ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRLR3915TRPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRLR3915TRPBF产品简介:
ICGOO电子元器件商城为您提供IRLR3915TRPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRLR3915TRPBF价格参考。International RectifierIRLR3915TRPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 55V 30A(Tc) 120W(Tc) D-Pak。您可以下载IRLR3915TRPBF参考资料、Datasheet数据手册功能说明书,资料中有IRLR3915TRPBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N-CH 55V 30A DPAKMOSFET MOSFT 55V 61A 14mOhm 61nC Log Lvl |
产品分类 | FET - 单分离式半导体 |
FET功能 | 逻辑电平门 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 61 A |
Id-连续漏极电流 | 61 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRLR3915TRPBFHEXFET® |
数据手册 | |
产品型号 | IRLR3915TRPBF |
Pd-PowerDissipation | 120 W |
Pd-功率耗散 | 120 W |
Qg-GateCharge | 92 nC |
Qg-栅极电荷 | 92 nC |
RdsOn-Drain-SourceResistance | 14 mOhms |
RdsOn-漏源导通电阻 | 14 mOhms |
Vds-Drain-SourceBreakdownVoltage | 55 V |
Vds-漏源极击穿电压 | 55 V |
Vgsth-Gate-SourceThresholdVoltage | 3 V |
Vgsth-栅源极阈值电压 | 3 V |
上升时间 | 51 ns |
下降时间 | 100 ns |
不同Id时的Vgs(th)(最大值) | 3V @ 250µA |
不同Vds时的输入电容(Ciss) | 1870pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 92nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 14 毫欧 @ 30A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品种类 | MOSFET |
供应商器件封装 | D-Pak |
其它名称 | IRLR3915TRPBFDKR |
功率-最大值 | 120W |
功率耗散 | 120 W |
包装 | Digi-Reel® |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
导通电阻 | 14 mOhms |
封装 | Reel |
封装/外壳 | TO-252-3,DPak(2 引线+接片),SC-63 |
封装/箱体 | DPAK-2 |
工厂包装数量 | 2000 |
晶体管极性 | N-Channel |
最大工作温度 | + 175 C |
栅极电荷Qg | 92 nC |
标准包装 | 1 |
正向跨导-最小值 | 42 S |
汲极/源极击穿电压 | 55 V |
漏极连续电流 | 61 A |
漏源极电压(Vdss) | 55V |
电流-连续漏极(Id)(25°C时) | 30A (Tc) |
配置 | Single |
AUTOMOTIVE GRADE AUIRFR3504 Features HEXFET® Power MOSFET Advanced Planar Technology Low On-Resistance V 40V DSS 175°C Operating Temperature R typ. 7.8m Fast Switching DS(on) Fully Avalanche Rated max. 9.2m Repetitive Avalanche Allowed up to Tjmax I 87A D (Silicon Limited) Lead-Free, RoHS Compliant I 56A D (Package Limited) Automotive Qualified * D Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest S G processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and D-Pak ruggedized device design that HEXFET power MOSFETs are well AUIRFR3504 known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other G D S applications. Gate Drain Source Standard Pack Base part number Package Type Orderable Part Number Form Quantity Tube 75 AUIRFR3504 AUIRFR3504 D-Pak Tape and Reel Left 3000 AUIRFR3504TRL Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. Symbol Parameter Max. Units I @ T = 25°C Continuous Drain Current, V @ 10V (Silicon Limited) 87 D C GS I @ T = 100°C Continuous Drain Current, V @ 10V (Silicon Limited) 61 D C GS A I @ T = 25°C Continuous Drain Current, V @ 10V (Package Limited) 56 D C GS I Pulsed Drain Current 350 DM P @T = 25°C Maximum Power Dissipation 140 W D C Linear Derating Factor 0.92 W/°C V Gate-to-Source Voltage ± 20 V GS E Single Pulse Avalanche Energy (Thermally Limited) 240 AS mJ E (Tested) Single Pulse Avalanche Energy Tested Value 480 AS I Avalanche Current See Fig.15,16, 12a, 12b A AR E Repetitive Avalanche Energy mJ AR T Operating Junction and -55 to + 175 J T Storage Temperature Range °C STG Soldering Temperature, for 10 seconds (1.6mm from case) 300 Thermal Resistance Symbol Parameter Typ. Max. Units R Junction-to-Case ––– 1.09 JC R Junction-to-Ambient ( PCB Mount) ––– 50 °C/W JA R Junction-to-Ambient ––– 110 JA HEXFET® is a registered trademark of Infineon. *Qualification standards can be found at www.infineon.com 1 2015-11-23
