100mV -4.7 -1.41 1.8 % -5.2 2.3 % VOH Output Voltage Swing, High IO = -500µA, VCC = 2.7V, VSENSE = 100mV, VRS+ = 2V 39 50 mV VCC - VOUT VOL Output Voltage Swing, Low IO = 500µA, VCC = 2.7V, VSENSE = 0V, VRS+ = 2V 30 50 mV VOUT ROUT Output Resistance VCC = VRS+ = 12V, VSENSE=100mV, 6.5  IOUT = 10µA to 1mA ISC+ Short Circuit Sourcing Current VCC = VRS+ = 5V, RL = 10Ω 4.8 mA ISC- Short Circuit Sinking Current VCC = VRS+ = 5V, RL = 10Ω 8.7 mA FN6548 Rev 6.00 Page 5 of 26 November 22, 2013

ISL28006 Electrical Specifications VCC = 12V, VRS+ = 0V to 28V, VSENSE = 0V, RLOAD = 1MΩ, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued) MIN MAX PARAMETER DESCRIPTION CONDITIONS (Note 7) TYP (Note 7) UNIT ICC Gain = 100 VRS+ > 2V, VSENSE = 5mV 50 59 µA 62 µA Gain = 50, 20, VRS+ > 2V, VSENSE = 5mV 50 62 µA 63 µA ADJ Gain = 21 VRS+ > 2V, VSENSE = 5mV 50 62 µA Rf = 100kΩ, Rg = 5kΩ 63 µA VCC Supply Voltage Guaranteed by PSRR 2.7 28 V Slew Rate Gain = 100 Pulse on RS+pin, VOUT = 8VP-P (Figure 75) 0.58 0.76 V/µs Gain = 50 Pulse on RS+pin, VOUT = 8VP-P (Figure 75) 0.58 0.67 V/µs Gain = 20 Pulse on RS+pin, VOUT = 3.5VP-P (Figure 75) 0.50 0.67 V/µs ADJ Gain = 21 Pulse on RS+pin, VOUT = 3.5VP-P (Figure 75) 0.50 0.67 V/µs Rf = 100kΩ, Rg = 5kΩ BW-3dB Gain = 100 VRS+ = 12V, 0.1V, VSENSE=100mV 110 kHz Gain = 50 VRS+ = 12V, 0.1V, VSENSE=100mV 160 kHz Gain = 20 VRS+ = 12V, 0.1V, VSENSE=100mV 180 kHz ADJ, Gain = 101 (Figure 65) VRS+ = 12V, 0.1V, VSENSE=100mV, Rf=100kΩ, 40 kHz Rg=1kΩ ADJ, Gain = 51 (Figure 65) VRS+ = 12V, VSENSE=100mV, Rf = 100kΩ, Rg= 2kΩ 78 kHz VRS+ = 0.1V, VSENSE=100mV, Rf = 100kΩ, Rg = 2kΩ 122 kHz ADJ, Gain = 21 (Figure 65) VRS+ = 12V, VSENSE=100mV, Rf = 100kΩ, Rg= 5kΩ 131 kHz VRS+ = 0.1V, VSENSE=100mV, Rf = 100kΩ, Rg = 5kΩ 237 kHz tS Output Settling Time to 1% of Final VCC = VRS+ = 12V, VOUT=10V step, VSENSE>7mV 15 µs Value VCC = VRS+ = 0.2V, VOUT=10V step, VSENSE>7mV 20 µs Capacitive-Load Stability No sustained oscillations 300 pF tS Power-up Power-Up Time to 1% of Final Value VCC = VRS+ = 12V, VSENSE=100mV 15 µs VCC = 12V, VRS+ = 0.2V, VSENSE = 100mV 50 µs Saturation Recovery Time VCC = VRS+ = 12V, VSENSE=100mV, overdrive 10 µs NOTES: 7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 8. DEFINITION OF TERMS: • VSENSEA = VSENSE @ 100mV • VSENSEB = VSENSE @ 20mV • VOUTA = VOUT @ VSENSEA = 100mV • VOUTB = VOUT @ VSENSEB = 20mV • G = GAIN = -------V----O----U---T---A-----–-----V---O----U----T---B--------- VSENSEA–VSENSEB V A 9. VOS is extrapolated from the gain measurement. VOS = VSENSEA–----O---G-U---T------ 10. % Gain Accuracy = GA = G-----M----E---A----S---U-G---R-E---EX---D-P---E-–--C--G--T--E-E---XD---P----E---C---T---E---D---100 11. Output Accuracy % VOA = V----O-----U----T---M----E---A--V--S--O-U----UR----TE---ED---X--–-P---V-E---CO----T-U-E---T-D--E---X---P----E---C---T---E----D--100, where VOUT = VSENSE X GAIN and VSENSE = 100mV FN6548 Rev 6.00 Page 6 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. 1.8 2.4 12 1.6 VRS+ VRS+ 2.0 10 1.4 VOUT (G = 100) VTH(L-H) = 1.52V 1.2 1.6 8 LTS (V) 01..80 VTH(H-L) = 1.23V (V)RS+1.2 RVCL C= =1M 1Ω2V 6 (V)OUT O VOUT (G = 100) V V V 0.6 0.8 4 G100, VOUT = 2V 0.4 G100, VOUT = 1V G50, VOUT = 1V G50, VOUT = 500mV 0.4 G20, VOUT = 400mV 2 0.2 G20, VOUT = 200mV 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TIME (ms) TIME (ms) FIGURE 3. HIGH-SIDE and LOW-SIDE THRESHOLD VOLTAGE FIGURE 4. VOUT vs VRS+, VSENSE = 20mV TRANSIENT RESPONSE VRS+(L-H) and VRS+(H-L), VSENSE= 10mV 12 12 GAIN 100 GAIN 100 10 10 8 8 V) V) (UT 6 (UT 6 O O V V 4 4 2 2 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 TIME (µs) TIME (µs) FIGURE 5. LARGE SIGNAL TRANSIENT RESPONSE VRS+ = 0.2V, FIGURE 6. LARGE SIGNAL TRANSIENT RESPONSE VRS+ =12V, VSENSE = 100mV VSENSE = 100mV 20 2800 GAIN 100 2600 GAIN 100 18 VSENSE = 20mV, 100mV 2400 VSENSE = 20mV, 100mV 16 2200 2000 14 1800 1600 S 12 V) 1400 T µ NI 10 (S 1200 U O 1000 8 V 800 6 600 +125°C +100°C 400 4 200 0 2 -200 -40°C +25°C 0 -400 -250 -200 -150 -100 -50 0 50 100 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VOS (µV) VRS+ (V) FIGURE 7. VOS (µV) DISTRIBUTION AT +25°C, VRS+=12V, FIGURE 8. VOS vs VRS+ QUANTITY: 