图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IS31AP4913-QFLS2-TR
  • 制造商: ISSI
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IS31AP4913-QFLS2-TR产品简介:

ICGOO电子元器件商城为您提供IS31AP4913-QFLS2-TR由ISSI设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IS31AP4913-QFLS2-TR价格参考。ISSIIS31AP4913-QFLS2-TR封装/规格:线性 - 音頻放大器, Amplifier IC Headphones, 2-Channel (Stereo) Class AB 20-QFN (3x3)。您可以下载IS31AP4913-QFLS2-TR参考资料、Datasheet数据手册功能说明书,资料中有IS31AP4913-QFLS2-TR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC HEADPHONE AMP STEREO 20QFN

产品分类

线性 - 音頻放大器

品牌

ISSI, Integrated Silicon Solution Inc

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet

产品图片

产品型号

IS31AP4913-QFLS2-TR

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

不同负载时的最大输出功率x通道数

30mW x 2 @ 32 欧姆

供应商器件封装

20-QFN(3x3)

其它名称

706-1163-2
IS31AP4913QFLS2TR

包装

带卷 (TR)

安装类型

表面贴装

封装/外壳

20-WFQFN 裸露焊盘

工作温度

-40°C ~ 85°C (TA)

标准包装

2,500

特性

3D,低音提升,无噪音,热保护,关断

电压-电源

2.7 V ~ 5.5 V

类型

AB 类

输出类型

耳机,2-通道(立体声)

推荐商品

型号:TPA3121D2PWP

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MAX97220EETE+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:TDA2003AH

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:STA540SAN

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:TPA6112A2DGQRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:PAM8302AASCR

品牌:Diodes Incorporated

产品名称:集成电路(IC)

获取报价

型号:TDF8599BTH/N1,518

品牌:NXP USA Inc.

产品名称:集成电路(IC)

获取报价

型号:MAX9718BETB+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
IS31AP4913-QFLS2-TR 相关产品

TPA0213DGQ

品牌:Texas Instruments

价格:¥11.46-¥23.37

NJM2070D

品牌:NJR Corporation/NJRC

价格:

TDA7269

品牌:STMicroelectronics

价格:¥询价-¥询价

TDA8561Q/N3S,112

品牌:NXP USA Inc.

价格:

LM4915LQX/NOPB

品牌:Texas Instruments

价格:¥6.19-¥13.94

TPA0102PWPRG4

品牌:Texas Instruments

价格:

TPA3106D1VFPG4

品牌:Texas Instruments

价格:

MAX9724CETC+

品牌:Maxim Integrated

价格:

PDF Datasheet 数据手册内容提取

IS31AP4913 3D AND BASS ENHANCEMENT STEREO HEADPHONE DRIVER December 2013 GENERAL DESCRIPTION FEATURES The IS31AP4913 is a stereo headphone driver  No output DC-blocking capacitors designed to allow the removal of the output  Bass enhancement DC-blocking capacitors for reduced component count  3D enhancement and cost. The IS31AP4913 is ideal for small portable  Low output noise (8µV) electronics where size and cost are in concerns.  High SNR (102dB) The IS31AP4913 also features 3D and bass  -92dB PSRR enhancement which can be externally adjusted by a simple RC network.  Pulse Count Control serial interface IS31AP4913 is available in QFN-20 (3mm × 3mm)  Thermal protection circuit packages. It operates from 2.7V to 5.5V over the  Integrated click-and-pop suppression circuitry temperature range of -40°C to +85°C.  QFN-20 (3mm × 3mm) package APPLICATIONS  Cellular handsets and PDAs  Notebook PC  MP3  Portable gaming TYPICAL APPLICATION CIRCUIT Figure 1 Typical Application Circuit Note: The SGND and PGND pins of the IS31AP4913 must be routed separately back to the decoupling capacitor in order to provide proper device operation. If the SGND and PGND pins are connected directly to each other, the part will function without the risk of failure, but the noise and THD performance do not meet the specifications. Integrated Silicon Solution, Inc. – www.issi.com 1 Rev. C, 12/25/2013

