图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRFB5615PBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRFB5615PBF产品简介:

ICGOO电子元器件商城为您提供IRFB5615PBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRFB5615PBF价格参考。International RectifierIRFB5615PBF封装/规格:晶体管 - FET,MOSFET - 单, 通孔 N 沟道 150V 35A(Tc) 144W(Tc) TO-220AB。您可以下载IRFB5615PBF参考资料、Datasheet数据手册功能说明书,资料中有IRFB5615PBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET N-CH 150V 35A TO-220ABMOSFET Audio MOSFT 150V 34A 41mOhm 26nC

产品分类

FET - 单分离式半导体

FET功能

标准

FET类型

MOSFET N 通道,金属氧化物

Id-ContinuousDrainCurrent

35 A

Id-连续漏极电流

35 A

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

晶体管,MOSFET,International Rectifier IRFB5615PBF-

数据手册

点击此处下载产品Datasheet

产品型号

IRFB5615PBF

PCN组件/产地

点击此处下载产品Datasheet

Pd-PowerDissipation

144 W

Pd-功率耗散

144 W

Qg-GateCharge

26 nC

Qg-栅极电荷

26 nC

RdsOn-Drain-SourceResistance

32 mOhms

RdsOn-漏源导通电阻

32 mOhms

Vds-Drain-SourceBreakdownVoltage

150 V

Vds-漏源极击穿电压

150 V

Vgs-Gate-SourceBreakdownVoltage

20 V

Vgs-栅源极击穿电压

20 V

不同Id时的Vgs(th)(最大值)

5V @ 100µA

不同Vds时的输入电容(Ciss)

1750pF @ 50V

不同Vgs时的栅极电荷(Qg)

40nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

39 毫欧 @ 21A,10V

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品目录页面

点击此处下载产品Datasheet

产品种类

MOSFET

供应商器件封装

TO-220AB

功率-最大值

144W

功率耗散

144 W

包装

管件

商标

International Rectifier

安装类型

通孔

安装风格

Through Hole

导通电阻

32 mOhms

封装

Tube

封装/外壳

TO-220-3

封装/箱体

TO-220-3

工厂包装数量

50

晶体管极性

N-Channel

栅极电荷Qg

26 nC

标准包装

50

汲极/源极击穿电压

150 V

漏极连续电流

35 A

漏源极电压(Vdss)

150V

电流-连续漏极(Id)(25°C时)

35A (Tc)

设计资源

http://www.irf.com/product-info/models/saber/irfb5615pbf.sinhttp://www.irf.com/product-info/models/spice/irfb5615pbf.spi

配置

Single

闸/源击穿电压

20 V

推荐商品

型号:NTD4808N-1G

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:STD40NF03LT4

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:NTK3134NT1G

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IXFH6N120P

品牌:IXYS

产品名称:分立半导体产品

获取报价

型号:IRF1324S-7PPBF

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:SI4430BDY-T1-E3

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:MMDF3N02HDR2G

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:APT8014JLL

品牌:Microsemi Corporation

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IRFB5615PBF 相关产品

NTJS4405NT1G

品牌:ON Semiconductor

价格:¥0.46-¥0.61

NTD4969N-35G

品牌:ON Semiconductor

价格:

CSD18540Q5B

品牌:Texas Instruments

价格:

CSD16301Q2

品牌:Texas Instruments

价格:¥1.01-¥2.91

FQP27N25

品牌:ON Semiconductor

价格:¥12.83-¥12.83

SI9433BDY-T1-E3

品牌:Vishay Siliconix

价格:¥2.46-¥2.46

DMN3007LSSQ-13

品牌:Diodes Incorporated

价格:

STW13NK80Z

品牌:STMicroelectronics

价格:

