ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRF9610PBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRF9610PBF产品简介:
ICGOO电子元器件商城为您提供IRF9610PBF由Vishay设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF9610PBF价格参考¥4.66-¥4.66。VishayIRF9610PBF封装/规格:晶体管 - FET,MOSFET - 单, 通孔 P 沟道 200V 1.8A(Tc) 20W(Tc) TO-220AB。您可以下载IRF9610PBF参考资料、Datasheet数据手册功能说明书,资料中有IRF9610PBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
ChannelMode | Enhancement |
描述 | MOSFET P-CH 200V 1.8A TO-220ABMOSFET P-Chan 200V 1.8 Amp |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET P 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 1.8 A |
Id-连续漏极电流 | 1.8 A |
品牌 | Vishay SiliconixVishay / Siliconix |
产品手册 | |
产品图片 | |
rohs | RoHS 合规性豁免无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,Vishay / Siliconix IRF9610PBF- |
数据手册 | |
产品型号 | IRF9610PBFIRF9610PBF |
Pd-PowerDissipation | 2 W |
Pd-功率耗散 | 20 W |
RdsOn-Drain-SourceResistance | 3 Ohms |
RdsOn-漏源导通电阻 | 3 Ohms |
Vds-Drain-SourceBreakdownVoltage | - 200 V |
Vds-漏源极击穿电压 | - 200 V |
Vgs-Gate-SourceBreakdownVoltage | +/- 20 V |
Vgs-栅源极击穿电压 | 20 V |
上升时间 | 15 ns |
下降时间 | 8 ns |
不同Id时的Vgs(th)(最大值) | 4V @ 250µA |
不同Vds时的输入电容(Ciss) | 170pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 11nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 3 欧姆 @ 900mA,10V |
产品目录绘图 | |
产品目录页面 | |
产品种类 | MOSFET |
供应商器件封装 | TO-220AB |
其它名称 | *IRF9610PBF |
典型关闭延迟时间 | 10 ns |
功率-最大值 | 20W |
功率耗散 | 2 W |
包装 | 管件 |
商标 | Vishay / Siliconix |
安装类型 | 通孔 |
安装风格 | Through Hole |
导通电阻 | 3 Ohms |
封装 | Tube |
封装/外壳 | TO-220-3 |
封装/箱体 | TO-220-3 |
工厂包装数量 | 1000 |
晶体管极性 | P-Channel |
最大工作温度 | + 150 C |
最小工作温度 | - 55 C |
标准包装 | 50 |
汲极/源极击穿电压 | - 200 V |
漏极连续电流 | 1.8 A |
漏源极电压(Vdss) | 200V |
电流-连续漏极(Id)(25°C时) | 1.8A (Tc) |
通道模式 | Enhancement |
配置 | Single |
闸/源击穿电压 | +/- 20 V |
IRF9610, SiHF9610 Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY • Dynamic dV/dt Rating V (V) - 200 DS (cid:129) P-Channel RDS(on) (Ω) VGS = - 10 V 3.0 Available (cid:129) Fast Switching RoHS* Q (Max.) (nC) 11 g (cid:129) Ease of Paralleling COMPLIANT Q (nC) 7.0 gs (cid:129) Simple Drive Requirements Q (nC) 4.0 gd (cid:129) Lead (Pb)-free Available Configuration Single DESCRIPTION S The Power MOSFETs technology is the key to Vishay’s TO-220 advanced line of Power MOSFET transistors. The efficient geometry and unique processing of the Power MOSFETs G design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness. The TO-220 package is universally preferred for all S commercial-industrial applications at power dissipation D G D levels to approximately 50 W. The low thermal resistance P-Channel MOSFET and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. ORDERING INFORMATION Package TO-220 IRF9610PbF Lead (Pb)-free SiHF9610-E3 IRF9610 SnPb SiHF9610 ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted C PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V - 200 DS V Gate-Source Voltage V ± 20 GS TC = 25 - 1.8 Continuous Drain Current V at - 10 V I GS D TC = 100 - 1.0 A Pulsed Drain Currenta I - 