ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRF7451TRPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRF7451TRPBF产品简介:
ICGOO电子元器件商城为您提供IRF7451TRPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF7451TRPBF价格参考。International RectifierIRF7451TRPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 150V 3.6A(Ta) 2.5W(Ta) 8-SO。您可以下载IRF7451TRPBF参考资料、Datasheet数据手册功能说明书,资料中有IRF7451TRPBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N-CH 150V 3.6A 8SOICMOSFET MOSFT 150V 3.6A 90mOhm 28nC |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 3.6 A |
Id-连续漏极电流 | 3.6 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRF7451TRPBFHEXFET® |
数据手册 | |
产品型号 | IRF7451TRPBF |
Pd-PowerDissipation | 2.5 W |
Pd-功率耗散 | 2.5 W |
Qg-GateCharge | 28 nC |
Qg-栅极电荷 | 28 nC |
RdsOn-Drain-SourceResistance | 90 mOhms |
RdsOn-漏源导通电阻 | 90 mOhms |
Vds-Drain-SourceBreakdownVoltage | 150 V |
Vds-漏源极击穿电压 | 150 V |
Vgs-Gate-SourceBreakdownVoltage | 30 V |
Vgs-栅源极击穿电压 | 30 V |
不同Id时的Vgs(th)(最大值) | 5.5V @ 250µA |
不同Vds时的输入电容(Ciss) | 990pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 41nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 90 毫欧 @ 2.2A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品目录页面 | |
产品种类 | MOSFET |
供应商器件封装 | 8-SO |
其它名称 | *IRF7451TRPBF |
功率-最大值 | 2.5W |
功率耗散 | 2.5 W |
包装 | 剪切带 (CT) |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
导通电阻 | 90 mOhms |
封装 | Reel |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工厂包装数量 | 4000 |
晶体管极性 | N-Channel |
栅极电荷Qg | 28 nC |
标准包装 | 1 |
汲极/源极击穿电压 | 150 V |
漏极连续电流 | 3.6 A |
漏源极电压(Vdss) | 150V |
电流-连续漏极(Id)(25°C时) | 3.6A (Ta) |
设计资源 | http://www.irf.com/product-info/models/saber/irf7451.sinhttp://www.irf.com/product-info/models/spice/irf7451.spi |
闸/源击穿电压 | 30 V |
PD- 95725 IRF7451PbF SMPS MOSFET HEXFET(cid:1)(cid:1)Power MOSFET Applications V R max I DSS DS(on) D (cid:1) High frequency DC-DC converters 150V 0.09(cid:1) 3.6A (cid:1) Lead-Free Benefits (cid:1) Low Gate to Drain Charge to Reduce A Switching Losses S 1 8 DA (cid:1) Fully Characterized Capacitance Including S 2 7 D Effective C to Simplify Design, (See OSS App. Note AN1001) S 3 6 D (cid:1) Fully Characterized Avalanche Voltage G 4 5 D and Current SO-8 Top View Absolute Maximum Ratings Parameter Max. Units I @ T = 25°C Continuous Drain Current, V @ 10V 3.6 D A GS I @ T = 70°C Continuous Drain Current, V @ 10V 2.9 A D A GS I Pulsed Drain Current (cid:2) 29 DM P @T = 25°C Power Dissipation(cid:1) 2.5 W D A Linear Derating Factor 0.02 W/°C V Gate-to-Source Voltage ± 30 V GS dv/dt Peak Diode Recovery dv/dt (cid:3) 7.9 V/ns T Operating Junction and -55 to + 150 J TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Thermal Resistance Symbol Parameter Typ. Max. Units RθJL Junction-to-Drain Lead ––– 20 RθJA Junction-to-Ambient (cid:1) ––– 50 °C/W Notes(cid:1)(cid:1)(cid:2)through (cid:3) are on page 8 www.irf.com 1 8/10/04
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 150 ––– ––– V VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.19 ––– V/°C Reference to 25°C, ID = 1mA (cid:4) RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.09 Ω VGS = 10V, ID = 2.2A(cid:5)(cid:4) VGS(th) Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA IDSS Drain-to-Source Leakage Current ––– ––– 25 µA VDS = 150V, VGS = 0V ––– ––– 250 VDS = 120V, VGS = 0V, TJ = 150°C I Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 30V GSS Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -30V Dynamic @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 3.5 ––– ––– S VDS = 25V, ID = 2.2A