PDF Datasheet 数据手册内容提取

(cid:2)(cid:3)(cid:1)(cid:4)(cid:1)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9) (cid:1)(cid:2)(cid:3)(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:1)(cid:2)(cid:9)(cid:7)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:4) IRFB5615PbF Features Key Parameters • Key Parameters Optimized for Class-D Audio V 150 V DS Amplifier Applications R typ. @ 10V 32 m(cid:0) DS(ON) • Low R for Improved Efficiency Q typ. 26 nC DSON g • Low QG and QSW for Better THD and Improved Qsw typ. 11 nC Efficiency RG(int) typ. 2.7 Ω T max 175 °C • Low Q for Better THD and Lower EMI J RR • 175°C Operating Junction Temperature for D Ruggedness D • Can Deliver up to 300W per Channel into(cid:1)4Ω(cid:1)Load in Half-Bridge Configuration Amplifier G S D G S TO-220AB G D S Gate Drain Source Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications. Absolute Maximum Ratings Parameter Max. Units V Drain-to-Source Voltage 150 DS V V Gate-to-Source Voltage ±20 GS I @ T = 25°C Continuous Drain Current, V @ 10V 35 D C GS I @ T = 100°C Continuous Drain Current, V @ 10V 25 A D C GS I Pulsed Drain Current (cid:0) 140 DM P @T = 25°C Power Dissipation (cid:1) 144 D C W P @T = 100°C Power Dissipation (cid:1) 72 D C Linear Derating Factor 0.96 W/°C T Operating Junction and -55 to + 175 J T Storage Temperature Range STG °C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw 10lb(cid:2)in (1.1N(cid:2)m) Thermal Resistance Parameter Typ. Max. Units R Junction-to-Case (cid:1) ––– 1.045 θJC R Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W θCS R Junction-to-Ambient (cid:1) ––– 62 θJA Notes(cid:1)(cid:1)(cid:2)through (cid:3) are on page 2 www.irf.com 1 09/05/08

