ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRLR2905ZTRLPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRLR2905ZTRLPBF产品简介:
ICGOO电子元器件商城为您提供IRLR2905ZTRLPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRLR2905ZTRLPBF价格参考。International RectifierIRLR2905ZTRLPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 55V 42A(Tc) 110W(Tc) D-Pak。您可以下载IRLR2905ZTRLPBF参考资料、Datasheet数据手册功能说明书,资料中有IRLR2905ZTRLPBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N-CH 55V 42A DPAKMOSFET MOSFT 55V 60A 13.5mOhm 23nC LogLvl |
产品分类 | FET - 单分离式半导体 |
FET功能 | 逻辑电平门 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-连续漏极电流 | 60 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRLR2905ZTRLPBFHEXFET® |
数据手册 | |
产品型号 | IRLR2905ZTRLPBF |
PCN组件/产地 | |
Pd-PowerDissipation | 110 W |
Pd-功率耗散 | 110 W |
Qg-GateCharge | 35 nC |
Qg-栅极电荷 | 35 nC |
RdsOn-漏源导通电阻 | 13.5 mOhms |
Vds-漏源极击穿电压 | 55 V |
Vgsth-Gate-SourceThresholdVoltage | 3 V |
Vgsth-栅源极阈值电压 | 3 V |
上升时间 | 130 ns |
下降时间 | 33 ns |
不同Id时的Vgs(th)(最大值) | 3V @ 250µA |
不同Vds时的输入电容(Ciss) | 1570pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 35nC @ 5V |
不同 Id、Vgs时的 RdsOn(最大值) | 13.5 毫欧 @ 36A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品种类 | MOSFET |
供应商器件封装 | D-Pak |
其它名称 | IRLR2905ZTRLPBFDKR |
功率-最大值 | 110W |
功率耗散 | 110 W |
包装 | Digi-Reel® |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
导通电阻 | 13.5 mOhms |
封装 | Reel |
封装/外壳 | TO-252-3,DPak(2 引线+接片),SC-63 |
封装/箱体 | DPAK-2 |
工厂包装数量 | 3000 |
晶体管极性 | N-Channel |
最大工作温度 | + 175 C |
栅极电荷Qg | 35 nC |
标准包装 | 1 |
正向跨导-最小值 | 25 S |
汲极/源极击穿电压 | 55 V |
漏极连续电流 | 60 A |
漏源极电压(Vdss) | 55V |
电流-连续漏极(Id)(25°C时) | 42A (Tc) |
配置 | Single |
PD - 95774B IRLR2905ZPbF IRLU2905ZPbF Features HEXFET® Power MOSFET (cid:0) Logic Level D (cid:0) Advanced Process Technology V = 55V DSS (cid:0) Ultra Low On-Resistance (cid:0) 175°C Operating Temperature R = 13.5mΩ (cid:0) Fast Switching DS(on) G (cid:0) Repetitive Avalanche Allowed up to Tjmax (cid:0) Lead-Free I = 42A D S Description This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. D-Pak I-Pak IRLR2905ZPbF IRLU2905ZPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 60 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 43 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 42 IDM Pulsed Drain Current (cid:0) 240 PD @TC = 25°C Power Dissipation 110 W Linear Derating Factor 0.72 W/°C VGS Gate-to-Source Voltage ± 16 V EAS (Thermally limited) Single Pulse Avalanche Energy(cid:1) 57 mJ EAS (Tested ) Single Pulse Avalanche Energy Tested Value (cid:2) 85 IAR Avalanche Current(cid:3)(cid:0) See Fig.12a, 12b, 15, 16 A EAR Repetitive Avalanche Energy (cid:4) mJ TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 10 lbf(cid:7)in (1.1N(cid:7)m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case (cid:5) ––– 1.38 RθJA Junction-to-Ambient (PCB mount) (cid:6)(cid:5) ––– 40 °C/W RθJA Junction-to-Ambient (cid:5) ––– 110 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:1)(cid:3)(cid:1)(cid:2)