IS31AP4913 PIN CONFIGURATION Package Pin Configuration (Top View) INFR 1 15 OUTL INR 2 14 OUTR QFN-20 3DR 3 13 VREF 3DL 4 12 VCC INL 5 11 CTRL PIN DESCRIPTION No. Pin Description 1 INFR Right channel feedback loop in. 2 INR Right channel audio input. 3 3DR 3D control input. 4 3DL 3D control input. 5 INL Left channel audio input. 6 BASSL Left channel bass control out. 7 INFL Left channel feedback loop in. 8, 9 NC No connection. 10 SGND Signal Ground. 11 CTRL Shutdown and 3D/Bass enable control terminal. 12 VCC Supply voltage. Internal produced supply voltage for charge pump and 13 VREF audio power amplifier. 14 OUTR Right channel audio output. 15 OUTL Left channel audio output. 16 CP Charge pump flying capacitor positive terminal. 17 PGND Power ground. 18 VSS Output from charge pump. 19 CN Charge pump flying capacitor negative terminal. 20 BASSR Right channel bass control out. Thermal Pad Connect to GND. Integrated Silicon Solution, Inc. – www.issi.com 2 Rev. C, 12/25/2013

IS31AP4913 ORDERING INFORMATION Industrial Range: -40°C to +85°C Order Part No. Package QTY/Reel IS31AP4913-QFLS2-TR QFN-20, Lead-free 2500 Copyright © 2013 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any  time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are  advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.  Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the  product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not  authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:  a.) the risk of injury or damage has been minimized;  b.) the user assume all such risks; and  c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances Integrated Silicon Solution, Inc. – www.issi.com 3 Rev. C, 12/25/2013

IS31AP4913 ABSOLUTE MAXIMUM RATINGS Supply voltage, V -0.3V ~ +6.0V CC Voltage at any input pin -0.3V ~ V +0.3V CC Maximum junction temperature, T 150°C JMAX Storage temperature range, T -65°C ~ +150°C STG Operating temperature range, T −40°C ~ +85°C A ESD (HBM) 5kV ESD (CDM) 1kV Note: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS V = 2.7V ~ 5.5V, T = 25°C, unless otherwise noted. Typical value is T = 25°C, V = 3.6V. CC A A CC Symbol Parameter Condition Min. Typ. Max. Unit V Supply voltage 2.7 5.5 V CC I Quiescent current No load 3 5.5 mA CC I Shutdown current V = 0V 1 µA SD SDB f Operating frequency 250 kHz OSC |V | Output offset voltage V = 0V 1 mV OS IN V High-level input voltage 1.4 V IH V Low-level input voltage 0.4 V IL ELECTRICAL CHARACTERISTICS (Note 1) T = 25°C, V = 3.6V, unless otherwise noted. A CC Symbol Parameter Condition Min. Typ. Max. Unit P Output power THD+N = 1%, R = 32Ω, f = 1kHz 30 mW O L Total harmonic distortion THD+N P = 20mW, R = 32Ω, f = 1kHz 0.05 % plus noise O L Wake-up time from t 39 ms WU shutdown V = 200mV, R = 32Ω, f = 217Hz -92 dB P-P L PSRR Power supply rejection ratio V = 200mV, R = 32Ω, f = 1kHz -90 dB P-P L V Output voltage noise 8 µV NO SNR Signal-to-noise ratio P = 30mW, THD+N = 1% 102 dB O t Mode control low time 1 10 μs LO t Mode control high time 1 10 μs HI t CTRL off time for shutdown 200 μs OFF Note 1: Guaranteed by design. Integrated Silicon Solution, Inc. – www.issi.com 4 Rev. C, 12/25/2013

