图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRLR3114ZPBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRLR3114ZPBF产品简介:

ICGOO电子元器件商城为您提供IRLR3114ZPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRLR3114ZPBF价格参考¥询价-¥询价。International RectifierIRLR3114ZPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 40V 42A(Tc) 140W(Tc) D-Pak。您可以下载IRLR3114ZPBF参考资料、Datasheet数据手册功能说明书,资料中有IRLR3114ZPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

ChannelMode

Enhancement

描述

MOSFET N-CH 40V 42A DPAKMOSFET 40V 1 N-CH HEXFET 4.5mOhms 40nC

产品分类

FET - 单分离式半导体

FET功能

逻辑电平门

FET类型

MOSFET N 通道,金属氧化物

Id-ContinuousDrainCurrent

130 A

Id-连续漏极电流

130 A

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

晶体管,MOSFET,International Rectifier IRLR3114ZPBFHEXFET®

数据手册

点击此处下载产品Datasheet

产品型号

IRLR3114ZPBF

PCN组件/产地

点击此处下载产品Datasheet

Pd-PowerDissipation

140 W

Pd-功率耗散

140 W

Qg-GateCharge

40 nC

Qg-栅极电荷

40 nC

RdsOn-Drain-SourceResistance

6.5 mOhms

RdsOn-漏源导通电阻

6.5 mOhms

Vds-Drain-SourceBreakdownVoltage

40 V

Vds-漏源极击穿电压

40 V

Vgs-Gate-SourceBreakdownVoltage

16 V

Vgs-栅源极击穿电压

16 V

Vgsth-Gate-SourceThresholdVoltage

1 V to 2.5 V

Vgsth-栅源极阈值电压

1 V to 2.5 V

上升时间

140 ns

下降时间

50 ns

不同Id时的Vgs(th)(最大值)

2.5V @ 100µA

不同Vds时的输入电容(Ciss)

3810pF @ 25V

不同Vgs时的栅极电荷(Qg)

56nC @ 4.5V

不同 Id、Vgs时的 RdsOn(最大值)

4.9 毫欧 @ 42A,10V

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26240

产品种类

MOSFET

供应商器件封装

D-Pak

典型关闭延迟时间

33 ns

功率-最大值

140W

功率耗散

140 W

包装

管件

商标

International Rectifier

安装类型

表面贴装

安装风格

SMD/SMT

导通电阻

6.5 mOhms

封装

Tube

封装/外壳

TO-252-3,DPak(2 引线+接片),SC-63

封装/箱体

DPAK-2

工厂包装数量

75

晶体管极性

N-Channel

最大工作温度

+ 175 C

最小工作温度

- 55 C

栅极电荷Qg

40 nC

标准包装

75

正向跨导-最小值

98 S

汲极/源极击穿电压

40 V

漏极连续电流

130 A

漏源极电压(Vdss)

40V

电流-连续漏极(Id)(25°C时)

42A (Tc)

通道模式

Enhancement

配置

Single

闸/源击穿电压

16 V

推荐商品

型号:BS250P

品牌:Diodes Incorporated

产品名称:分立半导体产品

获取报价

型号:IRFS3004TRL7PP

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:PSMN8R5-60YS,115

品牌:Nexperia USA Inc.

产品名称:分立半导体产品

获取报价

型号:STL10N60M2

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:NDC632P

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:NTMFS4C13NT1G

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IXTA62N15P

品牌:IXYS

产品名称:分立半导体产品

获取报价

型号:NTD4809NT4G

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IRLR3114ZPBF 相关产品

SIE832DF-T1-E3

品牌:Vishay Siliconix

价格:

APT48M80L

品牌:Microsemi Corporation

价格:

IPD036N04LGBTMA1

品牌:Infineon Technologies

价格:

FDS8690

品牌:ON Semiconductor

价格:

IRFH7188TRPBF

品牌:Infineon Technologies

价格:¥4.97-¥5.20

FDC3535

品牌:ON Semiconductor

价格:

IRL520PBF

品牌:Vishay Siliconix

价格:¥3.30-¥4.13

R6030ENZ1C9

品牌:Rohm Semiconductor

价格:¥26.38-¥71.98

PDF Datasheet 数据手册内容提取

PD - 97284A IRLR3114ZPbF IRLU3114ZPbF Features HEXFET® Power MOSFET (cid:0) Advanced Process Technology (cid:0) Ultra Low On-Resistance D (cid:0) 175°C Operating Temperature (cid:0) Fast Switching VDSS = 40V (cid:0) Repetitive Avalanche Allowed up to Tjmax (cid:0) Logic Level G R = 4.9mΩ DS(on) Description This HEXFET® Power MOSFET utilizes the latest S processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. D-Pak I-Pak IRLR3114ZPbF IRLU3114ZPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 130 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 89 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 42 IDM Pulsed Drain Current (cid:0) 500 PD @TC = 25°C Power Dissipation 140 W Linear Derating Factor 0.95 W/°C VGS Gate-to-Source Voltage ±16 V EAS (Thermally limited) Single Pulse Avalanche Energy(cid:1) 130 mJ EAS (Tested ) Single Pulse Avalanche Energy Tested Value (cid:2) 260 IAR Avalanche Current(cid:3)(cid:0) See Fig.12a, 12b, 15, 16 A EAR Repetitive Avalanche Energy (cid:4) mJ TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range °C Reflow Soldering Temperature, for 10 seconds 300 Mounting Torque, 6-32 or M3 screw 10 lbf(cid:7)in (1.1N(cid:7)m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case (cid:5) ––– 1.05 RθJA Junction-to-Ambient (PCB mount) (cid:6)(cid:5) ––– 40 °C/W RθJA Junction-to-Ambient (cid:5) ––– 110 (cid:1)(cid:2)(cid:3)(cid:4)(cid:2)(cid:5)(cid:1)(cid:6)(cid:7)(cid:8)(cid:6)(cid:9)(cid:6)(cid:10)(cid:11)(cid:12)(cid:7)(cid:8)(cid:13)(cid:11)(cid:10)(cid:11)(cid:14)(cid:6)(cid:13)(cid:10)(cid:9)(cid:14)(cid:11)(cid:15)(cid:9)(cid:10)(cid:16)(cid:6)(cid:17)(cid:18)(cid:6)(cid:19)(cid:20)(cid:13)(cid:11)(cid:10)(cid:20)(cid:9)(cid:13)(cid:7)(cid:17)(cid:20)(cid:9)(cid:21)(cid:6)(cid:22)(cid:11)(cid:23)(cid:13)(cid:7)(cid:18)(cid:7)(cid:11)(cid:10)(cid:24) www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:2)(cid:1)(cid:3)(cid:1)(cid:2)