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) Electrical Characteristics @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.053 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 11 13.5 mΩ VGS = 10V, ID = 36A (cid:2) ––– ––– 20 mΩ V = 5.0V, I = 30A (cid:2) GS D ––– ––– 22.5 mΩ V = 4.5V, I = 15A (cid:2) GS D VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 25 ––– ––– S V = 25V, I = 36A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 55V, VGS = 0V ––– ––– 250 V = 55V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 16V Gate-to-Source Reverse Leakage ––– ––– -200 V = -16V GS Qg Total Gate Charge ––– 23 35 ID = 36A Qgs Gate-to-Source Charge ––– 8.5 ––– nC VDS = 44V Qgd Gate-to-Drain ("Miller") Charge ––– 12 ––– VGS = 5.0V (cid:2) td(on) Turn-On Delay Time ––– 14 ––– VDD = 28V tr Rise Time ––– 130 ––– ID = 36A td(off) Turn-Off Delay Time ––– 24 ––– ns RG = 15 Ω tf Fall Time ––– 33 ––– VGS = 5.0V (cid:2) LD Internal Drain Inductance ––– 4.5 ––– Between lead, D nH 6mm (0.25in.) LS Internal Source Inductance ––– 7.5 ––– from package G and center of die contact S Ciss Input Capacitance ––– 1570 ––– VGS = 0V Coss Output Capacitance ––– 230 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 130 ––– pF ƒ = 1.0MHz Coss Output Capacitance ––– 840 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 180 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 290 ––– VGS = 0V, VDS = 0V to 44V (cid:3) Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 42 MOSFET symbol (Body Diode) A showing the ISM Pulsed Source Current ––– ––– 240 integral reverse (Body Diode)(cid:0)(cid:1) p-n junction diode. VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 36A, VGS = 0V (cid:2) trr Reverse Recovery Time ––– 22 33 ns TJ = 25°C, IF = 36A, VDD = 28V Qrr Reverse Recovery Charge ––– 14 21 nC di/dt = 100A/µs (cid:2) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) 1000 1000 VGS VGS TOP 10V TOP 10V 9.0V 9.0V A) 7.0V A) 7.0V n( t 54..05VV n(t 54..05VV uerr 100 43..05VV uerr 100 43..05VV C BOTTOM 3.0V C BOTTOM 3.0V e e c c ur ur o o S S o- o- n-t 10 n-t 10 3.0V ai ai Dr Dr , D , D I ≤ 60µs PULSE WIDTH I ≤ 60µs PULSE WIDTH 3.0V Tj = 25°C Tj = 175°C 1 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 60 Α() TJ = 25°C Se() 50 TJ = 175°C nt nc e a Curr100.0 TJ = 175°C duct 40 ouecr onnsc 30 TJ = 25°C S a o- Tr Danr- tI,iD 10.0 VDS = 10V wFsoad, rr 1200 ≤ 60µs PULSE WIDTH Gf VDS = 8.0V 380µs PULSE WIDTH 1.0 0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0 10 20 30 40 50 V , Gate-to-Source Voltage (V) GS ID, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) 2500 12 VGS = 0V, f = 1 MHZ I = 36A D C = C + C , C SHORTED iss gs gd ds Fp) 2000 CCrossss == CCCdgsids +s Cgd Vageo()t l 180 VVVDDDSSS=== 214814VVV anecc(t i 1500 SVouecr 6 Capa 1000 oe--t 4 C, Gat ,S 500 G 2 Coss V Crss 0 0 1 10 100 0 10 20 30 40 50 Q Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) G Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R (on) DS A) A) nt ( 100.0 n(t 100 uerr TJ = 175°C uerr C C n e Dari 10.0 oucr 10 100µsec veser TJ = 25°C Sno--t Re, DS 1.0 Dar ,iD 1 Tc = 25°C 11m0msescec I I Tj = 175°C V = 0V GS Single Pulse 0.1 0.1 0.2 0.6 1.0 1.4 1.8 2.2 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) 60 2.0 LIMITED BY PACKAGE ec ID = 30A n 50 ast VGS = 5.0V si e An()t 40 ORn 1.5 Cnuerr 30 Souecr aedz)li ai o- m Dr, ID 12000 Danr-t, iRDSon() No(r 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) T , Junction Temperature (°C) J Fig 9. Maximum Drain Current Vs. Fig 10. Normalized