100 FN6548 Rev 6.00 Page 7 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2800 250 2600 GAIN 100 +100°C 200 2400 VSENSE = 20mV, 100mV 2200 +125°C +100°C 150 +25°C 2000 1800 100 1600 V) 1400 V) 50 (µOS 11020000 -40°C +25°C (µOS 0 V 800 V -50 -40°C 600 -100 +125°C 400 200 -150 0 GAIN 100 -200 -200 VSENSE = 2mV, 20mV -400 -250 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 9. VOS vs VRS+ FIGURE 10. VOS vs VCC, VRS+= 12V 3000 0.6 GAIN 100 +100°C -40°C +25°C +125°C +100°C +25°C VSENSE = 2mV, 20mV 0.4 2000 0.2 1000 %) 0 V) -40°C +125°C Y ( -0.2 µ C V (OS 0 CURA --00..64 -1000 C A -0.8 -1.0 -2000 GAIN 100 -1.2 VSENSE = 20mV, 100mV -3000 -1.4 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) VRS+ (V) FIGURE 11. VOS vs VCC, VRS+ = 0.1V FIGURE 12. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.6 3.0 +25°C 2.5 0.4 2.0 0.2 1.5 +100°C +25°C -40°C +100°C 1.0 CY (%) -0.20 ACY (%) -00..055 +125°C A -0.4 R -1.0 CUR -0.6 -40°C CCU --21..05 AC -0.8 +125°C A -2.5 -3.0 -1.0 -3.5 GAIN 100 -4.0 GAIN 100 -1.2 VSENSE = 20mV, 100mV -4.5 VSENSE = 2mV, 20mV -1.4 -5 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 13. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 14. GAIN ACCURACY vs VCC, VRS+ = 12V FN6548 Rev 6.00 Page 8 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2 0.2 0 0.1 GAIN 100 -2 +25°C -40°C Y (%) 0.0 -4 C -0.1 %) +100°C RA -0.2 CY ( --86 CCU -0.3 -40°C A +125°C A -0.4 UR -10 NT -0.5 +125°C ACC -12 RCE -0.6 -14 PE -0.7 +100°C -16 GAIN 100 OA-0.8 -18 VSENSE = 2mV, 20mV V -0.9 +25°C -20 -1.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1µ 10µ 100µ 1m 10m VCC (V) IOUT(A) FIGURE 15. GAIN ACCURACY vs VCC, VRS+ = 0.1V FIGURE 16. NORMALIZED VOA vs IOUT 45 40 GAIN 100 35 GAIN 100 20 VSENSE = 20mV, 100mV 25 VRS+ = 12V 0 N (dB) 155 VRS+= 100mV (µV)S -20 AI O -40 G -5 VRS+ = 12V V VCC = 12V -60 -15 VSENSE = 100mV -25 AV = 100 -80 RL = 1MΩ -35 -100 10 100 1k 10k 100k 1M -50 -25 0 25 50 75 100 125 FREQUENCY (Hz) TEMPERATURE (°C) FIGURE 17. GAIN vs FREQUENCY VRS+=100mV/12V, FIGURE 18. VOS (µV) vs TEMPERATURE VSENSE=100mV, VOUT = 50mVP-P 50 220 40 180 100pF 100pF 1000pF 30 1000pF 140 NO CL 100 4.7nF 20 4.7nF 60 AIN (dB) 100 NO1 0CnLF HASE (°) -2200 10nF G P -60 -10 VCC = 5V -100 VCC = 5V -20 AVVR S=- 1=0 30V -140 AVVR S=- 1=0 30V -30 VOUT = 400mVP-P -180 VOUT = 400mVP-P -40 -220 1.E+03 1.E+04 1.E+05 1.E+06 1.E+03 1.E+04 1.E+05 1.E+06 FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 19. CAPACITIVE LOAD DRIVE GAIN vs FREQUENCY FIGURE 20. CAPACITIVE LOAD DRIVE PHASE vs FREQUENCY FN6548 Rev 6.00 Page 9 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.30 -0.5 GAIN 100 GAIN 100 0.25 VSENSE = 20mV, 100mV VRS+ = 12V VRS+ = 12V -0.6 %) 0.20 Y ( %) RAC 0.15 OR ( -0.7 CU 0.10 RR N AC 0.05 EOUT-0.8 AI V G 0 -0.9 -0.05 -0.10 -1 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 21. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 22. VOUT ERROR (%) vs TEMPERATURE 20 2800 GAIN 50 2600 GAIN 50 18 VSENSE = 20mV, 100mV 2400 VSENSE = 20mV, 100mV 16 2200 2000 14 1800 1600 S 12 V) 1400 T µ NI 10 (S 1200 U O 1000 8 V 800 6 600 +125°C +100°C 400 4 200 0 2 -200 -40°C +25°C 0 -400 -250 -200 -150 -100 -50 0 50 100 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VOS (µV) VRS+ (V) FIGURE 23. VOS (µV) DISTRIBUTION AT +25°C, VRS+= 12V, FIGURE 24. VOS vs VRS+ QUANTITY: 100 2800 250 2600 +125°C GAIN 50 GAIN 50 2400 VSENSE = 20mV, 100mV 200 VSENSE = 2mV, 0mV 22020000 150 +100°C +100°C 1800 100 1600 V (µV)OS 111802400000000 -40°C +25°C V (µV)OS-55000 +125°C +25°C 600 -100 400 200 -150 0 -40°C -200 -200 -4000 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -2502 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 25. VOS vs VRS+ FIGURE 26. VOS vs VCC, VRS+ = 12V FN6548 Rev 6.00 Page 10 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 3000 0.6 +100°C +25°C 0.4 2000 +25°C -40°C 0.2 1000 %) 0 µV) -40°C +125°C CY ( -0.2 +100°C +125°C (S 0 RA -0.4 O U V C -0.6 -1000 AC -0.8 -1.0 -2000 GAIN 50 -1.2 GAIN 50 VSENSE = 2mV, 0mV VSENSE = 20mV, 100mV -3000 -1.4 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) VRS+ (V) FIGURE 27. VOS vs VCC, VRS+ = VRS+ = 0.1V FIGURE 28. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.6 3.0 2.5 0.4 +25°C 2.0 0.2 1.5 1.0 +100°C +25°C -40°C %) 0 %) 0.5 ACCURACY ( ----0000....8642 +100°C ACCURACY ( -----22110.....050505 +125°C -3.0 -1.0 -3.5 +125°C -40°C GAIN 50 -4.0 GAIN 50 -1.2 VSENSE = 20mV, 100mV -4.5 VSENSE = 2mV, 20mV -1.4 -5.0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 29. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 30. GAIN ACCURACY vs VCC, HIGH-SIDE 2 0.2 0 0.1 GAIN 50 -2 +25°C -40°C Y (%) 0.0 %) -4 +100°C RAC --00..21 Y ( -6 CU -0.3 C -8 C -40°C A A -0.4 R -10 T U N -0.5 ACC -12 +125°C RCE -0.6 +125°C --1164 PEOA--00..87 +100°C -18 GAIN 50 V -0.9 VSENSE = 2mV, 20mV +25°C -20 -1.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1µ 10µ 100µ 1m 10m VCC (V) IOUT(A) FIGURE 31. GAIN ACCURACY vs VCC, LOW-SIDE FIGURE 32. NORMALIZED VOA vs IOUT FN6548 Rev 6.00 Page 11 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 45 -70 GAIN 50 GAIN 50 35 -90 VSENSE = 20mV, 100mV VRS+ = 12V 25 -110 N (dB) 155 VRS+= 100mV (µV)S--115300 AI O G -5 VRS+ = 12V V -170 VCC = 12V -15 VSENSE = 100mV -190 -25 AV = 50 -210 RL = 1MΩ -35 -230 10 100 1k 10k 100k 1M -50 -25 0 25 50 75 100 125 FREQUENCY (Hz) TEMPERATURE (°C) FIGURE 33. GAIN vs FREQUENCY VRS+=100mV/12V, FIGURE 34. VOS (µV) vs TEMPERATURE VSENSE=100mV, VOUT = 50mVP-P 50 220 40 180 100pF 1000pF 30 100pF 140 NO CL 4.7nF 100 4.7nF 20 1000pF 60 N (dB) 10 NO CL SE (°) 20 10nF AI 0 HA -20 G 10nF P ---321000 VAVVVCOR CSU=- T =5= =0 53 V4V00mVP-P ---111-84060000 VAVVVCOR CSU=- T =5= =0 53 V4V00mVP-P -40 -220 1.E+03 1.E+04 1.E+05 1.E+06 1.E+03 1.E+04 1.E+05 1.E+06 FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 35. CAPACITIVE LOAD DRIVE GAIN vs FREQUENCY FIGURE 36. CAPACITIVE LOAD DRIVE PHASE vs FREQUENCY 0.18 0.10 GAIN 50 GAIN 50 0.08 0.17 VSENSE = 20mV, 100mV VRS+ = 12V VRS+ = 12V 0.06 %) 0.16 0.04 CY ( 0.15 R (%) 0.02 N ACCURA 00..1134 ERROOUT --00..00420 AI V -0.06 G 0.12 -0.08 0.11 -0.10 0.1 -0.12 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 37. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 38. VOUT ERROR (%) vs TEMPERATURE FN6548 Rev 6.00 Page 12 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 30 2800 GAIN 20 2600 GAIN 20 VSENSE = 20mV, 100mV 2400 VSENSE = 20mV, 100mV 25 2200 2000 20 1800 1600 UNITS 15 (µV)OS 111024000000 V 800 10 600 +125°C +100°C 400 5 200 0 -200 -40°C +25°C 0 -400 -250 -200 -150 -100 -50 0 50 100 150 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VOS (µV) VRS+ (V) FIGURE 39. VOS (µV) DISTRIBUTION AT +25°C, VRS+= 12V, FIGURE 40. VOS vs VRS+ QUANTITY: 100 2800 250 GAIN 20 2600 GAIN 20 2400 +100°C +125°C VSENSE = 20mV, 100mV 200 VSENSE = 2mV, 20mV 2200 150 2000 1800 100 +100°C 1600 V (µV)OS 111024800000000 +25°C -40°C V (µV)OS -55000 +25°C -40°C 600 -100 +125°C 400 200 -150 0 -200 -200 -4000 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -2502 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 41. VOS vs VRS+ FIGURE 42. VOS vs VCC, VRS+ = 12V 3000 0.6 GAIN 20 +100°C +25°C VSENSE = 2mV, 20mV 0.4 +25°C -40°C 2000 0.2 1000 %) 0 µV) -40°C +125°C CY ( -0.2 +125°C +100°C (S 0 RA -0.4 VO CU -0.6 -1000 C A -0.8 -1.0 -2000 GAIN 20 -1.2 VSENSE = 20mV, 100mV -3000 -1.4 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) VRS+ (V) FIGURE 43. VOS vs VCC, VRS+ = 0.1V FIGURE 44. GAIN ACCURACY vs VRS+ = 0V TO 28V FN6548 Rev 6.00 Page 13 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.6 3.0 GAIN 20 2.5 GAIN 20 0.4 VSENSE = 20mV, 100mV 2.0 VSENSE = 2mV, 20mV 0.2 1.5 +25°C 1.0 +100°C +25°C -40°C %) 0 %) 0.5 RACY ( --00..42 RACY (--10..050 +125°C U U-1.5 CC -0.6 +100°C CC-2.0 A -0.8 -40°C A-2.5 -3.0 -1.0 -3.5 -1.2 -4.0 +125°C -4.5 -1.4 -5.0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 45. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 46. GAIN ACCURACY vs VCC, HIGH-SIDE 2 0.2 0 0.1 GAIN 20 -2 Y (%) 0.0 %) -4 +100°C +25°C -40°C RAC --00..21 Y ( -6 CU -0.3 +25°C C -8 C A A -0.4 R -10 T +125°C U N -0.5 ACC -12 +125°C RCE -0.6 +100°C -14 PE -0.7 --1186 GAIN 20 V OA --00..98 -40°C VSENSE = 2mV, 20mV -20 -1.