7.0 DM Linear Derating Factor 0.16 W/°C Maximum Power Dissipation T = 25 °C P 20 W C D Inductive Current, Clamp I - 7.0 A LM Peak Diode Recovery dV/dtc dV/dt - 5.0 V/ns Operating Junction and Storage Temperature Range T, T - 55 to + 150 J stg °C Soldering Recommendations (Peak Temperature) for 10 s 300d 10 lbf · in Mounting Torque 6-32 or M3 screw 1.1 N · m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 5). b. Not applicable. c. ISD ≤ - 1.8 A, dI/dt ≤ 70 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 1
IRF9610, SiHF9610 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. UNIT Maximum Junction-to-Ambient R - 62 thJA Case-to-Sink, Flat, Greased Surface R 0.50 - °C/W thCS Maximum Junction-to-Case (Drain) R - 6.4 thJC SPECIFICATIONS T = 25 °C, unless otherwise noted J PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS VGS = 0 V, ID = - 250 µA - 200 - - V VDS Temperature Coefficient ΔVDS/TJ Reference to 25 °C, ID = - 1 mA - - 0.23 - V/°C Gate-Source Threshold Voltage VGS(th) VDS = VGS, ID = - 250 µA - 2.0 - - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA VDS = - 200 V, VGS = 0 V - - - 100 Zero Gate Voltage Drain Current I µA DSS VDS = - 160 V, VGS = 0 V, TJ = 125 °C - - - 500 Drain-Source On-State Resistance RDS(on) VGS = - 10 V ID = -0.90 Ab - - 3.0 Ω Forward Transconductance gfs VDS = - 50 V, ID = - 0.90 Ab 0.90 - - S Dynamic Input Capacitance C - 170 - iss V = 0 V, GS Output Capacitance C V = - 25 V, - 50 - pF oss DS f = 1.0 MHz, see fig. 10 Reverse Transfer Capacitance C - 15 - rss Total Gate Charge Q - - 11 g I = - 3.5 A, V = - 160 V, Gate-Source Charge Q V = - 10 V D DS - - 7.0 nC gs GS see fig. 11 and 18b Gate-Drain Charge Q - - 4.0 gd Turn-On Delay Time t - 8.0 - d(on) Rise Time tr VDD = - 100 V, ID = - 0.90 A, - 15 - ns Turn-Off Delay Time td(off) RG = 50 Ω, RD = 110 Ω, see fig. 17b - 10 - Fall Time t - 8.0 - f Between lead, Internal Drain Inductance L D - 4.5 - D 6 mm (0.25") from nH package and center of G Internal Source Inductance LS die contact - 7.5 - S Drain-Source Body Diode Characteristics MOSFET symbol Continuous Source-Drain Diode Current IS showing the D - - - 1.8 A integral reverse G Pulsed Diode Forward Currenta ISM p - n junction diode - - - 7.0 S Body Diode Voltage V T = 25 °C, I = - 1.8 A, V = 0 Vb - - - 5.8 V SD J S GS Body Diode Reverse Recovery Time t - 240 360 ns rr T = 25 °C, I = - 1.8 A, dI/dt = 100 A/µsb J F Body Diode Reverse Recovery Charge Q - 1.7 2.6 µC rr Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 5). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.vishay.com Document Number: 91080 2 S09-0046-Rev. A, 19-Jan-09