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:9)(cid:3) Electrical Characteristics @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions BV Drain-to-Source Breakdown Voltage 150 ––– ––– V V = 0V, I = 250µA DSS GS D ∆ΒV /∆T Breakdown Voltage Temp. Coefficient ––– 0.18 ––– V/°C Reference to 25°C, I = 1mA DSS J D R Static Drain-to-Source On-Resistance ––– 32 39 mΩ V = 10V, I = 21A (cid:4) DS(on) GS D V Gate Threshold Voltage 3.0 ––– 5.0 V V = V , I = 100µA GS(th) DS GS D ∆V /∆T Gate Threshold Voltage Coefficient ––– -13 ––– mV/°C GS(th) J I Drain-to-Source Leakage Current ––– ––– 20 V = 150V, V = 0V DSS µA DS GS ––– ––– 250 V = 150V, V = 0V, T = 125°C DS GS J I Gate-to-Source Forward Leakage ––– ––– 100 V = 20V GSS nA GS Gate-to-Source Reverse Leakage ––– ––– -100 V = -20V GS g Forward Transconductance 35 ––– ––– S V = 50V, I = 21A fs DS D Q Total Gate Charge ––– 26 40 g Q Pre-Vth Gate-to-Source Charge ––– 6.4 ––– V =75V gs1 DS Q Post-Vth Gate-to-Source Charge ––– 2.2 ––– V = 10V gs2 nC GS Q Gate-to-Drain Charge ––– 9.0 ––– I = 21A gd D Q Gate Charge Overdrive ––– 8.9 ––– See Fig. 6 and 19 godr Q Switch Charge (Q + Q ) ––– 11 ––– sw gs2 gd RG(int) Internal Gate Resistance ––– 2.7 5.0 Ω t Turn-On Delay Time ––– 8.9 ––– V = 75V, V = 10V(cid:1)(cid:4) d(on) DD GS t Rise Time ––– 23.1 ––– I = 21A r ns D td(off) Turn-Off Delay Time ––– 17.2 ––– RG = 2.4Ω t Fall Time ––– 13.1 ––– f C Input Capacitance ––– 1750 ––– V = 0V iss GS C Output Capacitance ––– 155 ––– V = 50V oss pF DS C Reverse Transfer Capacitance ––– 40 ––– ƒ = 1.0MHz, See Fig.5 rss C Effective Output Capacitance ––– 175 ––– V = 0V, V = 0V to 120V oss GS DS LD Internal Drain Inductance Between lead, D ––– 4.5 ––– 6mm (0.25in.) nH L Internal Source Inductance from package G S ––– 7.5 ––– and center of die contact S Avalanche Characteristics Parameter Typ. Max. Units EAS Single Pulse Avalanche Energy(cid:0) ––– 109 mJ IAR Avalanche Current(cid:1)(cid:2) See Fig. 14, 15, 17a, 17b A EAR Repetitive Avalanche Energy (cid:2) mJ Diode Characteristics Parameter Min. Typ. Max. Units Conditions I @ T = 25°C Continuous Source Current MOSFET symbol S C ––– ––– 35 (Body Diode) showing the A I Pulsed Source Current integral reverse SM ––– ––– 140 (Body Diode)(cid:1)(cid:3) p-n junction diode. V Diode Forward Voltage ––– ––– 1.3 V T = 25°C, I = 21A, V = 0V (cid:4) SD J S GS t Reverse Recovery Time ––– 80 120 ns T = 25°C, I = 21A, V =120V rr J F R Q Reverse Recovery Charge ––– 312 468 nC di/dt = 100A/µs (cid:4) rr (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1)(cid:1)Repetitive rating; pulse width limited by max. junction temperature. (cid:4) Rθ is measured at TJ of approximately 90°C. (cid:2) (cid:1)Starting TJ = 25°C, L = 0.51mH, RG = 25Ω, IAS = 21A. (cid:5) Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive (cid:3) Pulse width ≤ 400µs; duty cycle ≤ 2%. avalanche information 2 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:9)(cid:3) 1000 1000 VGS VGS TOP 15V TOP 15V 12V 12V An()t 100 187..000VVV An()t 100 187..000VVV