On-Resistance Case Temperature Vs. Temperature 10 )C 1 hJ D = 0.50 t Z e( 0.20 s 0.10 on 0.1 R1R R2R Ri (°C/W) τi (sec) mRaeps l 000...000251 τJτJτ1τ1 1 τ2τ2 2 τCτ 00..6716451 00..000001266194 er 0.01 Ci= τi/Ri h Ci i/Ri T SINGLE PULSE Notes: 1. Duty Factor D = t1/t2 ( THERMAL RESPONSE ) 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) 240 15V mJ) ID gy( 200 T O P 6 3.26AA VDS L DRIVER Eenr BOTTOM 4.3A e 160 h c RG D.U.T + an IAS - VDDA Aavl 120 2V0GVS tp 0.01Ω es ul P 80 Fig 12a. Unclamped Inductive Test Circuit eg l n V(BR)DSS Si 40 tp AS , E 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 3.0 V V) G e( ag 2.5 otl V Charge d ol Fig 13a. Basic Gate Charge Waveform ehs 2.0 ID = 250µA hr SaCmuerreTnytpeReagsulDat.oUr.T. eat t G 50KΩ h) 1.5 12V .2µF S(t .3µF G V + D.U.T. -VDS 1.0 VGS -75 -50 -25 0 25 50 75 100 125 150 175 3mA TJ , Temperature ( °C ) IG ID CurrentSamplingResistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs A) en(t 0.01 aavsasulamncinhge ∆pTuj l=se 2w5id°Cth , dueta vto urr avalanche losses. Note: In no Che 10 0.05 ceaxcseee sdh Tojumlda xTj be allowed to nc 0.10 a al v A 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 60 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 1% Duty Cycle 1. Avalanche failures assumption: J) 50 ID = 36A Purely a thermal phenomenon and failure occurs at a m temperature far in excess of T . This is validated for y( every part type. jmax g 40 er 2. Safe operation in Avalanche is allowed as long asTjmax is n E not exceeded. e 3. Equation below based on circuit and waveforms shown in h 30 nc Figures 12a, 12b. aal 4. PD (ave) = Average power dissipation per single Av 20 avalanche pulse. ,R 5. BV = Rated breakdown voltage (1.3 factor accounts for A voltage increase during avalanche). E 10 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = t ·f av Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see figure 11) P = 1/2 ( 1.3·BV·I ) =(cid:1)(cid:1)T/ Z D (ave) av thJC Fig 16. Maximum Avalanche Energy I =2(cid:1)T/ [1.3·BV·Z ] av th Vs. Temperature E = P ·t AS (AR) D (ave) av www.irf.com 7
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) Driver Gate Drive (cid:2)(cid:3)(cid:4)(cid:3)(cid:5) P.W. Period D = + P.W. Period (cid:24) (cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:3) Reverse (cid:2) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:4) dv/dt VDD (cid:5) (cid:20)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD (cid:24)(cid:4)(cid:5) (cid:4)(cid:6)(cid:4)(cid:7)(cid:5)(cid:4)(cid:8)(cid:9)(cid:10)(cid:4)(cid:11)(cid:9)(cid:12)(cid:13)(cid:14)(cid:4)(cid:11)(cid:15)(cid:16)(cid:15)(cid:17)(cid:4)(cid:18)(cid:15)(cid:16)(cid:13)(cid:14)(cid:15)(cid:19) (cid:19)(cid:17) Fig 17. (cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:12)(cid:6)(cid:3)(cid:13)(cid:6)(cid:14)(cid:11)(cid:15)(cid:6)(cid:16)(cid:17)(cid:3)(cid:12)(cid:15)(cid:18)(cid:12)(cid:19)(cid:3)(cid:20)(cid:6)(cid:21)(cid:19)(cid:3)(cid:22)(cid:10)(cid:16)(cid:14)(cid:23)(cid:10)(cid:19)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:20) (cid:27) (cid:5) (cid:27)(cid:17) (cid:5) (cid:19)(cid:17) (cid:18)(cid:21)(cid:22)(cid:21)(cid:23)(cid:21) (cid:20) (cid:19) +(cid:5) - (cid:27)(cid:27) (cid:1)(cid:2)(cid:5) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:10)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:24)(cid:5)(cid:4)(cid:19)(cid:25)(cid:6)(cid:9)(cid:26)(cid:15)(cid:27)(cid:17)(cid:18)(cid:25) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:10)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:14)(cid:15)(cid:6)(cid:16)(cid:4)(cid:14)(cid:5)(cid:17)(cid:18)(cid:19)(cid:6)(cid:20)(cid:18)(cid:21)(cid:22)(cid:14)(cid:23)(cid:4)(cid:15)(cid:17)(cid:22)(cid:18) EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY INTERNATIONAL PART NUMBER LOT CODE 1234 RECTIFIER IRFR120 DATE CODE ASSEMBLED ON WW 16, 2001 LOGO 116A YEAR 1 = 2001 IN THE ASSEMBLY LINE "A" 12 34 WEEK 16 LINE A Note: "P" in assembly line position ASSEMBLY indicates "Lead-Free" LOT CODE "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level PART NUMBER OR INTREERCNTAIFTIEIORNAL IRFR120 PD A=T ED ECSOIGDENATES LEAD-FREE LOGO PRODUCT (OPTIONAL) 12 34 P = DESIGNATES LEAD-FREE ASSEMBLY PRODUCT QUALIFIED TO THE LOT CODE CONSUMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) (cid:20)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:28)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:24)(cid:5)(cid:4)(cid:19)(cid:25)(cid:6)(cid:9)(cid:26)(cid:15)(cid:27)(cid:17)(cid:18)(cid:25) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:20)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:28)(cid:12)(cid:12)(cid:13)(cid:6)(cid:3)(cid:4)(cid:14)(cid:15)(cid:6)(cid:16)(cid:4)(cid:14)(cid:5)(cid:17)(cid:18)(cid:19)(cid:6)(cid:20)(cid:18)(cid:21)(cid:22)(cid:14)(cid:23)(cid:4)(cid:15)(cid:17)(cid:22)(cid:18) EXAMPLE: THIS IS AN IRFU120 PART NUMBER INTERNATIONAL AWLOSITSTH EC MAOSBDSLEEE DM56 BO7LN8Y WW 19, 2001 RELCOTGIFOIER IRFU112109A DYEAATRE 1C O=D 2E001 56 78 WEEK 19 IN THE ASSEMBLY LINE "A" LINE A ASSEMBLY LOT CODE Note: "P" in assembly line position indicates Lead-Free" OR PART NUMBER INTERNATIONAL RECTIFIER IRFU120 DATE CODE LOGO P = DESIGNATES LEAD-FREE 56 78 PRODUCT (OPTIONAL) ASSEMBLY YEAR 1 = 2001 LOT CODE WEEK 19 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:10)(cid:11)(cid:10)(cid:12)(cid:12)(cid:13)(cid:6)(cid:8)(cid:4)(cid:29)(cid:25)(cid:6)(cid:30)(cid:6)(cid:31)(cid:25)(cid:25)(cid:27)(cid:6)(cid:20)(cid:18)(cid:21)(cid:22)(cid:14)(cid:23)(cid:4)(cid:15)(cid:17)(cid:22)(cid:18) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) TR TRR TRL 16.3 ( .641 ) 16.3 ( .641 ) 15.7 ( .619 ) 15.7 ( .619 ) 12.1 ( .476 ) FEED DIRECTION 8.1 ( .318 ) FEED DIRECTION 11.9 ( .469 ) 7.9 ( .312 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) (cid:4)(cid:4)Repetitive rating; pulse width limited by (cid:2) Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . (cid:3) (cid:4)Limited by TJmax, starting TJ = 25°C, L = 0.089mH(cid:1)(cid:2)Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 36A, VGS =10V. Part not avalanche performance. recommended for use above this value. (cid:3)(cid:2)This value determined from sample failure population. 100% (cid:1)Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. (cid:4)(cid:4)(cid:4) When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 (cid:5)(cid:4)(cid:4)(cid:4)(cid:20)θ(cid:7)is measured at TJ approximately 90°C Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/2010 www.irf.com 11