ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRFB7434PBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRFB7434PBF产品简介:
ICGOO电子元器件商城为您提供IRFB7434PBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRFB7434PBF价格参考¥6.47-¥11.66。International RectifierIRFB7434PBF封装/规格:晶体管 - FET,MOSFET - 单, 通孔 N 沟道 40V 195A(Tc) 294W(Tc) TO-220AB。您可以下载IRFB7434PBF参考资料、Datasheet数据手册功能说明书,资料中有IRFB7434PBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N CH 40V 195A TO220MOSFET 40V 1.6mOhm 195A HEXFET 294W 216nC |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 317 A |
Id-连续漏极电流 | 317 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRFB7434PBFHEXFET®, StrongIRFET™ |
数据手册 | |
产品型号 | IRFB7434PBF |
PCN组件/产地 | |
Pd-PowerDissipation | 294 W |
Pd-功率耗散 | 294 W |
Qg-GateCharge | 324 nC |
Qg-栅极电荷 | 324 nC |
RdsOn-Drain-SourceResistance | 1.6 mOhms |
RdsOn-漏源导通电阻 | 1.6 mOhms |
Vds-Drain-SourceBreakdownVoltage | 40 V |
Vds-漏源极击穿电压 | 40 V |
Vgs-Gate-SourceBreakdownVoltage | 20 V |
Vgs-栅源极击穿电压 | 20 V |
不同Id时的Vgs(th)(最大值) | 3.9V @ 250µA |
不同Vds时的输入电容(Ciss) | 10820pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 324nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 1.6 毫欧 @ 100A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26240 |
产品种类 | MOSFET |
供应商器件封装 | TO-220AB |
功率-最大值 | 294W |
功率耗散 | 294 W |
包装 | 管件 |
商标 | International Rectifier |
商标名 | StrongIRFET |
安装类型 | 通孔 |
安装风格 | Through Hole |
导通电阻 | 1.6 mOhms |
封装 | Tube |
封装/外壳 | TO-220-3 |
封装/箱体 | TO-220-3 |
工厂包装数量 | 50 |
晶体管极性 | N-Channel |
栅极电荷Qg | 324 nC |
标准包装 | 50 |
汲极/源极击穿电压 | 40 V |
漏极连续电流 | 317 A |
漏源极电压(Vdss) | 40V |
特色产品 | http://www.digikey.com/product-highlights/cn/zh/international-rectifier-strongirfet-power-mosfet/2963 |
电流-连续漏极(Id)(25°C时) | 195A (Tc) |
闸/源击穿电压 | 20 V |
StrongIRFET™ IRFB7434PbF Application HEXFET® Power MOSFET Brushed Motor drive applications BLDC Motor drive applications D VDSS 40V R typ. 1.25m Battery powered circuits DS(on) Half-bridge and full-bridge topologies max 1.6m Synchronous rectifier applications G I 317A Resonant mode power supplies D (Silicon Limited) OR-ing and redundant power switches S I 195A D (Package Limited) DC/DC and AC/DC converters DC/AC Inverters Benefits S Improved Gate, Avalanche and Dynamic dV/dt Ruggedness D G Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability TO-220AB Lead-Free* IRFB7434PbF RoHS Compliant, Halogen-Free* G D S Gate Drain Source Base part number Package Type Standard Pack Orderable Part Number Form Quantity IRFB7434PbF TO-220 Tube 50 IRFB7434PbF ) 5 350 m (ce ID = 100A 300 Limited By Package an 4 st esiORn ce 3 TJ = 125°C )An(t eurr 220500 uro Cn S- o 2 ariD 150 an-tiDr 1 ,I D 100 , n) TJ = 25°C 50 o (S RD 0 0 2 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 175 VGS, Gate -to -Source Voltage (V) TC , Case Temperature (°C) Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Maximum Drain Current vs. Case Temperature 1 2018-07-10
IRFB7434PbF Absolute Maximum Rating Symbol Parameter Max. Units I @ T = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 317 D C I @ T = 100°C Continuous Drain Current, V @ 10V (Silicon Limited) 224 D C GS A I @ T = 25°C Continuous Drain Current, V @ 10V (Wire Bond Limited) 195 D C GS I Pulsed Drain Current 1270 DM P @T = 25°C Maximum Power Dissipation 294 W D C Linear Derating Factor 1.96 W/°C V Gate-to-Source Voltage ± 20 V GS T Operating Junction and J -55 to + 175 T Storage Temperature Range °C STG Soldering Temperature, for 10 seconds (1.6mm from case) 300 Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Avalanche Characteristics E Single Pulse Avalanche Energy 490 AS (Thermally limited) mJ EAS (Thermally limited) Single Pulse Avalanche Energy 1098 I Avalanche Current A AR See Fig 15, 16, 23a, 23b E Repetitive Avalanche Energy mJ AR Thermal Resistance Symbol Parameter Typ. Max. Units R Junction-to-Case ––– 0.51 JC R Case-to-Sink, Flat Greased Surface 0.50 ––– °C/W CS R Junction-to-Ambient ––– 62 JA Static @ T = 25°C (unless otherwise specified) J Symbol Parameter Min. Typ. Max. Units Conditions V Drain-to-Source Breakdown Voltage 40 ––– ––– V V = 0V, I = 250µA (BR)DSS GS D V /T Breakdown Voltage Temp. Coefficient ––– 0.032 ––– V/°C Reference to 25°C, I = 5mA (BR)DSS J D ––– 1.25 1.6 V = 10V, I = 100A R Static Drain-to-Source On-Resistance m GS D DS(on) ––– 1.8 ––– V = 6.0V, I = 50A GS D V Gate Threshold Voltage 2.2 3.0 3.9 V V = V , I = 250µA GS(th) DS GS D ––– ––– 1.0 V =40 V, V = 0V I Drain-to-Source Leakage Current µA DS GS DSS ––– ––– 150 V =40V,V = 0V,T =125°C DS GS J Gate-to-Source Forward Leakage ––– ––– 100 V = 20V I nA GS GSS Gate-to-Source Reverse Leakage ––– ––– -100 V = -20V GS R Gate Resistance ––– 2.1 ––– G Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by T , starting T = 25°C, L = 0.099mH,R = 50, I = 100A, V =10V. Jmax J G AS GS I 100A, di/dt 1307A/µs, V V , T 175°C. SD DD (BR)DSS J Pulse width 400µs; duty cycle 2%. C eff. (TR) is a fixed capacitance that gives the same charging time as C while V is rising from 0 to 80% V . oss oss DS DSS C eff. (ER) is a fixed capacitance that gives the same energy as C while VDS is rising from 0 to 80% V . oss oss DSS R is measured at T approximately 90°C. J Limited by T , starting T = 25°C, L= 1mH, R = 50, I = 47A, V =10V. Jmax J G AS GS * Halogen -Free since April 30, 2014 2 2018-07-10
IRFB7434PbF Dynamic Electrical Characteristics @ T = 25°C (unless otherwise specified) J Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 211 ––– ––– S V = 10V, I =100A DS D Q Total Gate Charge ––– 216 324 I = 100A g D Q Gate-to-Source Charge ––– 51 ––– V = 20V gs nC DS Q Gate-to-Drain Charge ––– 77 ––– V = 10V gd GS Q Total Gate Charge Sync. (Qg– Qgd) ––– 139 ––– sync t Turn-On Delay Time ––– 24 ––– V = 20V d(on) DD t Rise Time ––– 68 ––– I = 30A r D ns t Turn-Off Delay Time ––– 115 ––– R = 2.7 d(off) G t Fall Time ––– 68 ––– V = 10V f GS C Input Capacitance ––– 10820 ––– V = 0V iss GS C Output Capacitance ––– 1540 ––– V = 25V oss DS C Reverse Transfer Capacitance ––– 1140 ––– ƒ = 1.0MHz, See Fig.5 rss pF Effective Output Capacitance C ––– 1880 ––– V = 0V, VDS = 0V to 32V oss eff.(ER) (Energy Related) GS C Output Capacitance (Time Related) ––– 2208 ––– V = 0V, VDS = 0V to 32V oss eff.(TR) GS Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol D I ––– ––– 317 S (Body Diode) showing the A Pulsed Source Current integral reverse G I ––– ––– 1270 SM (Body Diode) p-n junction diode. S V Diode Forward Voltage ––– 0.9 1.3 V T = 25°C,I = 100A,V = 0V SD J S GS dv/dt Peak Diode Recovery dv/dt ––– 5.0 ––– V/ns T = 175°C,I = 100A,V = 40V J S DS ––– 38 ––– T = 25°C V = 34V t Reverse Recovery Time ns J DD rr ––– 37 ––– T = 125°C I = 100A, J F ––– 50 ––– T = 25°C di/dt = 100A/µs J Q Reverse Recovery Charge nC rr ––– 50 ––– T = 125°C J I Reverse Recovery Current ––– 1.9 ––– A T = 25°C RRM J 3 2018-07-10