e 6.0V e 6.0V Curr 10 BOTTOM 55..50VV Curr BOTTOM 55..50VV e e ucr ucr 10 o o S S 5.0V o- 1 o- n-t n-t ai ai Dr 5.0V Dr 1 ,D 0.1 , D I ≤60µs PULSE WIDTH I ≤60µs PULSE WIDTH Tj = 25°C Tj = 175°C 0.01 0.1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 3.0 ec ID = 21A n A()ent 100 TJ = 175°C Reanss ti 2.5 VGS = 10V Cuuecrrr 10 TJ = 25°C OSouecr aedz)il2.0 So o- m Danor-- tI,iD 1 V≤6D0Sµ s= P5U0VLSE WIDTH Danr-, tiRDSon() No(r 11..05 0.1 0.5 2 4 6 8 10 12 14 16 -60-40-20 0 20 40 60 80100120140160180 T , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) J Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 100000 14.0 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED ID= 21A 12.0 Fepc() 10000 CCrossss C ==i sCCsdgsd + Cgd VVoageec() t l 108..00 VVVDDDSSS=== 317025V0VV anpacti 1000 Coss Soou-r 6.0 Ca e-t C, Crss Gat 4.0 100 , S G V 2.0 10 0.0 1 10 100 1000 0 5 10 15 20 25 30 35 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage www.irf.com 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:9)(cid:3) 1000 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) A) A) n(t n( t 100 e e urr 100 urr 100µsec C C n e 1msec Dear i TJ = 175°C Soucr 10 10msec evsr 10 TJ = 25°C no--t Re ,DS Dar, iD 1 Tc = 25°C DC I I Tj = 175°C VGS = 0V Single Pulse 1.0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 40 6.0 35 V) 5.5 e( 5.0 30 g a A) otl 4.5 Cuenrr(t 2205 Vehods l 34..50 Dnar iI,D 1105 Ghaer t,th) 23..50 IIIIDDDD ==== 1121..500000mAuµAAA S(t 2.0 G 5 V 1.5 0 1.0 25 50 75 100 125 150 175 -75 -50 -25 0 25 50 75 100125150175 TC , Case Temperature (°C) TJ , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature 10 W C/ °) C 1 D = 0.50 J h Z t 0.20 Raeponess( l 0.1 0000..00..012150 τJτJτ1τ1 R1R1 τ2τR22R2 Rτ33Rτ33 τR4τ4R44τCτR000i ...(025°260C321/210W422 ) 000τ...i000 (000s001e011c001)865 m 0.01 Ci= τi/Ri 0.25880 0.005407 Ther SINGLE PULSE Ci i/Ri N1.o Dteust:y Factor D = t1/t2 ( THERMAL RESPONSE ) 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t , Rectangular Pulse Duration (sec) 1 Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:9)(cid:3) )Ω 0.4 500 nec( 0.35 ID = 21A mJy() 450 TOP I D2.8A aRessti 0.3 Eneger 345000 BOTTOM52.13AA n 0.25 h Oe anc 300 oucr 0.2 Aavl 250 S e - Dnoar-ti0.01.51 TJ = 125°C Peungs ll 125000 , n)So(0.05 S ,iAS 15000 D TJ = 25°C E R 0 0 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 175 VGS, Gate -to -Source Voltage (V) Starting TJ , Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 100 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) A) 0.01 n(t 10 e urr 0.05 C he 0.10 c n a al 1 v A Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τj = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 120 1. Avalanche failures assumption: TOP Single Pulse Purely a thermal phenomenon and failure occurs at a BOTTOM 1.0% Duty Cycle temperature far in excess of T . This is validated for J) 100 ID = 21A every part type. jmax m y( 2. Safe operation in Avalanche is allowed as long as neither g 80 Tjmax nor Iav (max) is exceeded ner 3. Equation