IS31AP4913 TYPICAL PERFORMANCE CHARACTERISTIC 20 20 10 VCC= 3.0V 10 VCC= 3.6V RL= 32Ω RL= 32Ω 5 5 2 2 ) ) % % 1 1 ( ( N N + 0.5 + 0.5 D D H f = 10kHz H f = 10kHz T 0.2 T 0.2 0.1 0.1 0.05 0.05 f = 1kHz f = 1kHz 0.02 0.02 f = 20Hz f = 20Hz 0.01 0.01 1m 2m 5m 10m 20m 50m 100m 1m 2m 5m 10m 20m 50m 100m Output Power(W) Output Power(W) Figure 2 THD+N vs. Output Power Figure 3 THD+N vs. Output Power 20 1 10 VCC= 4.2V VCC= 3.0V~4.2V RL= 32Ω 0.5 RL= 32Ω 5 PO= 20mW 2 %) %) 0.2 N( 1 N( D+ 0.5 D+ 0.1 H f = 10kHz H T 0.2 T 0.05 0.1 0.05 f = 1kHz 0.02 0.02 f = 20Hz 0.01 0.01 1m 2m 5m 10m 20m 50m 100m 20 50 100 200 500 1k 2k 5k 10k 20k Output Power(W) Frequency(Hz) Figure 4 THD+N vs. Output Power Figure 5 THD+N vs. Frequency 20u +0 VCC= 3.6V, 4.2V VCC = 3.6V, 4.2V RL= 32Ω -20 RL= 32Ω Input Grounded 10u ) V e( 7u -40 g a ) olt 5u dB V ( -60 ut RR p S Out 3u P -80 2u -100 1u -120 20 50 100 200 500 1k 2k 5k 10k 20k 20 50 100 200 500 1k 2k 5k 10k 20k Frequency(Hz) Frequency(Hz) Figure 6 Noise Figure 7 PSRR vs. Frequency Integrated Silicon Solution, Inc. – www.issi.com 5 Rev. C, 12/25/2013

IS31AP4913 +10 +8 +6 ) B +4 d ( n Gai +2 0 -2 VCC= 3.6V RL= 32Ω Bass Enable -4 20 50 100 200 500 1k 2k 5k 10k 20k Frequency(Hz) Figure 8 Gain vs. Frequency (Bass Enable Mode) Integrated Silicon Solution, Inc. – www.issi.com 6 Rev. C, 12/25/2013

IS31AP4913 FUNCTIONAL BLOCK DIAGRAM VCC Bass&3D Control INR OUTR Channel Contrl INL OUTL POR Charge Pump CTRL Sequence VREF BG&Bias SGND Thermal PGND Integrated Silicon Solution, Inc. – www.issi.com 7 Rev. C, 12/25/2013

IS31AP4913 APPLICATION INFORMATION GENERAL DESCRIPTION GAIN SETTING The IS31AP4913 is a high quality stereo headphone The input resistors (R ) and feedback resistors (R ) IN F driver with 3D and bass enhancement. set the gain of the amplifier according to Equation (1). OPERATING MODE R V  Gain  F   (1) The operating mode is controlled by Pulse Count R V  IN Control (PCC wire) serial interface. The interface records rising edges of the CTRL pin and decodes The R is given by Equation (2) below: F them into 4 operating mode (Figure 9).   R  R R If the CTRL pin is pulled to high, receiving one rising R  F1 F2 F3 (2) F R  R  R edge, the IC starts up and operates in Mode 1. If the F1 F2 F3 CTRL pin receives two rising edges, the IC operates in For example, in Figure 1: Mode 2. If the CTRL pin receives three rising edges, R = 20kΩ, R = 20kΩ, R = 120kΩ, R = 30kΩ, the IC operates in Mode 3. If the CTRL pin receives F1 F2 F3 IN   four rising edges, the IC operates in Mode 4. 20 20 120 therefore,R   30k Mode 1—IC starts up, basic operating mode. F 20 20120 Mode 2—IC starts up, enable 3D enhance function. 30 V  Gain  1   Mode 3—IC starts up, enable bass enhance function. 30 V  Mode 4—IC starts up, enable 3D and bass enhance Resistor matching is very important in fully differential function. amplifiers. The balance of the output on the reference voltage depends on matched ratios of the resistors. If the CTRL pin is pulled to low last at least 200µs, the CMRR, PSRR, and cancellation of the second IC will be into shutdown mode. harmonic distortion diminish if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better to keep the performance optimized. Matching is more important than overall tolerance. Resistor arrays with 1% matching can be used with a tolerance greater than 1%. Place the input resistors very close to the IS31AP4913 to limit noise injection on the high-impedance nodes. BASS AUDIO ENHANCEMENT EFFECT When the bass enhancement is enabled, the low frequency input signal will be amplified (Figure 8). The cutoff frequency is f . The signal below f will be B B enhanced. f is given by Equation (3): B 1 f  (3) B 2R  R C Figure 9 Operating Mode Selected F1 F2 B For example, in Figure 1: CHARGE PUMP CONVERTER R = 20kΩ, R = 20kΩ, C = 22nF, F1 F2 B 1 IS31AP4913 integrates a charge pump converter to so, f  181Hz change input supply voltage (VCC) into a negative B 220k  20k22nF voltage providing a 0V reference for the output. The capacitors should have a tolerance of ±10% or The charge pump converter only needs three external better, because any mismatch in capacitance causes components: supply decoupling capacitor, output an impedance mismatch at the startup frequency and bypass capacitor and flying capacitor. below. Choose low ESR capacitors to ensure the best operating performance and place the capacitors as close as possible to the IS31AP4913. Integrated Silicon Solution, Inc. – www.issi.com 8 Rev. C, 12/25/2013