IRFB7434PbF 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A)(t n 100 876...000VVV )An(t 876...000VVV errCu BOTTOM 554...505VVV Ceurr100 BOTTOM 554...505VVV e e cur 10 ucr o o 4.5V S S o- o- n-t n-t 10 ia ai Dr 1 4.5V rD , D , D I 60µs PULSE WIDTH I 60µs PULSE WIDTH Tj = 25°C Tj = 175°C 0.1 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics 1000 2.0 nce ID = 100A A)(nt 100 TJ = 175°C ssaitRe 11..68 VGS = 10V erur n O Ce oucrSo-t-Dan riI,D 01.011 TJ =V 26D50S°µC s= P 1U0LVSE WIDTH cer Sou-aon-tiD, rR onS()Dd)azeliNmor ( 0111....8024 0.6 2 4 6 8 10 -60 -20 20 60 100 140 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 5. Typical Transfer Characteristics Fig 6. Normalized On-Resistance vs. Temperature 1000000 14.0 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED ID= 100A 12.0 Fp)100000 CCrossss == CCdgsd + Cgd V)( agelto 10.0 VVDDSS== 3220VV (nce cait 10000 Ciss Vce Sour 8.0 ap o- 6.0 Ca, C Crss Coss e-ttGa 4.0 1000 , S G V 2.0 100 0.0 0.1 1 10 100 0 50 100 150 200 250 300 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Gate-to-Source Voltage 4 2018-07-10
IRFB7434PbF 1000 10000 OPERATION IN THIS AREA LIMITED BY RDS(on) A)(t n 100 TJ = 175°C )An(t e 1000 100µsec eurr Curr 1msec Cani Dr 10 TJ = 25°C ucer o 100 Limited By Package e s So- 10 ever an-it 10msec R, DS 1 D, rD 1 Tc = 25°C DC I I Tj = 175°C VGS = 0V Single Pulse 0.1 0.1 0.0 0.5 1.0 1.5 2.0 2.5 0.1 1 10 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage V) 50 1.6 age( 49 Id = 5.0mA 1.4 VDS= 0V to 32V tol V n 48 1.2 w do 47 ak 1.0 eBrce 4456 µJ()gy 0.8 ur er o n S 44 E 0.6 o- n-t 43 ai 0.4 rD 42 ,S 0.2 S 41 D R)B 40 0.0 V( -60 -20 20 60 100 140 180 0 5 10 15 20 25 30 35 40 45 TJ , Temperature ( °C ) VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical C Stored Energy oss ) 20.0 m ( e nc VGS = 6.0V ats 15.0 VGS = 5.5V si e R n O e ucr 10.0 o S o- VGS = 7.0V n-t VGS = 8.0V ariD 5.0 VGS = 10V ), n o (S D R 0.0 0 100 200 300 400 500 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 2018-07-10
IRFB7434PbF 1 W D = 0.50 C/ ° )C 0.1 00..1200 J h t 0.05 Z ( e 0.01 0.02 s n 0.01 o p s e R la SINGLE PULSE m0.001 ( THERMAL RESPONSE ) rhe Notes: T 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) A) ( nt 100 e rur C e h c n a al 10 v A Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 600 TOP Single Pulse Notes on Repetitive Avalanche Curves , Figures 15, 16: BOTTOM 1.0% Duty Cycle (For further info, see AN-1005 at www.irf.com) J) 500 ID = 100A 1.Avalanche failures assumption: m Purely a thermal phenomenon and failure occurs at a ( y temperature far in excess of T . This is validated for every g 400 jmax er part type. n E 2. Safe operation in Avalanche is allowed as long asT is not e h 300 exceeded. jmax c n 3. Equation below based on circuit and waveforms shown in Figures a la 23a, 23b. v A 200 4. P = Average power dissipation per single avalanche pulse. , R 5. BDV ( a=v eR) ated breakdown voltage (1.3 factor accounts for voltage EA increase during avalanche). 100 6. I = Allowable avalanche current. av 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 14, 15). 0 t = Average time in avalanche. 25 50 75 100 125 150 175 av D = Duty cycle in avalanche = tav ·f Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·I ) = T/ Z av thJC I = 2T/ [1.3·BV·Z ] av th Fig 16. Maximum Avalanche Energy vs. Temperature EAS (AR) = PD (ave)·tav 6 2018-07-10
IRFB7434PbF 4.5 10 IF = 60A V) VR = 34V age( 3.5 8 TJ = 25°C olt TJ = 125°C V d 6 ol A) she 2.5 ( M hr R te IR 4 at ID = 250µA G ID = 1.0mA , h) 1.5 ID = 1.0A (tS 2 G V 0.5 0 -75 -25 25 75 125 175 225 0 200 400 600 800 1000 TJ , Temperature ( °C ) diF /dt (A/µs) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 10 240 IF = 100A 220 IF = 60A VR = 34V VR = 34V 8 TJ = 25°C 200 TJ = 25°C TJ = 125°C 180 TJ = 125°C A)( M 6 )Cn( R 114600 R R IR 4 Q 120 100 2 80 60 0 40 0 200 400 600 800 1000 0 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt 200 IF = 100A VR = 34V 160 TJ = 25°C TJ = 125°C )C 120 n ( R R Q 80 40 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 2018-07-10