below based on circuit and waveforms shown in E e Figures 17a, 17b. h 60 4. P = Average power dissipation per single c D (ave) an avalanche pulse. al 5. B = Rated breakdown voltage (1.3 factor accounts for v V A 40 voltage increase during avalanche). , R 6. Iav = Allowable avalanche current. A E 7. ∆T = Allowable rise in junction temperature, not to exceed 20 T (assumed as 25°C in Figure 14, 15). jmax t Average time in avalanche. av = 0 D = Duty cycle in avalanche = tav ·f Z (D, t ) = Transient thermal resistance, see figure 11) 25 50 75 100 125 150 175 thJC av P = 1/2 ( 1.3·BV·I ) =(cid:7)(cid:1)T/ Z Starting TJ , Junction Temperature (°C) D (ave)I =2(cid:1)T/ [1.3·BaVv·Z ] thJC av th E = P ·t Fig 15. Maximum Avalanche Energy Vs. Temperature AS (AR) D (ave) av www.irf.com 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:9)(cid:3) Driver Gate Drive (cid:8)(cid:9)(cid:10)(cid:9)(cid:11) P.W. Period D = + P.W. Period (cid:27) (cid:3) (cid:22)(cid:10)(cid:20)(cid:18)(cid:4)(cid:10)(cid:12)(cid:8)(cid:23)(cid:17)(cid:15)(cid:19)(cid:4)(cid:12)(cid:8)(cid:22)(cid:19)(cid:24)(cid:6)(cid:10)(cid:11)(cid:7)(cid:20)(cid:17)(cid:12)(cid:10)(cid:19)(cid:24)(cid:6) VGS=10V • (cid:8)(cid:23)(cid:19)(cid:25)(cid:8)(cid:2)(cid:12)(cid:20)(cid:17)(cid:15)(cid:8)(cid:26)(cid:24)(cid:11)(cid:4)(cid:18)(cid:12)(cid:17)(cid:24)(cid:18)(cid:7) (cid:8)(cid:8) • (cid:21)(cid:20)(cid:19)(cid:4)(cid:24)(cid:11)(cid:8)(cid:3)(cid:5)(cid:17)(cid:24)(cid:7) - (cid:8)(cid:8)(cid:8)(cid:8) •(cid:8)(cid:8) (cid:8) (cid:8)(cid:23)(cid:22)(cid:19)(cid:4)(cid:25)(cid:20)(cid:20)(cid:8)(cid:23)(cid:7)(cid:7)(cid:24)(cid:17)(cid:12)(cid:8)(cid:27)(cid:29)(cid:17)(cid:20)(cid:17)(cid:28)(cid:24)(cid:7)(cid:6)(cid:8)(cid:26)(cid:24)(cid:30)(cid:19)(cid:11)(cid:20)(cid:4)(cid:31)(cid:18)(cid:7)(cid:12)(cid:17)(cid:20)(cid:24)(cid:18)(cid:7) D.U.T. ISDWaveform + (cid:2) Reverse (cid:4) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:1) dv/dt VDD (cid:2) (cid:3)(cid:21) • (cid:11) !(cid:11)(cid:12)(cid:8)(cid:18)(cid:19)(cid:24)(cid:12)(cid:20)(cid:19)(cid:5)(cid:5)(cid:7)(cid:11)(cid:8)"(cid:15)(cid:8)#(cid:1) (cid:1)(cid:1) Re-Applied • (cid:1)(cid:20)(cid:10) (cid:7)(cid:20)(cid:8)(cid:6)(cid:17)(cid:31)(cid:7)(cid:8)(cid:12)(cid:15)$(cid:7)(cid:8)(cid:17)(cid:6)(cid:8)(cid:1)%&%(cid:29)% + Voltage Body Diode Forward Drop • (cid:26)(cid:2)(cid:3)(cid:8)(cid:18)(cid:19)(cid:24)(cid:12)(cid:20)(cid:19)(cid:5)(cid:5)(cid:7)(cid:11)(cid:8)"(cid:15)(cid:8)(cid:1)(cid:4)(cid:12)(cid:15)(cid:8)(cid:16)(cid:17)(cid:18)(cid:12)(cid:19)(cid:20)(cid:8)’(cid:1)’ - (cid:26)(cid:24)In(cid:11)d(cid:4)u(cid:18)c(cid:12)t(cid:19)o(cid:20)r(cid:8)(cid:22) C(cid:4)u(cid:20)r(cid:20)e(cid:7)n(cid:24)t(cid:12) • (cid:1)%&%(cid:29)%(cid:8)((cid:8)(cid:1)(cid:7) (cid:10)(cid:18)(cid:7)(cid:8)&(cid:24)(cid:11)(cid:7)(cid:20)(cid:8)(cid:29)(cid:7)(cid:6)(cid:12) Ripple ≤ 5% ISD (cid:27)(cid:1)(cid:2) (cid:1)(cid:10)(cid:1)(cid:11)(cid:2)(cid:1)(cid:12)(cid:13)(cid:14)(cid:1)(cid:15)(cid:13)(cid:16)(cid:17)(cid:18)(cid:1)(cid:15)(cid:19)(cid:20)(cid:19)(cid:21)(cid:1)(cid:4)(cid:19)(cid:20)(cid:17)(cid:18)(cid:19)(cid:22) (cid:21)(cid:2) Fig 