IRF9610, SiHF9610 Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted - 2.40 - 2.40 V = - 10, - 9, - 8 V - 7 V GS V = - 10, - 9, - 8, - 7 V GS - 1.92 - 1.92 A) A) nt ( nt ( urre - 1.44 - 6 V urre - 1.44 - 6 V C C n n ai - 0.96 ai - 0.96 Dr Dr , D - 5 V , D - 5 V I - 0.48 I - 0.48 80 µs Pulse Test - 4 V 80 µs Pulse Test - 4 V 0.00 0.00 0 - 10 - 20 - 30 - 40 - 50 0 - 2 - 4 - 6 - 8 - 10 91080_01 VDS, Drain-to-Source Voltage (V) 91080_03 VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics Fig. 3 - Typical Saturation Characteristics - 2.40 102 T = - 55 °C Operation in this area limited J A) 5 by RDS(on) A) - 1.92 TJ = 25 °C ent ( 2 urrent ( - 1.44 TJ = 125 °C ain Curr 105 100 µs ain C - 0.96 , DrD 2 Dr e I 1 1 ms I, D - 0.48 80 µs Pulse Test Negativ 25 TTCJ == 12550 ° °CC 10 ms 0.00 VDS > ID(on) x RDS(on) max. 0.1 Single Pulse 0 - 2 - 4 - 6 - 8 - 10 1 2 5 10 2 5 102 2 5 103 91080_02 VGS, Gate-to-Source Voltage (V) 91080_04 Negative VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Transfer Characteristics Fig. 4 - Maximum Safe Operating Area nt e si an 2.0 ctive Tr)tinU re 1.0 EffeP( e 0.5 D = 0.5 ,Normalized CcnedepmI lam00.00..125 000...0215 Notes: PDM t1 t2 Z(t)/RthJCthJrehT00..002110-500..00212 5 10-4 ST2hinegrlme aPl5 uImlsep 1e(T0dr-e3anncseie)2nt 5 10-2 2 5 0.1123... TDP2JeuMrt yU- FTnaCitc 5 =Bto aPrs,D eD1M . =0=Z Rtht1Jt/hCtJ2(2Ct) = 6.4 5°C/W10 91080_05 t1, Square Wave Pulse Duration (s) Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 3
IRF9610, SiHF9610 Vishay Siliconix 2.0 e 2.5 80 µs Pulse Test nc ID = - 0.6 A VDS > ID(on) x RDS(on) max. sta VGS = - 10 V S) 1.6 esi 2.0 ce ( n R ductan 1.2 TTJJ == 2- 55 5° C°C urce Oalized) 1.5 anscon 0.8 TJ = 125 °C n-to-So(Norm 1.0 Tr ai g,fs 0.4 , Drn) 0.5 o S( 0.0 RD 0.0 0 - 0.48 - 0.96 - 1.44 - 1.92 - 2.40 - 40 0 40 80 120 160 91080_06 ID, Drain Current (A) 91080_09 TJ, Junction Temperature (°C) Fig. 6 - Typical Transconductance vs. Drain Current Fig. 9 - Normalized On-Resistance vs. Temperature - 10.0 500 VGS = 0 V, f = 1 MHz C = C + C , C Shorted - 5.0 iss gs gd ds C = C 400 rss gd C , C A) F) Coss = Cds + Cgs + Cgd Drain Current ( --- 201...050 TJ = 150 °C TJ = 25 °C Capacitance (p 230000 Ciss ≈ Cgs + Cggds gd , D C, Coss I 100 - 0.2 C rss - 0.1 0 - 2.0 - 3.2 - 4.4 - 5.6 - 6.8 - 8.0 0 - 10 - 20 - 30 - 40 - 50 91080_07 VSD, Source-to-Drain Voltage (V) 91080_10 VDS, Drain-to-Source Voltage (V) Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 10 - Typical Capacitance vs. Drain-to-Source Voltage n 1.25 e (V) 20 ID = - 1.8 A w g eakdod) 1.15 e Volta 16 VDS = -V 6D0S V = - 100 V ource Brormalize 1.05 o-Sourc 12 VDS = - 40 V , Drain-to-SSVoltage (N 00..8955 e V, Gate-tGS 84 VDS ativ For test circuit B g see figure 18 0.75 e 0 N - 40 0 40 80 120 160 0 2 4 6 8 91080_08 TJ, Junction Temperature (°C) 91080_11 QG, Total Gate Charge (nC) Fig. 8 - Breakdown Voltage vs. Temperature Fig. 11 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com Document Number: 91080 4 S09-0046-Rev. A, 19-Jan-09
IRF9610, SiHF9610 Vishay Siliconix 7 2.0 R measured with current pulse of DS(on) 6 2.0 µs duration. Initial TJ = 25 °C. A) ce (Heating effect of 2.0 µs pulse is minimal.) nt ( 1.6 R, Drain-to-SourDS(on)ΩOn Resistance () 2435 VGS = - 10V GVS = - 20 V gative I, Drain CurreD 001...482 1 Ne 0 0.0 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 25 50 75 100 125 150 91080_12 ID, Drain Current (A) 91080_13 TC, Case Temperature (°C) Fig. 12 - Typical On-Resistance