ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRFZ44VZSPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRFZ44VZSPBF产品简介:
ICGOO电子元器件商城为您提供IRFZ44VZSPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRFZ44VZSPBF价格参考¥6.03-¥6.03。International RectifierIRFZ44VZSPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 60V 57A(Tc) 92W(Tc) D2PAK。您可以下载IRFZ44VZSPBF参考资料、Datasheet数据手册功能说明书,资料中有IRFZ44VZSPBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
Ciss-输入电容 | 1.69 nF |
描述 | MOSFET N-CH 60V 57A D2PAKMOSFET MOSFT 60V 57A 12mOhm 43nC |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 57 A |
Id-连续漏极电流 | 57 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRFZ44VZSPBFHEXFET® |
数据手册 | |
产品型号 | IRFZ44VZSPBF |
PCN组件/产地 | |
Pd-PowerDissipation | 92 W |
Pd-功率耗散 | 92 W |
Qg-GateCharge | 43 nC |
Qg-栅极电荷 | 43 nC |
RdsOn-Drain-SourceResistance | 12 mOhms |
RdsOn-漏源导通电阻 | 9.6 mOhms |
Vds-Drain-SourceBreakdownVoltage | 60 V |
Vds-漏源极击穿电压 | 60 V |
Vgs-Gate-SourceBreakdownVoltage | 20 V |
Vgs-栅源极击穿电压 | 20 V |
Vgsth-栅源极阈值电压 | 4 V |
上升时间 | 62 ns |
下降时间 | 38 ns |
不同Id时的Vgs(th)(最大值) | 4V @ 250µA |
不同Vds时的输入电容(Ciss) | 1690pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 65nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 12 毫欧 @ 34A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品种类 | MOSFET |
供应商器件封装 | D2PAK |
其它名称 | *IRFZ44VZSPBF |
典型关闭延迟时间 | 35 ns |
功率-最大值 | 92W |
包装 | 管件 |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | TO-263-3,D²Pak(2 引线+接片),TO-263AB |
封装/箱体 | D2PAK-2 |
工厂包装数量 | 3200 |
晶体管极性 | N-Channel |
最大工作温度 | + 175 C |
最小工作温度 | - 55 C |
标准包装 | 50 |
漏源极电压(Vdss) | 60V |
电流-连续漏极(Id)(25°C时) | 57A (Tc) |
配置 | Single |
PD - 95947A IRFZ44VZPbF IRFZ44VZSPbF IRFZ44VZLPbF Features HEXFET® Power MOSFET (cid:0) Advanced Process Technology (cid:0) Ultra Low On-Resistance D (cid:0) 175°C Operating Temperature V = 60V DSS (cid:0) Fast Switching (cid:0) Repetitive Avalanche Allowed up to Tjmax R = 12mΩ (cid:0) Lead-Free DS(on) G Description This HEXFET® Power MOSFET utilizes the latest ID = 57A S processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. TO-220AB D2Pak TO-262 IRFZ44VZPbF IRFZ44VZSPbF IRFZ44VZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 57 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 40 A IDM Pulsed Drain Current (cid:0) 230 PD @TC = 25°C Power Dissipation 92 W Linear Derating Factor 0.61 W/°C VGS Gate-to-Source Voltage ± 20 V EAS (Thermally limited) Single Pulse Avalanche Energy(cid:1) 73 mJ EAS (Tested ) Single Pulse Avalanche Energy Tested Value (cid:2) 110 IAR Avalanche Current(cid:3)(cid:0) See Fig.12a, 12b, 15, 16 A EAR Repetitive Avalanche Energy (cid:4) mJ TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw (cid:5) 10 lbf(cid:7)in (1.1N(cid:7)m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case ––– 1.64 °C/W RθCS Case-to-Sink, Flat Greased Surface (cid:5) 0.50 ––– RθJA Junction-to-Ambient (cid:5) ––– 62 RθJA Junction-to-Ambient (PCB Mount) (cid:6) ––– 40 www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:4)(cid:1)(cid:3)(cid:5)(cid:1)
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) Electrical Characteristics @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– V VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.061 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 9.6 12 mΩ VGS = 10V, ID = 34A (cid:3) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 25 ––– ––– V V = 25V, I = 34A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 60V, VGS = 0V ––– ––– 250 V = 60V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 V = -20V GS Qg Total Gate Charge ––– 43 65 ID = 34A Qgs Gate-to-Source Charge ––– 11 ––– nC VDS = 48V Qgd Gate-to-Drain ("Miller") Charge ––– 18 ––– VGS = 10V (cid:3) td(on) Turn-On Delay Time ––– 14 ––– VDD = 30V tr Rise Time ––– 62 ––– ID = 34A td(off) Turn-Off Delay Time ––– 35 ––– ns RG = 12 Ω tf Fall Time ––– 38 ––– VGS = 10V (cid:3) LD Internal Drain Inductance ––– 4.5 ––– Between lead, D nH 6mm (0.25in.) LS Internal Source Inductance ––– 7.5 ––– from package G and center of die contact S Ciss