AUIRFR3504 Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V Drain-to-Source Breakdown Voltage 40 ––– ––– V V = 0V, I = 250µA (BR)DSS GS D V /T Breakdown Voltage Temp. Coefficient ––– 0.041 ––– V/°C Reference to 25°C, I = 1mA (BR)DSS J D R Static Drain-to-Source On-Resistance ––– 7.8 9.2 mV = 10V, I = 30A ** DS(on) GS D V Gate Threshold Voltage 2.0 ––– 4.0 V V = V , I = 250µA GS(th) DS GS D gfs Forward Trans conductance 40 ––– ––– S V = 10V, I = 30A ** DS D ––– ––– 20 V = 40V, V = 0V I Drain-to-Source Leakage Current µA DS GS DSS ––– ––– 250 V = 40V,V = 0V,T =125°C DS GS J Gate-to-Source Forward Leakage ––– ––– 200 V = 20V I nA GS GSS Gate-to-Source Reverse Leakage ––– ––– -200 V = -20V GS Dynamic Electrical Characteristics @ T = 25°C (unless otherwise specified) J Q Total Gate Charge ––– 48 71 I = 30A** g D Q Gate-to-Source Charge ––– 12 18 nC V = 32V gs DS Q Gate-to-Drain Charge ––– 13 20 V = 10V gd GS t Turn-On Delay Time ––– 11 ––– V = 20V d(on) DD t Rise Time ––– 53 ––– I = 30A** r ns D t Turn-Off Delay Time ––– 36 ––– R = 6.8 d(off) G t Fall Time ––– 22 ––– V = 10V f GS Between lead, L Internal Drain Inductance ––– 4.5 ––– D 6mm (0.25in.) nH from package L Internal Source Inductance ––– 7.5 ––– S and center of die contact C Input Capacitance ––– 2150 ––– V = 0V iss GS C Output Capacitance ––– 580 ––– V = 25V oss DS C Reverse Transfer Capacitance ––– 46 ––– ƒ = 1.0MHz, See Fig.5 rss pF C Output Capacitance ––– 2830 ––– V = 0V, V = 1.0V ƒ = 1.0MHz oss GS DS C Output Capacitance ––– 510 ––– V = 0V, V = 32V ƒ = 1.0MHz oss GS DS C Effective Output Capacitance ––– 870 ––– V = 0V, V = 0V to 32V oss eff. GS DS Diode Characteristics Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol I ––– ––– 87 S (Body Diode) showing the A Pulsed Source Current integral reverse I ––– ––– 350 SM (Body Diode) p-n junction diode. V Diode Forward Voltage ––– ––– 1.3 V T = 25°C,I = 30A**,V = 0V SD J S GS t Reverse Recovery Time ––– 53 80 ns T = 25°C ,I = 30A**, V = 20V rr J F DD Q Reverse Recovery Charge ––– 86 130 nC di/dt = 100A/µs rr t Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L +L ) on S D Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) Limited byT starting T = 25°C, L = 0.52mH, R = 25, I = 30A, V =10V. Part not recommended for use above this value. Jmax , J G AS GS I 30A, di/dt 170A/µs, V V , T 175°C. SD DD (BR)DSS J Pulse width 1.0ms; duty cycle 2%. C eff. is a fixed capacitance that gives the same charging time as C while V is rising from 0 to 80% V oss oss DS DSS Limited by T , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. Jmax This value determined from sample failure population. 100% tested to this value in production. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 56A. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994 R is measured at T approximately 90°C. J ** All AC and DC test conditions based on former package limited current of 30A. 2 2015-11-23
AUIRFR3504 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V )A 100 7.0V A) 76..00VV n(t eurrC 10 BOTTOM 65544.....05050VVVVV (enrt Cur 100 BOTTOM 5544....5050VVVV e e cru 1 ucr 10 o o S S 4.0V -o o- n-t 0.1 4.0V -tn ia ai Dr rD 1 I, D 0.01 , ID 20µs PULSE WIDTH 20µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.001 0.1 0.1 1 10 100 1000 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 1 Typical Output Characteristics Fig. 2 Typical Output Characteristics 80 1000.00 70 )t n100.00 TJ = 175°C nce S()a 60 TJ = 25°C eurr duct 50 C n ce sco 40 TJ = 175°C Sour 10.00 Tran o- d 30 n-t war iDar 1.00 TJ = 25°C For 20 I, D VDS = 25V G, fs 10 VDS = 25V 20µs PULSE WIDTH 20µs PULSE WIDTH 0 0.10 0 20 40 60 80 100 120 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 V , Gate-to-Source Voltage (V) ID,Drain-to-Source Current (A) GS Fig. 3 Typical Transfer Characteristics Fig. 4 Typical Forward Trans conductance Vs. Drain Current 3 2015-11-23
AUIRFR3504 100000 VGS = 0V, f = 1 MHZ 12 ID= 30A VDS = 32V Ciss = Cgs + Cgd, Cds SHORTED VDS = 20V Crss = Cgd 10 VDS = 8V 10000 Coss = Cds + Cgd V) )Fp ge ( 8 e(c Ciss olta n V aitac1000 Coss ource 6 p S aCC, 100 Crss V , Gate-to-GS 24 10 0 0 10 20 30 40 50 1 10 100 Q G , Total Gate Charge (nC) V , Drain-to-Source Voltage (V) DS Fig 5. Typical Capacitance vs. Fig 6. Typical Gate Charge vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) )A 100 n(t e Current (A) TJ = 175 ° C Currucer 100 100µsec n 10 o ai S Dr o- Reverse TJ = 25 ° C anr-itD 10 1msec I , SD 1 I, D TTcj == 12755°°CC 10msec Single Pulse V G S = 0 V 1 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 10 100 1000 V S D ,Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 7 Typical Source-to-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 2015-11-23