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) Electrical Characteristics @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.032 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 3.9 4.9 mΩ VGS = 10V, ID = 42A (cid:2) ––– 5.2 6.5 V = 4.5V, I = 42A (cid:2) GS D VGS(th) Gate Threshold Voltage 1.0 ––– 2.5 V VDS = VGS, ID = 100µA gfs Forward Transconductance 98 ––– ––– S V = 10V, I = 42A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 40V, VGS = 0V ––– ––– 250 V = 40V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 16V Gate-to-Source Reverse Leakage ––– ––– -100 V = -16V GS Qg Total Gate Charge ––– 40 56 ID = 42A Qgs Gate-to-Source Charge ––– 12 ––– nC VDS = 20V Qgd Gate-to-Drain ("Miller") Charge ––– 18 ––– VGS = 4.5V (cid:2) td(on) Turn-On Delay Time ––– 25 ––– VDD = 20V tr Rise Time ––– 140 ––– ID = 42A td(off) Turn-Off Delay Time ––– 33 ––– ns RG = 3.7Ω tf Fall Time ––– 50 ––– VGS = 4.5V (cid:2) LD Internal Drain Inductance ––– 4.5 ––– Between lead, D nH 6mm (0.25in.) LS Internal Source Inductance ––– 7.5 ––– from package G and center of die contact S Ciss Input Capacitance ––– 3810 ––– VGS = 0V Coss Output Capacitance ––– 650 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 350 ––– pF ƒ = 1.0MHz Coss Output Capacitance ––– 2390 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 580 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 820 ––– VGS = 0V, VDS = 0V to 32V (cid:3) Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 130 MOSFET symbol D (Body Diode) A showing the ISM Pulsed Source Current ––– ––– 500 integral reverse G (Body Diode)(cid:0)(cid:1) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 42A, VGS = 0V (cid:2) trr Reverse Recovery Time ––– 30 45 ns TJ = 25°C, IF = 42A, VDD = 20V Qrr Reverse Recovery Charge ––– 27 41 nC di/dt = 100A/µs (cid:2) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A) 84..05VV A) 84..05VV Cunerr(t 100 BOTTOM 3322....5075VVVV Cunerr(t 100 BOTTOM 3322....5075VVVV e e ucr 10 ucr o o S S o- o- n-t n-t 10 2.5V ai ai Dr 1 Dr , D , D I I ≤60µs PULSE WIDTH 2.5V ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.1 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 200 S) T = 25°C A()uenrrt 100 TJ = 175°C aneucc(t 150 J C d Snoouec--rt 10 TJ = 25°C Tadanonscrr 100 TJ = 175°C ai w Dr 1 or 50 I,D VDS = 15V GF, sf VDS = 10V 380µs PULSE WIDTH ≤60µs PULSE WIDTH 0.1 0 1 2 3 4 5 6 7 0 20 40 60 80 100 VGS, Gate-to-Source Voltage (V) ID,Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) 100000 6.0 VGS = 0V, f = 1 MHZ I = 42A C = C + C , C SHORTED D iss gs gd ds CCrossss == CCdgsd + Cgd Vge() 5.0 VVDDSS== 3220VV Fp) 10000 oatl 4.0 VDS= 8.0V paanecc(t i Ciss VSoouec-r 3.0 CCa, 1000 Coss Gae-tt 2.0 Crss , S G V 1.0 100 0.0 1 10 100 0 10 20 30 40 50 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Fig 6. Typical Gate Charge vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000 10000 OPERATION IN THIS AREA A) A) LIMITED BY RDS(on) n(t n( t 1000 e e urr 100 TJ = 175°C urr C C 100µsec n