16. (cid:2)(cid:10)(cid:11)(cid:12)(cid:1)(cid:3)(cid:13)(cid:14)(cid:15)(cid:10)(cid:1)(cid:16)(cid:10)(cid:17)(cid:14)(cid:18)(cid:10)(cid:19)(cid:20)(cid:1)(cid:15)(cid:18)(cid:21)(cid:15)(cid:22)(cid:1)(cid:23)(cid:10)(cid:24)(cid:22)(cid:1)(cid:25)(cid:13)(cid:19)(cid:17)(cid:26)(cid:13)(cid:22)(cid:1)for N-Channel HEXFET(cid:1)(cid:1)Power MOSFETs V(BR)DSS 15V tp VDS L DRIVER RG D.U.T + - VDD IAS A 20V tp 0.01Ω IAS Fig 17a. Unclamped Inductive Test Circuit Fig 17b. Unclamped Inductive Waveforms (cid:3) (cid:1) (cid:2)(cid:1)(cid:2) VDS 90% (cid:2) (cid:21)(cid:2) (cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:5) (cid:3) (cid:21) +(cid:2) - (cid:1)(cid:1) (cid:2)(cid:8)(cid:21)(cid:9)(cid:2)(cid:2) 10% (cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:8)≤ 1 (cid:14)(cid:6) VGS (cid:1)(cid:4)(cid:12)(cid:15)(cid:8)(cid:16)(cid:17)(cid:18)(cid:12)(cid:19)(cid:20)(cid:8)≤ 0.1 % td(on) tr td(off) tf Fig 18a. Switching Time Test Circuit Fig 18b. Switching Time Waveforms CurrentRegulator Id SameTypeas D.U.T. Vds Vgs 50KΩ 12V .2µF .3µF + D.U.T. -VDS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr CurrentSampling Resistors Fig 19a. Gate Charge Test Circuit Fig 19b. Gate Charge Waveform 6 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:5)(cid:8)(cid:9)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) (cid:3)(cid:28)(cid:5)(cid:11)(cid:8)(cid:7)(cid:3)(cid:29) (cid:2)(cid:30)(cid:0)(cid:16)(cid:9)(cid:0)(cid:16)(cid:9)(cid:5)(cid:1)(cid:9)(cid:0)(cid:4)(cid:14)(cid:24)(cid:19)(cid:24)(cid:19)(cid:9) (cid:7)(cid:6)(cid:2)(cid:9)(cid:13)(cid:6)(cid:15)(cid:3)(cid:9)(cid:24)(cid:26)(cid:27)(cid:25) (cid:0)(cid:1)(cid:2)(cid:3)(cid:4)(cid:1)(cid:5)(cid:2)(cid:0)(cid:6)(cid:1)(cid:5)(cid:7) (cid:8)(cid:5)(cid:4)(cid:2)(cid:9)(cid:1)(cid:10)(cid:11)(cid:12)(cid:3)(cid:4) (cid:5)(cid:16)(cid:16)(cid:3)(cid:11)(cid:12)(cid:7)(cid:3)(cid:15)(cid:9)(cid:6)(cid:1)(cid:9)(cid:22)(cid:22)(cid:9)(cid:24)(cid:25)0(cid:9)(cid:21)(cid:19)(cid:19)(cid:19) (cid:4)(cid:3)(cid:13)(cid:2)(cid:0)(cid:14)(cid:0)(cid:3)(cid:4) (cid:0)(cid:1)(cid:9)(cid:2)(cid:30)(cid:3)(cid:9)(cid:5)(cid:16)(cid:16)(cid:3)(cid:11)(cid:12)(cid:7)(cid:17)(cid:9)(cid:7)(cid:0)(cid:1)(cid:3)(cid:9)"(cid:13)" (cid:7)(cid:6)(cid:18)(cid:6) (cid:15)(cid:5)(cid:2)(cid:3)(cid:9)(cid:13)(cid:6)(cid:15)(cid:3) (cid:17)(cid:3)(cid:5)(cid:4)(cid:9)(cid:19)(cid:9)(cid:20)(cid:9)(cid:21)(cid:19)(cid:19)(cid:19) (cid:1)(cid:31) !(cid:29)(cid:9)"(cid:8)"(cid:9)#$(cid:9)%&&!’()*(cid:9))#$!(cid:9)+(cid:31)&# #(cid:31)$ (cid:5)(cid:16)(cid:16)(cid:3)(cid:11)(cid:12)(cid:7)(cid:17) #$,#-% !&(cid:9)"(cid:7)!%,(cid:9).(cid:9)(cid:14)/!!" (cid:7)(cid:6)(cid:2)(cid:9)(cid:13)(cid:6)(cid:15)(cid:3) (cid:22)(cid:3)(cid:3)(cid:23)(cid:9)(cid:24)(cid:25) (cid:7)(cid:0)(cid:1)(cid:3)(cid:9)(cid:13) TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2008 www.irf.com 7

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRFB5615PBF