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1µ 10µ 100µ 1m 10m VCC (V) IOUT(A) FIGURE 47. GAIN ACCURACY vs VCC, LOW-SIDE FIGURE 48. NORMALIZED VOA vs IOUT 45 -20 GAIN 20 GAIN 20 35 VSENSE = 20mV, 100mV -40 VRS+ = 12V 25 -60 dB) 15 VRS+ = 100mV V) AIN ( 5 (µOS -80 G -5 VRS+ = 12V V VCC = 12V -100 -15 VSENSE = 100mV -25 AV = 20 -120 RL = 1MΩ -3510 100 1k 10k 100k 1M -140-50 -25 0 25 50 75 100 125 FREQUENCY (Hz) TEMPERATURE (°C) FIGURE 49. GAIN vs FREQUENCY VRS+=100mV/12V, FIGURE 50. VOS (µV) vs TEMPERATURE VSENSE=100mV, VOUT = 50mVP-P FN6548 Rev 6.00 Page 14 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 40 220 1000pF 180 30 100pF 1000pF 100pF 140 4.7nF NO CL 20 100 NO CL 4.7nF 10 60 N (dB) 0 10nF SE (°) 20 10nF AI HA -20 G -10 P -60 -20 VCC = 5V -100 VCC = 5V VRS- = 3V -140 VRS- = 3V -30 AV = 20 AV = 20 VOUT = 400mVP-P -180 VOUT = 400mVP-P -40 -220 1.E+03 1.E+04 1.E+05 1.E+06 1.E+03 1.E+04 1.E+05 1.E+06 FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 51. CAPACITIVE LOAD DRIVE GAIN VS FREQUENCY FIGURE 52. CAPACITIVE LOAD DRIVE PHASE VS FREQUENCY 0.330 0.31 GAIN 20 GAIN 20 0.325 VSENSE = 20mV, 100mV 0.29 VRS+ = 12V VRS+ = 12V %) 0.320 0.27 CY ( 0.3150 R (%) 0.25 A O N ACCUR 00..330150 ERROUT 00..2213 AI V G 0.300 0.19 0.295 0.17 0.290 0.15 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 53. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 54. VOUT ERROR (%) vs TEMPERATURE 26 2800 24 GAIN 101 ADJ 2600 GAIN 101 ADJ 22 Rf = 100k, Rg = 1k 2400 Rf = 100k, Rg = 1k 20 VSENSE = 20mV, 100mV 22020000 VSENSE = 20mV, 100mV 18 1800 16 1600 TS 14 µV) 1400 UNI 12 (OS 11020000 10 V 800 8 600 +125°C +100°C 6 400 200 4 0 2 -200 -40°C +25°C 0 -400 -200 -160 -120 -80 -40 0 40 80 120 160 200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VOS (µV) VRS+ (V) FIGURE 55. VOS (µV) DISTRIBUTION AT +25°C, VRS+= 12V, FIGURE 56. VOS vs VRS+ QUANTITY: 100 FN6548 Rev 6.00 Page 15 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2800 250 2600 GAIN 101 ADJ GAIN 101 ADJ 2400 Rf = 100k, Rg = 1k 200 Rf = 100k, Rg = 1k 2200 VSENSE = 20mV, 100mV 150 VSENSE = 2mV, 20mV 2000 1800 +125°C 100 +100°C 1600 V (µV)OS 111024800000000 -40°C +25°C V (µV)OS-55000 +25°C 600 -100 -40°C 400 +100°C 200 -150 0 -200 -200 +125°C -4000 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -2502 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 57. VOS vs VRS+ FIGURE 58. VOS vs VCC, HIGH-SIDE 3000 0.6 GAIN 101 ADJ GAIN 101 ADJ +100°C +25°C Rf = 100k, Rg = 1k 0.4 +125°C Rf = 100k, Rg = 1k 2000 VSENSE = 2mV, 20mV 0.2 +100°C VSENSE = 20mV, 100mV 1000 %) 0 V) -40°C Y ( -0.2 µ C +25°C V (OS 0 +125°C CURA --00..64 -40°C -1000 C A -0.8 -1.0 -2000 -1.2 -3000 -1.4 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) VRS+ (V) FIGURE 59. VOS vs VCC, LOW-SIDE FIGURE 60. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.6 3.0 GAIN 101 ADJ 2.5 GAIN 101 ADJ 0.4 Rf = 100k, Rg = 1k 2.0 Rf = 100k, Rg = 1k 0.2 VSENSE = 20mV, 100mV 1.5 VSENSE = 2mV, 20mV 1.0 +25°C %) 0 +100°C +125°C %) 0.5 -40°C +100°C ACCURACY ( ----0000....8642 +25°C -40°C ACCURACY ( -----22110.....050505 +125°C -3.0 -1.0 -3.5 -4.0 -1.2 -4.5 -1.4 -5.0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) VCC (V) FIGURE 61. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 62. GAIN ACCURACY vs VCC, VRS+ = 12V FN6548 Rev 6.00 Page 16 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2 0.2 0.0 +25°C 0 -2 %) -0.2 -40°C +100°C +25°C -40°C Y ( -0.4 URACY (%) -1---0864 +125°C T ACCURAC ---0100....2086 GRRfgA =I=N 11 01k00k1 ADJ ++110205°C°C +25°C C N 0.0 C -12 E A C -0.2 -14 R -40°C E -0.4 ---211086 GRVSfA E=INN 1 S01E00 k1=, A2RDmgJ V=, 12k0mV V POA ---100...086 GRRfgA =I=N 15 02k01k ADJ ++110205°°CC 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1µ 10µ 100µ 1m 10m VCC (V) IOUT(A) FIGURE 63. GAIN ACCURACY vs VCC, VRS+ = 0.1V FIGURE 64. NORMALIZED VOA vs IOUT 45 200 VRS+ = 12V GAIN = 101 VSENSE = 20mV, 100mV 40 150 VRS+ = 0.1V GAIN = 101 100 VRS+ = 12V 35 GAIN = 21, 101 30 VRS+ = 12V GAIN = 51 500 RRfg == 110k0, k5k AIN (dB) 2205 VRS+ = 0.1V GAIN = 21 (µV)OS-1-5000 GAIN = 21 RL = 1MΩ G VCC = 12V VRS+ = 12V GAIN = 21 V 15 VSENSE = 100mV -150 GAIN = 101 10 GAIN = 21, 51, 101 -200 Rf = 100k -250 5 RRLg == 11kM, Ω2k, 5k VRS+ = 12V GAIN = 51 -300 0 -350 100 1k 10k 100k 1M -50 -25 0 25 50 75 100 125 FREQUENCY (Hz) TEMPERATURE (°C) FIGURE 65. GAIN vs FREQUENCY VRS+=100mV/12V, FIGURE 66. VOS (µV) vs TEMPERATURE VSENSE=100mV, VOUT = 50mVP-P 0.40 0.6 0.35 0.5 GAIN = 101 CY (%) 00..2350 R (%) 00..34 GAIN = 101 A O GAIN ACCUR 000...112050 GVVSRAESINN+ S ==E 21 =12 ,V2 100m1V, 100mV GAIN = 21 V ERROUT 00..120 GVVSRAESINN+S ==E 21 =12 ,2V 100m1V, 100mV Rf = 100k Rf = 100k GAIN = 21 0.05 Rg = 1k, 5k -0.1 Rg = 1k, 5k RL = 1MΩ RL = 1MΩ 0 -0.2 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 67. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 68. VOUT ERROR (%) vs TEMPERATURE FN6548 Rev 6.00 Page 17 of 26 November 22, 2013

ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 15 20 ENT (µA) 105 IRS+ T (µA) 1105 IRS+ R N UR RE VCC = 12V T BIAS C -05 VCC = 12V BIAS CUR 05 ARVVRL S==- 21=0M 12V INPU -10 AVVR S=- 2=0 0V IRS+ NPUT -5 IRS+ RL = 1M I -15 -10 0 50 100 150 200 250 0 50 100 150 200 250 DIFFERENTIAL VOLTAGE RS+ TO RS- (mV) DIFFERENTIAL VOLTAGE RS+ TO RS- (mV) FIGURE 69. LOW SIDE CURRENT SENSING INPUT BIAS CURRENTS FIGURE 70. HIGH SIDE CURRENT SENSING INPUT BIAS CURRENTS Test Circuits and Waveforms VCC VR1 VCC ICC R1 + RS+ OUT + RS+ OUT VRS++ VSENSE - RS- VRS++ VSENSE- R2 RS- - GND 1MΩ RL VOUT - GND 1MΩ RL VOUT VR2 FIGURE 71. ICC, VOS, VOA, CMRR, PSRR, GAIN ACCURACY FIGURE 72. INPUT BIAS CURRENT, LEAKAGE CURRENT VCC SIGNAL VCC GENERATOR RS+ OUT VRS+ VRS- RS- GND1MΩ RL VOUT VRS+ VSENSE RRSS+- GND1OMUΩT RL VOUT PULSE GENERATOR FIGURE 73. ts, SATURATION RECOVERY TIME FIGURE 74. GAIN vs FREQUENCY VCC RS+ OUT VRS+ RS- GND 1MΩ RL VOUT PULSE GENERATOR FIGURE 75. SLEW RATE FN6548 Rev 6.00 Page 18 of 26 November 22, 2013

ISL28006 Applications Information gain resistors to set the gain of the output. For the fixed gain amps the only external component needed is a current sense Functional Description resistor (typically 0.001Ω to 0.01Ω, 1W to 2W). The ISL28006-20, ISL28006-50 and ISL28006-100 are single The transfer function for the fixed gain parts is given in supply, uni-directional current sense amplifiers with fixed gains Equation1. of 20V/V, 50V/V and 100V/V respectively. The ISL28006-ADJ is V = GAINI R +V  (EQ. 1) OUT S S OS single supply, uni-directional current sense amplifier with an adjustable gain via external resistors (see Figure 80). The The transfer function for the adjustable gain part is given in ISL28006-ADJ is stable for gains of 20 and higher. Equation 2. Tcihrecu IiStrLy2 f8o0r 0h6ig ihs- sai d2e- sctuargree natm sepnlisfiee ra. pFpigliucraet i7o6n ss whohwerse t hthee a scetnivsee V = 1+-R----F--I R +V  (EQ. 2) voltage is between 1.35V to 28V. Figure77 shows the active OUT  RG S S OS circuitry for ground sense applications where the sense voltage is Where ISRS is the product of the load current and the sense between 0V to 1.35V. resistor and is equal to VSENSE. The first stage is a bi-level trans-conductance amp and level When the sensed input voltage is >1.35V, the gmHI amplifier translator. The gm stage converts the low voltage drop (VSENSE) path is selected and the input gm stage derives its ~2.86µA sensed across an external milli-ohm sense resistor, to a current supply current from the input source through the RS+ terminal. (@ gm = 21.3µA/V). The trans-conductance amplifier forces a When the sense voltage at RS+ drops below the 1.35V threshold, current through R1 resulting to a voltage drop across R1 that is the gmLO amplifier is enabled for Low Side current sensing. The equal to the sense voltage (VSENSE). The current through R1 is gmLO input bias current reverses, flowing out of the RS- pin. mirrored across R5 creating a ground-referenced voltage at the Since the gmLO amplifier is sensing voltage around ground, it input of the second amplifier equal to VSENSE. cannot source current to R5. A current mirror referenced off Vcc supplies the current to the second stage for generating a ground The second stage is responsible for the overall gain and referenced output voltage. See Figures 69 and 70 for typical frequency response performance of the device. The fixed gains input bias currents for High and Low side current sensing. (20, 50, 100) are set with internal resistors Rf and Rg. The variable gain (ADJ) has an additional FB pin and uses external VCC OPTIONAL I = 2.86µA FILTER CAPACITOR VSENSE IS RS+ HIGH-SIDE + R1 SENSING RS VSENSE gmHI VRS+ = 2V TO 28V - VCC = 2V to 28V RS- R2 + OPTIONAL OUT TRANSIENT 1.35V - Rf PROTECTION IMIRROR R3 gmLO ‘VSENSE R5 Rg LOAD R4 GND FIGURE 76. HIGH-SIDE CURRENT DETECTION FN6548 Rev 6.00 Page 19 of 26 November 22, 2013