e Dari oucr 100 e S 1msec evsr 10 TJ = 25°C on--t Re ,DS Dar ,iD 10 Tc = 25°C10msec I I Tj = 175°C VGS = 0V Single Pulse DC 1.0 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 10 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) 140 2.0 ec ID = 42A 120 Limited By Package an VGS = 10V st si e DCAuanenrrr()I, t iD 10246800000 ORDSanoouencr--r t , iRDSon() mNedoaz(r) li 11..05 0 0.5 25 50 75 100 125 150 175 -60-40-20 0 20 40 60 80100120140160180 TC , Case Temperature (°C) TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Fig 10. Normalized On-Resistance Case Temperature vs. Temperature 10 W C/ °) C 1 D = 0.50 J h Z t 0.20 Reponess( 0.1 000...010205 τJτJτ1τ1 R1R1 τ2τR22R2 Rτ33Rτ33 τR4τ4R44τCτR000i ...(024°348C535/031W ) 000 τ...000i 000(001s000e174c373) ma l 0.01 0.01 CiC= iτi /Ri/iRi 0.2867 0.004658 her SINGLE PULSE Notes: T 1. Duty Factor D = t1/t2 ( THERMAL RESPONSE ) 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) 600 15V mJ) ID y( 500 TOP 9.7A VDS L DRIVER Enegr BOTTOM1472AA e 400 h c RG IADS.U.T +- VDDA anavl 300 2V0GVS tp 0.01Ω Aes ul P 200 Fig 12a. Unclamped Inductive Test Circuit e gl n V(BR)DSS Si tp , S 100 A E 0 25 50 75 100 125 150 175 Starting T , Junction Temperature (°C) J IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms vs. Drain Current Q G (cid:25)(cid:26)(cid:6)(cid:27) Q Q GS GD 3.0 VG Ve() 2.5 g a otl V Charge od l 2.0 h Fig 13a. Basic Gate Charge Waveform s her ID = 150µA ae tt 1.5 ID = 250µA G ID = 1.0mA , h) ID = 1.0A S(t 1.0 L G VCC V DUT 0 0.5 1K -75 -50 -25 0 25 50 75 100125150175200 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage vs. Temperature 6 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche 100 pulsewidth, tav, assuming ∆Tj = 150°C and A) Tstart =25°C (Single Pulse) n(t e 0.01 urr 0.05 Ce 10 0.10 h c n a al v A 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τj = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 150 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 1.0% Duty Cycle 1. Avalanche failures assumption: mJ) ID = 42A Pteumrepleyr aa ttuhreer mfaar li np heexnceosmse onfo Tnj maanxd. Tfahiilsu ries ovaccliduarste adt faor y( every part type. egr 100 2. Safe operation in Avalanche is allowed as long as n neither Tjmax nor Iav (max) is exceeded. E e 3. Equation below based on circuit and waveforms shown in hc Figures 12a, 12b. n aavl 4 . PaDva (alaven)c =h eA vpeurlsaeg.e power dissipation per single A 50 , R 5 . BvoVlt a=g Rea intecdre barseea kdduoriwnng vaovlatalagnec h(1e.)3. factor accounts for A E 6. I = Allowable avalanche current. av 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 tav = Average time in avalanche. 25 50 75 100 125 150 175 D = Duty cycle in avalanche = tav ·f Z (D, t ) = Transient thermal resistance, see figure 11) Starting TJ , Junction Temperature (°C) thJC av P = 1/2 ( 1.3·BV·I ) =(cid:1)(cid:1)T/ Z D (ave) av thJC Fig 16. Maximum Avalanche Energy I =2(cid:1)T/ [1.3·BV·Z ] av th vs. Temperature E = P ·t AS (AR) D (ave) av www.irf.com 7