Input Capacitance ––– 1690 ––– VGS = 0V Coss Output Capacitance ––– 270 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 130 ––– pF ƒ = 1.0MHz Coss Output Capacitance ––– 1870 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 260 ––– VGS = 0V, VDS = 48V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 510 ––– VGS = 0V, VDS = 0V to 48V (cid:2) Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 57 MOSFET symbol (Body Diode) A showing the ISM Pulsed Source Current ––– ––– 230 integral reverse (Body Diode)(cid:0)(cid:1) p-n junction diode. VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 34A, VGS = 0V (cid:3) trr Reverse Recovery Time ––– 23 35 ns TJ = 25°C, IF = 34A, VDD = 30V Qrr Reverse Recovery Charge ––– 17 26 nC di/dt = 100A/µs (cid:3) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A) 8.0V A) 8.0V CSouueencrrr( t 100 BOTTOM 76554.....00505VVVVV CSouueencrrr( t 100 BOTTOM 76554.....00505VVVVV Danor--ti 10 Danor--ti 10 4.5V ,D ,D I 60µs PULSE WIDTH I 60µs PULSE WIDTH 4.5V Tj = 25°C Tj = 175°C 1 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 60 1000 Α()uenrrt 100 Suanecc()t 4500 TJ = 175°C C d e TJ = 175°C on TJ = 25°C c c ur ns 30 o a Sno--t 10 Tadr r 20 ai w Dr I,D TJ = 25°C VDS = 25V GFsof, r 10 VDS = 15V 60µs PULSE WIDTH 380µs PULSE WIDTH 1 0 4.0 5.0 6.0 7.0 8.0 9.0 0 10 20 30 40 50 60 V , Gate-to-Source Voltage (V) GS ID, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) 3000 20 VGS = 0V, f = 1 MHZ ID= 34A C = C + C , C SHORTED 2500 CCirossssss == CCgdgssd + Cggdd ds Vage() 16 VVVDDDSSS=== 314028VVV Fp) 2000 Votl e( Ciss e 12 c c ancti 1500 Sour CCapa, 1000 Gaeo--tt 8 , S 4 G 500 Coss V FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 0 0 10 20 30 40 50 60 1 10 100 Q Total Gate Charge (nC) G VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R (on) DS A) A) Cuenrrt ( 100.0 TJ = 175°C Cuenrr(t 100 Danr i 10.0 ouecr 10 100µsec se So- ver n-t Re, DS 1.0 TJ = 25°C Dar , iD 1 1msec I I Tc = 25°C 10msec V = 0V Tj = 175°C GS Single Pulse 0.1 0.1 0.2 0.6 1.0 1.4 1.8 1 10 100 1000 VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) 60 2.5 ec ID = 34A n 50 ast VGS = 10V si Re 2.0 A) n CDnuenarr(r t , IiD 12340000 ODSanoouecr--rt, iRDSon() mNoaedz)(r li 11..05 0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 T , Junction Temperature (°C) T , Junction Temperature (°C) J J Fig 9. Maximum Drain Current Vs. Fig 10. Normalized On-Resistance Case Temperature Vs. Temperature 10 )C 1 J D = 0.50 h t Zes( 00..2100 mRaepons l 0.1 000...000251 τJτJτ1τ1 R1R1 τ2τR22R2 τCτ R00i (..96°C6800/W ) 00τ..i 00(00se05c48)45 Ther 0.01 CiC= iτi /Ri/iRi Notes: SINGLE PULSE 1. Duty Factor D = t1/t2 ( THERMAL RESPONSE ) 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) 300 15V mJ) ID y( 250 TOP 3.8A g 5.0A VDS L DRIVER ner BOTTOM 34A E e 200 h c RG D.U.T +- VDD aanl IAS A v 150 A 2V0GVS tp 0.01Ω es ul P 100 Fig 12a. Unclamped Inductive Test Circuit ge l n V(BR)DSS Si 50 tp AS , E 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 4.0 V V) G e( ag ID = 250µA Votl 3.0 Charge d ol Fig 13a. Basic Gate Charge Waveform hs e hr e t Gat 2.0 h) L S(t G VCC V DUT 0 1.0 1K -75 -50 -25 0 25 50 75 100 125 150 175 T , Temperature ( °C ) J Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs A) en(t 0.01 aavsasulamncinhge ∆pTuj l=se 2w5id°Cth , dueta vto urr avalanche losses. Note: In no C 10 case should Tj be allowed to he 0.05 exceed Tjmax c n 0.10 a al v A 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 80 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 1% Duty Cycle 1. Avalanche failures assumption: J) ID = 34A Purely a thermal phenomenon and failure occurs at a my( 60 etevmerpye praatrut rtey pfaer. in excess of Tjmax. This is validated for g er 2. Safe operation in Avalanche is allowed as long asTjmax is En not exceeded. e 3. Equation below based on circuit and waveforms shown in h 40 c Figures 12a, 12b. n a 4. P = Average power dissipation per single al D (ave) v avalanche pulse. A ,RA 20 5 . BvoVlt a=g Rea intecdre barseea kdduoriwnng vaovlatalagnec h(1e.)3. factor accounts for E 6. I = Allowable avalanche current. av 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = t ·f av Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see figure 11) P = 1/2 ( 1.3·BV·I ) =(cid:1)(cid:1)T/ Z D (ave) av thJC Fig 16. Maximum Avalanche Energy I =2(cid:1)T/ [1.3·BV·Z ] av th Vs. Temperature E = P ·t AS (AR) D (ave) av www.irf.com 7