ISL28006 VCC = 2V TO 28V VCC OPTIONAL I = 2.86µA FILTER CAPACITOR VSENSE IS RS+ LOW-SIDE + R1 SENSING RS VSENSE gmHI VRS+= 0V TO 28V - RS- R2 + LOAD OPTIONAL OUT TPRRAONTESICETNIOTN 1.35V VCC IMIRROR - Rf R3 gmLO R5 Rg VSENSE R4 GND FIGURE 77. LOW-SIDE CURRENT DETECTION FN6548 Rev 6.00 Page 20 of 26 November 22, 2013

ISL28006 Hysteretic Comparator value of 100Ω will provide protection for a 2V transient with the maximum of 20mA flowing through the input while adding only The input trans-conductance amps are under control of a an additional 13µV (worse case over-temperature) of VOS. Refer hysteretic comparator operating from the incoming source to Equation 3: voltage on the RS+ pin (Figure 78). The comparator monitors the voltage on RS+ and switches the sense amplifier from the RPIRS-=100130nA=13V (EQ. 3) low-side gm amp to the high-side gm amplifier whenever the input voltage at RS+ increases above the 1.35V threshold. Switching applications can generate voltage spikes that can Conversely, a decreasing voltage on the RS+ pin, causes the overdrive the amplifier input and drive the output of the amplifier hysteric comparator to switch from the high-side gm amp to the into the rails, resulting in a long overload recover time. low-side gm amp as the voltage decreases below 1.35V. It is that Capacitors CM and CD filter the common mode and differential low-side sense gm amplifier that gives the ISL28006 the voltage spikes. proprietary ability to sense current all the way to 0V. Negative Error Sources voltages on the RS+ or RS- are beyond the sensing voltage range of this amplifier. There are 3 dominant error sources: gain error, input offset voltage error and Kelvin voltage error (see Figure79). The gain 0.5 error is dominated by the internal resistance matching 0.4 tolerances. The remaining errors appear as sense voltage errors 0.3 at the input to the amplifier. They are VOS of the amplifier and %) 0.2 Kelvin voltage errors. If the transient protection resistor is added, CY ( 0.1 an additional VOS error can result from the IxR voltage due to RA 0 input bias current. The limiting resistor should only be added to U -0.1 C the RS- input, due to the high-side gm amplifier (gmHI) sinking C -0.2 A several micro amps of current through the RS+ pin. -0.3 -0.4 Layout Guidelines -0.5 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 The Kelvin Connected Sense Resistor VRS+ (V) FIGURE 78. GAIN ACCURACY vs VRS+ = 0V TO 2V The source of Kelvin voltage errors is illustrated in Figure79. The resistance of 1/2 Oz copper is ~1mΩ per square with a TC of Typical Application Circuit ~3900ppm/°C (0.39%/°C). When you compare this unwanted parasitic resistance with the total 1mΩ to 10mΩ resistance of Figure 80 shows the basic application circuit and optional the sense resistor, it is easy to see why the sense connection protection components for switched-load applications. For must be chosen very carefully. For example, consider a applications where the load and the power source is permanently maximum current of 20A through a 0.005Ωsense resistor, connected, only an external sense resistor is needed. For generating a VSENSE = 0.1 and a full scale output voltage of 10V applications where fast transients are caused by hot plugging the (G=100). Two side contacts of only 0.25 square per contact puts source or load, external protection components may be needed. the VSENSE input about 0.5x 1mΩ away from the resistor end The external current limiting resistor (RP) in Figure 80 may be capacitor. If only 10A the 20A total current flows through the required to limit the peak current through the internal ESD kelvin path to the