AUIRFR3504 2.5 90 ID= 87A 80 Limited By Package 2.0 70 e c A)n(t 60 esistan d) 1.5 erCu rani 4500 ource On R (Normalize 1.0 Dr,ID 123000 R , Drain-to-SDS(on) 0.5 V GS=10V 0 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 25 50 75 100 125 150 175 T J , Junction Temperature ( ° C) TC , Case Temperature (°C) Fig 9. Maximum Drain Current Vs. Fig 10. Normalized On-Resistance Case Temperature Vs. Temperature 10 Z )thJC ( 1 D = 0.50 e s on 0.20 Resp 0.10 PDM mal 0.1 0.05 t1 Ther 00..0012 (THERSMINAGL LREE PSUPLOSNESE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J=PDM x Z thJC + TC 0.01 0.00001 0.0001 0.001 0.01 0.1 1 t 1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 5 2015-11-23
AUIRFR3504 15V 500 L DRIVER ID VDS TOP 12A 21A 400 BOTTOM 30A RG D.U.T + mJ) - VDD y ( IAS A erg 300 n 20V E e tp 0.01 ch n a al 200 v A Fig 12a. Unclamped Inductive Test Circuit se ul P gle 100 V(BR)DSS Sin tp E , AS 0 25 50 75 100 125 150 175 Starting Tj, Junction Temperature ( ° C) Fig 12c. Maximum Avalanche Energy vs. Drain Current IAS Fig 12b. Unclamped Inductive Waveforms 4.0 Id Vds V) (e 3.5 Vgs ag olt V odl 3.0 h se ID = 250µA Vgs(th) hr te 2.5 at G ) h Qgs1 Qgs2 Qgd Qgodr S(t 2.0 G V Fig 13a. Gate Charge Waveform 1.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 TJ , Temperature ( °C ) Fig 14. Threshold Voltage Vs. Temperature Fig 13b. Gate Charge Test Circuit 6 2015-11-23
AUIRFR3504 10000 Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs )A( nt aavsasulamnicnhge pTujl s=e w2i5d°thC, dutea v to e 100 0.01 rur avalanche losses C e 0.05 h cn 10 0.10 a al v A 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs. Pulse width 250 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse BOTTOM 10% Duty Cycle (For further info, see AN-1005 at www.infineon.com) I = 30A J) 200 D 1. Avalanche failures assumption: m y( Purely a thermal phenomenon and failure occurs at a temperature far in gre excess of Tjmax. This is validated for every part type. En 150 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. he 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. c naal 100 4. PD (ave) = Average power dissipation per single avalanche pulse. v 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase A , R during avalanche). EA 50 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). 0 tav = Average time in avalanche. 25 50 75 100 125 150 175 D = Duty cycle in avalanche = tav ·f Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see Figures 13) P = 1/2 ( 1.3·BV·I ) = T/ Z D (ave) av thJC I = 2T/ [1.3·BV·Z ] av th Fig 16. Maximum Avalanche Energy EAS (AR) = PD (ave)·tav Vs. Temperature 7 2015-11-23
AUIRFR3504 Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 18a. Switching Time Test Circuit Fig 18b. Switching Time Waveforms 8 2015-11-23
AUIRFR3504 D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches)) D-Pak (TO-252AA) Part Marking Information Part Number AUFR3504 Date Code YWWA IR Logo Y= Year WW= Work Week XX XX Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 2015-11-23
AUIRFR3504 D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches)) TR TRR TRL 16.3 ( .641 ) 16.3 ( .641 ) 15.7 ( .619 ) 15.7 ( .619 ) 12.1 ( .476 ) 8.1 ( .318 ) FEED DIRECTION FEED DIRECTION 11.9 ( .469 ) 7.9 ( .312 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 2015-11-23
AUIRFR3504 Qualification Information Automotive (per AEC-Q101) Qualification Level Comments: This part number(s) passed Automotive qualification. Infineon’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. Moisture Sensitivity Level D-Pak MSL1 Class M4 (+/- 500V)† Machine Model AEC-Q101-002 Class H1C (+/- 1500V)† ESD Human Body Model AEC-Q101-001 Class C5 (+/- 2000V)† Charged Device Model AEC-Q101-005 RoHS Compliant Yes † Highest passing voltage. Revision History Date Comments Updated datasheet with corporate template 11/23/2015 Corrected ordering table on page 1. Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 11 2015-11-23
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRLR3915PBF AUIRFR3504 AUIRFR3504TR AUIRFR3504TRL AUIRFR3504TRR AUIRFR3504Z IRLR3915TRPBF IRLU3915PBF