vs. Drain Current Fig. 13 - Maximum Drain Current vs. Case Temperature 20 W) n ( 15 o ati p si s 10 Di er w o P , D 5 P 0 0 20 40 60 80 100 120 140 91080_14 TC, Case Temperature (°C) Fig. 14 - Power vs. Temperature Derating Curve L Vary tp to obtain VDD required I L V DS V - DD D.U.T. + IL VGS = - 10 V tp EC 0.05 Ω I t L p V VDD = 0.5 VDS EC = 0.75 VDS E DS C Fig. 15 - Clamped Inductive Test Circult Fig. 16 - Clamped Inductive Waveforms Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 5
IRF9610, SiHF9610 Vishay Siliconix R D VDS QG 15 V V GS D.U.T. RG - QGS QGD +VDD V - 10 V G Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Charge Fig. 17a - Switching Time Test Circuit Fig. 18a - Basic Gate Charge Waveform Current regulator Same type as D.U.T. td(on) tr td(off) tf 50 kΩ V GS 12 V 0.2 µF 10 % 0.3 µF - V D.U.T. + DS V 90 % GS VDS - 3 mA I I G D Current sampling resistors Fig. 17b - Switching Time Waveforms Fig. 18b - Gate Charge Test Circuit www.vishay.com Document Number: 91080 6 S09-0046-Rev. A, 19-Jan-09
IRF9610, SiHF9610 Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit D.U.T. + Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer - + - + - RG • dV/dt controlled by RG + • ISD controlled by duty factor "D" - VDD • D.U.T. - device under test Compliment N-Channel of D.U.T. for driver Driver gate drive P.W. Period D = P.W. Period V = - 10 V* GS D.U.T. I waveform SD Reverse recovery Body diode forward current current dI/dt D.U.T. V waveform DS Diode recovery dV/dt V DD Re-applied voltage Body diode forward drop Inductor current Ripple ≤5 % ISD * V = - 5 V for logic level and - 3 V drive devices GS Fig. 19 - For P-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91080. Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 7
Package Information www.vishay.com Vishay Siliconix TO-220-1 A MILLIMETERS INCHES E DIM. MIN. MAX. MIN. MAX. F A 4.24 4.65 0.167 0.183 Ø P b 0.69 1.02 0.027 0.040 Q b(1) 1.14 1.78 0.045 0.070 1) H( c 0.36 0.61 0.014 0.024 D 14.33 15.85 0.564 0.624 E 9.96 10.52 0.392 0.414 D e 2.41 2.67 0.095 0.105 e(1) 4.88 5.28 0.192 0.208 F 1.14 1.40 0.045 0.055 H(1) 6.10 6.71 0.240 0.264 1 2 3 J(1) 2.41 2.92 0.095 0.115 L 13.36 14.40 0.526 0.567 1) L(1) 3.33 4.04 0.131 0.159 L( M* Ø P 3.53 3.94 0.139 0.155 Q 2.54 3.00 0.100 0.118 b(1) L ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031 Note • M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM C b e J(1) e(1) Package Picture ASE Xi’an Revison: 14-Dec-15 1 Document Number: 66542 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROV E RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose o r the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustainin g applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk . Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this documen t or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. © 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 01-Jan-2019 1 Document Number: 91000
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: V ishay: IRF9610 IRF9610PBF