resistor, you get an error voltage of 10mV diodes to <20mA. This condition can occur in applications that (10Ax0.5sq x 0.001Ω/sq. = 10mV) added to the 100mV sense experience high levels of in-rush current causing high peak voltage for a sense voltage error of 10% (0.110V-0.1)/0.1V)x100. voltages that can damage the internal ESD diodes. An RP resistor CUCCRuuRrrErreeNnnTtt SSSEeeNnnssSeeE RRReeEssSiissISttooTOrrR CCooppppeerr TTrraaccee 1/2 Oz COPPER TRACE 1m11Ω ttoo T O1100 1mm0OOmΩ 33001mmmOOΩ// SS/SqqQ.. NONNNoo-nnU--NuunnIFiiffOooRrrmmM CUCCRuuRrrrrEeeNnnTtt FFFllLooOwwW CURCCRuuErrNrreeTnn Ott UOOTuu tt CCCUuuRrrRrreeEnnNttT II nnIN PPPCCC BBBOooAaaRrrddD KKKEeeLllvvViiInnN VV VSCC CooOnnNttaaTccAttCssTS SS FIGURE 79. PC BOARD CURRENT SENSE KELVIN CONNECTION FN6548 Rev 6.00 Page 21 of 26 November 22, 2013

ISL28006 2.7VDC TO 28VDC VCC I = 2.86µA RS+ FIXED GAIN (1mΩ OPTION RS TO CD gmHI ONLY 0.1Ω) RS- CM + RP OUT + 0.1VDC 1.35V - ADJ - 28 TVOD C FB OONPTLYION gmLO LOAD GND FIGURE 80. TYPICAL APPLICATION CIRCUIT Overall Accuracy (V %) where: OA VOA is defined as the total output accuracy Referred-to-Output • PDMAXTOTAL is the sum of the maximum power dissipation of (RTO). The output accuracy contains all offset and gain errors, at each amplifier in the package (PDMAX) a single output voltage. Equation 4 is used to calculate the % • PDMAX for each amplifier can be calculated using Equation 7: total output accuracy. V V = 100V----O----U---T---a----c---t---u---a----l---–-----V---O----U---T----e---x---p---e----c---t---e---d--- (EQ. 4) PDMAX = VSIqMAX+VS - VOUTMAX----O----U--R-T---M-----A---X-- (EQ. 7) OA  VOUTexpected  L where: where • TMAX = Maximum ambient temperature VOUT Actual = VSENSE x GAIN Example: Gain = 100, For 100mV VSENSE input we measure •JA = Thermal resistance of the package 10.1V. The overall accuracy (VOA) is 1% as shown in Equation 5. • PDMAX = Maximum power dissipation of 1 amplifier V = 100-1---0----.-1-----–-----1---0--- = 1% (EQ. 5) • VCC = Total supply voltage OA  10  • IqMAX = Maximum quiescent supply current of 1 amplifier Power Dissipation • VOUTMAX = Maximum output voltage swing of the application It is possible to exceed the +150°C maximum junction • RL = Load resistance temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 6: T = T + xPD (EQ. 6) JMAX MAX JA MAXTOTAL FN6548 Rev 6.00 Page 22 of 26 November 22, 2013

ISL28006 Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. DATE REVISION CHANGE November 22, 2013 FN6548.6 Added eight new Typical Performance Curves 1. Av=100 Capacitive Load Drive Gain vs Freq 2. Av=100 Capacitive Load Drive Phase vs Freq 3. Av=50 Capacitive Load Drive Gain vs Freq 4. Av=50 Capacitive Load Drive Phase vs Freq 5. Av=20 Capacitive Load Drive Gain vs Freq 6. Av=20 Capacitive Load Drive Phase vs Freq 7. High Side Operation Input Bias Currents 8. Low Side Operation Input Bias Currents Under Electrical Specifications Table: Changed parameter from Is to Icc to clarify supply current Ordering information table on page3: Changed Note 4 location in the table. April 12, 2011 FN6548.5 Converted to new template Page 1 - Changed headings for “Typical Application” and “Gain Accuracy vs VRS+ = 0V to 28V” to Figure titles (Figures 1 and 2). Page 1 - Updated Intersil Trademark statement at bottom of page 1 per directive from Legal. Page 7 - Updated over temp note in Min Max column of spec tables from "Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested." to new standard "Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design." Page 19 - Figure 69, Low side current detection schematic: Moved the LOAD from the ground side of the power side circuit to the high side. September 2, 2010 FN6548.4 Added -T7A tape and reel options to Ordering Information Table for all packages. May 12, 2010 FN6548.3 Added Note 4 to Part Marking Column in “Ordering Information” on page3. Corrected hyperlinks in Notes 1 and 3 in “Ordering Information” on page3. April 8, 2010 Removed “Coming Soon” from evaluation boards in “Ordering Information” on page3. April 7, 2010 Added “Related Literature” on page1 Updated Package Drawing Number in the “Ordering