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) Driver Gate Drive (cid:2)(cid:3)(cid:4)(cid:3)(cid:5) P.W. Period D = + P.W. Period # (cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:3) Reverse (cid:2) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:4) dv/dt VDD (cid:5) (cid:20)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD #(cid:4)(cid:5) (cid:4)(cid:6)(cid:4)(cid:7)(cid:5)(cid:4)(cid:8)(cid:9)(cid:10)(cid:4)(cid:11)(cid:9)(cid:12)(cid:13)(cid:14)(cid:4)(cid:11)(cid:15)(cid:16)(cid:15)(cid:17)(cid:4)(cid:18)(cid:15)(cid:16)(cid:13)(cid:14)(cid:15)(cid:19) (cid:19)(cid:17) Fig 17. (cid:28)(cid:11)(cid:9)(cid:16)(cid:6)(cid:29)(cid:7)(cid:17)(cid:14)(cid:11)(cid:6)(cid:22)(cid:11)(cid:23)(cid:17)(cid:30)(cid:11)(cid:10)(cid:31)(cid:6)(cid:14)(cid:30) (cid:14)(cid:13)(cid:6)(cid:5)(cid:11)(cid:8)(cid:13)(cid:6)!(cid:7)(cid:10)(cid:23)"(cid:7)(cid:13)(cid:6)for N-Channel HEXFET(cid:1)(cid:6)Power MOSFETs (cid:20) (cid:27) (cid:5) (cid:27)(cid:17) (cid:5) (cid:19)(cid:17) (cid:18)(cid:21)(cid:22)(cid:21)(cid:23)(cid:21) (cid:20) (cid:19) +(cid:5) - (cid:27)(cid:27) (cid:1)(cid:2)(cid:5) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:10)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:24)(cid:5)(cid:4)(cid:19)(cid:25)(cid:6)(cid:9)(cid:26)(cid:15)(cid:27)(cid:17)(cid:18)(cid:25) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:10)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:14)(cid:15)(cid:6)(cid:16)(cid:4)(cid:14)(cid:5)(cid:17)(cid:18)(cid:19)(cid:6)(cid:20)(cid:18)(cid:21)(cid:22)(cid:14)(cid:23)(cid:4)(cid:15)(cid:17)(cid:22)(cid:18) EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY INTERNATIONAL PART NUMBER LOT CODE 1234 RECTIFIER IRFR120 DATE CODE ASSEMBLED ON WW 16, 2001 LOGO 116A YEAR 1 = 2001 IN THE ASSEMBLY LINE "A" 12 34 WEEK 16 LINE A Note: "P" in assembly line position ASSEMBLY indicates "Lead-Free" LOT CODE "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level PART NUMBER OR INTREERCNTAIFTIEIORNAL IRFR120 PD A=T ED ECSOIGDNEATES LEAD-FREE LOGO PRODUCT (OPTIONAL) 12 34 P = DESIGNATES LEAD-FREE ASSEMBLY PRODUCT QUALIFIED TO THE LOT CODE CONSUMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:20)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:28)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:24)(cid:5)(cid:4)(cid:19)(cid:25)(cid:6)(cid:9)(cid:26)(cid:15)(cid:27)(cid:17)(cid:18)(cid:25) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:20)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:28)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:14)(cid:15)(cid:6)(cid:16)(cid:4)(cid:14)(cid:5)(cid:17)(cid:18)(cid:19)(cid:6)(cid:20)(cid:18)(cid:21)(cid:22)(cid:14)(cid:23)(cid:4)(cid:15)(cid:17)(cid:22)(cid:18) EXAMPLE: THIS IS AN IRFU120 PART NUMBER INTERNATIONAL AWLOSITSTH EC MAOSBDSLEEE DM56 BO7LN8Y WW 19, 2001 RELCOTGIFOIER IRFU112109A DYEAATRE 1C O=D 2E001 56 78 WEEK 19 IN THE ASSEMBLY LINE "A" LINE A ASSEMBLY LOT CODE Note: "P" in assembly line position indicates Lead-Free" OR PART NUMBER INTERNATIONAL RECTIFIER IRFU120 DATE CODE LOGO P = DESIGNATES LEAD-FREE 56 78 PRODUCT (OPTIONAL) ASSEMBLY YEAR 1 = 2001 LOT CODE WEEK 19 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:10)(cid:12)(cid:12)(cid:13)(cid:6)(cid:8)(cid:4)(cid:29)(cid:25)(cid:6)(cid:30)(cid:6)(cid:31)(cid:25)(cid:25)(cid:27)(cid:6)(cid:20)(cid:18)(cid:21)(cid:22)(cid:14)(cid:23)(cid:4)(cid:15)(cid:17)(cid:22)(cid:18) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) TR TRR TRL 16.3 ( .641 ) 16.3 ( .641 ) 15.7 ( .619 ) 15.7 ( .619 ) 12.1 ( .476 ) FEED DIRECTION 8.1 ( .318 ) FEED DIRECTION 11.9 ( .469 ) 7.9 ( .312 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) (cid:4)(cid:4)Repetitive rating; pulse width limited by (cid:2) Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . (cid:3) (cid:4)Limited by T , starting T = 25°C, L = 0.15mH (cid:5)(cid:1)Limited by T , see Fig.12a, 12b, 15, 16 for typical repetitive Jmax J Jmax RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. (cid:6)(cid:1)This value determined from sample failure population. 100% (cid:1)Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. (cid:7)(cid:4)(cid:4) When mounted on 1" square PCB (FR-4 or G-10 Material). (cid:8)(cid:4)(cid:4)(cid:4)(cid:20) (cid:13)(cid:19)(cid:4)(cid:24)(cid:15)(cid:25)(cid:19)(cid:26)(cid:10)(cid:15)(cid:27)(cid:4)(cid:25)(cid:28)(cid:4)(cid:23) (cid:4)(cid:25)(cid:29)(cid:29)(cid:10)(cid:9)(cid:30)(cid:13)(cid:24)(cid:25)(cid:28)(cid:15)(cid:17)(cid:31)(cid:4) (cid:2)!"(cid:21) θ(cid:7) ) Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/2010 www.irf.com 11