IS31AP4913 3D AUDIO ENHANCEMENT EFFECT DESIGN NOTE The 3D audio enhancement effect can be adjusted by COMPONENT SELECTION the resistor, R . Decreasing the resistor size will make 3D The value and ESR of the output capacitor for charge the 3D effect more pronounced and decreasing the pump will affect output ripple and transient capacitor size will raise the cutoff frequency for the performance. A X7R or X5R ceramic capacitor in 2.2μF effect. is recommended. The flying capacitor should be a The cutoff frequency, f , is determined by Equation 2.2µF X7R or X5R ceramic capacitor. 3D (4): All capacitors should support at least 10V. 1 PCB LAYOUT f  (4) 3D 2R C 3D 3D The decoupling capacitors should be placed close to For example, in Figure 1: the VCC pin and the output capacitors should be placed close to the VSS pin. The flying capacitor R = 4.7kΩ, C = 47nF, 3D 3D should be placed close to the CN and CP pins. The 1 input capacitors and input resistors should be placed so, f   721Hz 3D 24.7k47nF close to the INR and INL pins and the traces must be parallel to prevent noise. The traces of OUTR and Setting f below 1kHz is recommended to get better 3D OUTL pins connected to the headphone should be as 3D enhancement. short and wide as possible. The recommended width is INPUT CAPACITOR (C ) 0.5mm. IN The input capacitors and input resistors form a high Trace width should be at least 0.75mm for the power pass filter with the corner frequency, f , determined in supply and the ground plane. The thermal pad and the C Equation (5). PGND pin should connect directly to a strong common ground plane for heat sinking. 1 f  (5) The SGND and PGND pins of the IS31AP4913 must c 2R C IN IN be routed separately back to the decoupling capacitor For example, in Figure 1: in order to provide proper device operation. If the R = 30kΩ, C = 0.47µF, SGND and PGND pins are connected directly to each IN IN other, the part functions without risk of failure, but the 1 noise and THD performance will not meet the therefore, f  11Hz c 230k0.47F specifications. The value of the input capacitor is important to consider as it directly affects the bass (low frequency) performance of the circuit. The capacitors should have a tolerance of ±10% or better, because any mismatch in capacitance causes an impedance mismatch at the corner frequency and below. Integrated Silicon Solution, Inc. – www.issi.com 9 Rev. C, 12/25/2013

IS31AP4913 CLASSIFICATION REFLOW PROFILES Profile Feature Pb-Free Assembly Preheat & Soak 150°C Temperature min (Tsmin) 200°C Temperature max (Tsmax) 60-120 seconds Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to Tp) 3°C/second max. Liquidous temperature (TL) 217°C Time at liquidous (tL) 60-150 seconds Peak package body temperature (Tp)* Max 260°C Time (tp)** within 5°C of the specified Max 30 seconds classification temperature (Tc) Average ramp-down rate (Tp to Tsmax) 6°C/second max. Time 25°C to peak temperature 8 minutes max. Figure 10 Classification Profile Integrated Silicon Solution, Inc. – www.issi.com 10 Rev. C, 12/25/2013

IS31AP4913 PACKAGING INFORMATION QFN-20 Note: All dimensions in millimeters unless otherwise stated. Integrated Silicon Solution, Inc. – www.issi.com 11 Rev. C, 12/25/2013