Information” on page3 for the 20V, 50V and 100V options from MDP0038 to P50.64A. Revised package outline drawing from MDP0038 to P5.064A on page24. MDP0038 package contained 2 packages for both the 5 and 6 Ld SOT-23. MDP0038 was obsoleted and the packages were separated and made into 2 separate package outline drawings; P5.064A and P6.064A. Changes to the 5 Ld SOT-23 were to move dimensions from table onto drawing, add land pattern and add JEDEC reference number. March 10, 2010 FN6548.2 Releasing adjustable gain option. Added adjustable block diagram (Page 2), Added adjustable gain limits to electrical spec table, added Figures 47 through 60, Added +85°C curves to Figures 6 thru 14, 20 thru 28, 34 thru 42, and Figures 48 thru 56. Modified Figure 70. February 4, 2010 FN6548.1 -Page 1: Edited last sentence of paragraph 2. Moved order of GAIN listings from 20, 50, 100 to 100, 50, 20 in the 3rd paragraph. Under Features ....removed "Low Input Offset Voltage 250µV, max" Under Features .... moved order of parts listing from 20, 50, 100 (from top to bottom) to 100, 50, 20. -Page 3: Removed coming soon on ISL28006FH50Z and ISL28006FH20Z and changes the order or listing them to 100, 50, 20. -Page 5: VOA test. Under conditions column ...deleted 20mV to. It now reads ... Vsense = 100mV SR test. Under conditions column ..deleted what was there. It now reads ... Pulse on RS+pin, See Figure 51 -Page 6: ts test. Removed Gain = 100 and Gain = 100V/V in both description and conditions columns respectively. -Page 9: Added VRS+= 12V to Figures 16, 17, 18. -Page 11: Added VRS+= 12V to Figures 30, 31, 32. -Page 13 & 14: Added VRS+= 12V to Figures 44, 45, 46. -Page 14 Added Figure 51 and adjusted figure numbers to account for the added figure. -Figs 8, 26, and 40 change "HIGH SIDE" to "VRS = 12V", where RS is subscript. -Figs 9, 27, and 41 change "LOW SIDE" to "VRS = 0.1V", where RS is subscript. December 14, 2009 FN6548.0 Initial Release FN6548 Rev 6.00 Page 23 of 26 November 22, 2013

ISL28006 About Intersil Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at http://www.intersil.com/en/support/qualandreliability.html#reliability © Copyright Intersil Americas LLC 2009-2013. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6548 Rev 6.00 Page 24 of 26 November 22, 2013

ISL28006 Package Outline Drawing P5.064A 5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 0, 2/10 1.90 0-3° D A 0.08-0.20 5 4 PIN 1 INDEX AREA 2.80 3 1.60 3 5 0.15 CD 2x 2 0.20 C (0.60) 2x 0.95 SEE DETAIL X B 0.40 ±0.05 3 END VIEW 0.20M C A-B D TOP VIEW 10° TYP (2 PLCS) 5 0.15 C A-B H 2.90 2x 1.45 MAX C 1.14 ±0.15 (0.25)GAUGE 0.10 C SEATING PLANE PLANE 0.45±0.1 4 SIDE VIEW 0.05-0.15 DETAIL "X" (0.60) (1.20) NOTES: 1. Dimensions are in millimeters. (2.40) Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to ASME Y14.5M-1994. 3. Dimension is exclusive of mold flash, protrusions or gate burrs. 4. Foot length is measured at reference to guage plane. 5. This dimension is measured at Datum “H”. 6. Package conforms to JEDEC MO-178AA. (0.95) (1.90) TYPICAL RECOMMENDED LAND PATTERN FN6548 Rev 6.00 Page 25 of 26 November 22, 2013

ISL28006 Package Outline Drawing P6.064 6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 4, 2/10 1.90 0-8° 0.95 0.08-0.22 D A 6 5 4 1.60 +0.15/-0.10 2.80 3 3 PIN 1 (0.60) INDEX AREA 1 2 3 0.20 C 2x B 0.40 ±0.10 3 SEE DETAIL X 0.20 M C A-B D END VIEW TOP VIEW 10° TYP (2 PLCS) 3 2.90 ±0.10 (0.25) 1.45 MAX 1.15 +0.15/-0.25 C GAUGE PLANE 0.10 C SEATING PLANE 0.00-0.15 0.45±0.1 4 SIDE VIEW DETAIL "X" (0.95) (0.60) (1.20) NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. (2.40) 2. Dimensioning and tolerancing conform to ASME Y14.5M-1994. 3. Dimension is exclusive of mold flash, protrusions or gate burrs. 4. Foot length is measured at reference to guage plane. 5. Package conforms to JEDEC MO-178AB. TYPICAL RECOMMENDED LAND PATTERN FN6548 Rev 6.00 Page 26 of 26 November 22, 2013

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: R enesas Electronics: ISL28006FH100Z-T7 ISL28006FH100Z-T7A ISL28006FH20Z-T7 ISL28006FH20Z-T7A ISL28006FH50Z-T7 ISL28006FH50Z-T7A ISL28006FHADJZ-T7 ISL28006FHADJZ-T7A