IRFB7434PbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V VDS L DRIVER RG D.U.T + - VDD IAS A 20V tp 0.01 IAS Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 25a. Gate Charge Test Circuit Fig 25b. Gate Charge Waveform 8 2018-07-10
IRFB7434PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAM PLE: THIS IS AN IRF1010 LO T CO DE 1789 INTERNATIO N AL PART NU M BER ASSEM BLED O N W W 19, 2000 RECTIFIER IN TH E ASSEM BLY LIN E "C" LO G O D ATE CO DE YEAR 0 = 2000 N ote: "P" in assem bly line position ASSEM BLY indicates "Lead - Free" LO T C O DE W EEK 19 LIN E C TO-220AB packages are not recommended for Surface Mount Application. 9 2018-07-10
IRFB7434PbF Qualification Information Industrial Qualification Level (per JEDEC JESD47F) † Moisture Sensitivity Level TO-220 N/A RoHS Compliant Yes † Applicable version of JEDEC standard at the time of product release. Revision History Date Comment Updated data sheet with new IR corporate template. 4/22/2014 Updated package outline and part marking on page 9. Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1. Updated E = 1098mJ on page 2 11/18/2014 AS(L =1mH) Updated note 9 “Limited by T , starting T = 25°C, L = 1mH, R = 50, I = 47A, V =10V”. on page 2 Jmax J G AS GS Updated datasheet with corporate template. 07/10/2018 Corrected typo for Fig 10 (package limit from 10ms curve to DC curve) –on page 5 Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2016-04-19 IMPORTANT NOTICE For further information on the product, technology, The information given in this document shall in no event Published by be regarded as a guarantee of conditions or delivery terms and conditions and prices please contact your nearest Infineon Technologies office Infineon Technologies AG characteristics (“Beschaffenheitsgarantie”) . (www.infineon.com). 81726 Munich, Germany With respect to any examples, hints or any typical values stated herein and/or any information regarding the Please note that this product is not qualified according to © 2016 Infineon Technologies AG. application of the product, Infineon Technologies the AEC Q100 or AEC Q101 documents of the Automotive All Rights Reserved. hereby disclaims any and all warranties and liabilities of Electronics Council. any kind, including without limitation warranties of non- infringement of intellectual property rights of any third Do you have a question about this party. WARNINGS document? Due to technical requirements products may contain Email: erratum@infineon.com In addition, any information given in this document is dangerous substances. For information on the types in subject to customer’s compliance with its obligations question please contact your nearest Infineon stated in this document and any applicable legal Technologies office. requirements, norms and standards concerning Document reference customer’s products and any use of the product of Except as otherwise explicitly approved by Infineon ifx1 Infineon Technologies in customer’s applications. Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon The data contained in this document is exclusively Technologies’ products may not be used in any intended for technically trained staff. It is the applications where a failure of the product or any responsibility of customer’s technical departments consequences of the use thereof can reasonably be to evaluate the suitability of the product for the expected to result in personal injury. intended application and the completeness of the product information given in this document with respect to such application. 10 2018-07-10
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRFB7434PBF