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) Driver Gate Drive (cid:2)(cid:3)(cid:4)(cid:3)(cid:5) P.W. Period D = + P.W. Period (cid:24) (cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:3) Reverse (cid:2) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:4) dv/dt VDD (cid:7) (cid:22)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD (cid:24)(cid:6)(cid:7) (cid:6)(cid:8)(cid:6)(cid:9)(cid:7)(cid:6)(cid:10)(cid:11)(cid:12)(cid:6)(cid:13)(cid:11)(cid:14)(cid:15)(cid:16)(cid:6)(cid:13)(cid:17)(cid:18)(cid:17)(cid:19)(cid:6)(cid:20)(cid:17)(cid:18)(cid:15)(cid:16)(cid:17)(cid:21) (cid:19)(cid:17) Fig 17. (cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:12)(cid:6)(cid:3)(cid:13)(cid:6)(cid:14)(cid:11)(cid:15)(cid:6)(cid:16)(cid:17)(cid:3)(cid:12)(cid:15)(cid:18)(cid:12)(cid:19)(cid:3)(cid:20)(cid:6)(cid:21)(cid:19)(cid:3)(cid:22)(cid:10)(cid:16)(cid:14)(cid:23)(cid:10)(cid:19)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:22) (cid:27) (cid:7) (cid:27)(cid:17) (cid:7) (cid:19)(cid:17) (cid:20)(cid:23)(cid:24)(cid:23)(cid:25)(cid:23) (cid:22) (cid:19) +(cid:7) - (cid:27)(cid:27) (cid:5)(cid:1)(cid:7) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 INTERNATIONAL PART NUMBER ASSEMBLED ON WW 19, 2000 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 0 = 2000 Note: "P" in assembly line position ASSEMBLY indicates "Lead - Free" LOT CODE WEEK 19 LINE C Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:27)(cid:1)(cid:2)(cid:3)(cid:4)(cid:28)(cid:29)(cid:6)(cid:7)(cid:30)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:27)(cid:1)(cid:2)(cid:3)(cid:4)(cid:28)(cid:29)(cid:6)(cid:7)(cid:30)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) THIS IS AN IRF530S WITH PART NUMBER LOT CODE 8024 INTERNATIONAL ASSEMBLED ON WW 02, 2000 RECTIFIER F530S IN THE ASSEMBLY LINE "L" LOGO DATE CODE YEAR 0 = 2000 ASSEMBLY LOT CODE WEEK 02 LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 PART NUMBER ASSEMBLED ON WW 19, 1997 INTREERCNTAIFTIIEORNAL IN THE ASSEMBLY LINE "C" LOGO DATE CODE ASSEMBLY YEAR 7 = 1997 LOT CODE WEEK 19 LINE C OR PART NUMBER INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY P = DESIGNATES LEAD-FREE LOT CODE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:3) D2Pak Tape & Reel Infomation TRR 1.60 (.063) 1.50 (.059) 43..1900 ((..116513)) 11..6500 ((..006539)) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 1.65 (.065) 11.40 (.449) 1155..4222 ((..660091)) 2243..3900 ((..995471)) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 10.70 (.421) 4.72 (.136) 16.10 (.634) 4.52 (.178) 15.90 (.626) FEED DIRECTION 13.50 (.532) 27.40 (1.079) 12.80 (.504) 23.90 (.941) 4 330.00 60.00 (2.362) (14.173) MIN. MAX. 30.40 (1.197) NOTES : MAX. 1. COMFORMS TO EIA-418. 26.40 (1.039) 4 2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961) 34.. DINIMCLEUNDSEIOSN F LMAENAGSEU RDEISDT @OR HTUIOBN. @ OUTER EDGE. 3 (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) (cid:4)(cid:6)Repetitive rating; pulse width limited by (cid:5)(cid:1)Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. (cid:3) (cid:6)Limited by TJmax, starting TJ = 25°C, L = 0.12mH(cid:6)(cid:1)This value determined from sample failure population. 100% RG = 25Ω, IAS = 34A, VGS =10V. Part not tested to this value in production. recommended for use above this value. (cid:7) This is only applied to TO-220AB pakcage. (cid:1) Pulse width ≤ 1.0ms; duty cycle ≤ 2%. (cid:8) This is applied to D2Pak, when mounted on 1" square PCB (FR- (cid:2) Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS . Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2010 12 www.irf.com
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRFZ44VZPBF IRFZ44VZSPBF