Qg Total Gate Charge ––– 28 41 ID = 2.2A Qgs Gate-to-Source Charge ––– 6.8 10 nC VDS = 120V Qgd Gate-to-Drain ("Miller") Charge ––– 13 20 VGS = 10V (cid:4) td(on) Turn-On Delay Time ––– 10 ––– VDD = 75V tr Rise Time ––– 4.2 ––– ns ID = 2.2A td(off) Turn-Off Delay Time ––– 17 ––– RG = 6.5Ω tf Fall Time ––– 15 ––– VGS = 10V(cid:5)(cid:4) Ciss Input Capacitance ––– 990 ––– VGS = 0V Coss Output Capacitance ––– 220 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 42 ––– pF ƒ = 1.0MHz Coss Output Capacitance ––– 1260 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 100 ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 180 ––– VGS = 0V, VDS = 0V to 120V (cid:6) Avalanche Characteristics Parameter Typ. Max. Units E Single Pulse Avalanche Energy(cid:7) ––– 210 mJ AS I Avalanche Current(cid:2) ––– 3.6 A AR Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 2.3 MOSFET symbol D (Body Diode) (cid:1) showing the ISM Pulsed Source Current integral reverse G ––– ––– 29 (Body Diode) (cid:2) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 2.2A, VGS = 0V(cid:5)(cid:4) trr Reverse Recovery Time ––– 76 110 ns TJ = 25°C, IF = 2.2A Qrr Reverse RecoveryCharge ––– 270 400 nC di/dt = 100A/µs(cid:1)(cid:4) 2 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) 100 100 V GS V GS TOP 15.0V TOP 15.0V 12.0V 12.0V A) 10.0V A) 10.0V en(t 10 87..00VV en(t 87..00VV Curr 65..05VV Curr 10 65..05VV Souecr 1 BOTTOM 5.0V Souecr BOTTOM 5.0V Danor--ti 0.1 5.0V Daonr--ti 1 5.0V I, D 0.01 I, D 20µs PULSE WIDTH 20µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.001 0.1 1 10 100 0.1 1 10 100 V , Drain-to-Source Voltage (V) V , Drain-to-Source Voltage (V) DS DS Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 e 2.5 ID=3.6A c n nt (A) esista 2.0 urre 10 TJ = 150 ° C n R C O Source 1 Source malized) 1.5 n-to- TJ = 25 ° C n-to-(Nor 1.0 ai ai I , DrD0.1 V20 D µ Ss =P U25LVSE WIDTH R , DrDS(on) 0.5 VGS=10V 0.01 0.0 4.0 5.0 6.0 7.0 8.0 -60 -40 -20 0 20 40 60 80 100 120 140160 VG S , Gate-to-Source Voltage (V) TJ , Junction Temperature( ° C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) 100000 16 VGS = 0V, f = 1 MHZ ID=2.2A V = 120V Ciss = Cgs + Cgd, Cds SHORTED V) VDS= 75V Fp) 10000 CCrossss == CCdgsd + Cgd oltage ( 12 VDDSS= 30V e( V nc e a c acti 1000 Ciss our 8 p S a - C o C, Coss e-t 100 at G Crss V , GS 4 10 1 10 100 1000 0 0 10 20 30 40 V , Drain-to-Source Voltage (V) QG , Total Gate Charge (nC) DS Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 100 100 OPERATION IN THIS AREA LIMITED BY R ) DS(on) A nt ( 10us e A)A) Curr 10 nt (nt ( 10 ain urreurre 100us erse Dr TJ = 150 ° C TJ = 25 ° C Drain CDrain C 1ms Rev 1 I , I , D 1 10ms I , SD TC= 25 ° C T = 150 ° C J V G S = 0 V Single Pulse 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1 10 100 1000 VS D ,Source-to-Drain Voltage (V) VD S , Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) 4.0 (cid:3) (cid:1) (cid:2) (cid:1)(cid:2) (cid:2) (cid:21)(cid:2) (cid:4)(cid:5)(cid:6)(cid:5)(cid:7)(cid:5) A) 3.0 (cid:3) nt ( (cid:21) +-(cid:2)(cid:1)(cid:1) e r r u (cid:8)(cid:9)(cid:2) C 2.0 ain (cid:3)(cid:1)(cid:4)(cid:4)(cid:5)(cid:12)(cid:6)(cid:15)(cid:7)(cid:8)(cid:16)(cid:8)(cid:9)(cid:17)(cid:18)(cid:10)(cid:12)(cid:11)(cid:19)(cid:12)(cid:20)(cid:13)(cid:8)(cid:8)≤≤ 01. 1(cid:14) %(cid:6) Dr I , D1.0 Fig 10a. Switching Time Test Circuit VDS 90% 0.0 25 50 75 100 125 150 TT ,, CAamsbeie Tnet mTepmepraetruartuere( °( C°C)) A 10% Fig 9. Maximum Drain Current Vs. VGS Ambient Temperature td(on) tr td(off) tf Fig 10b. Switching Time Waveforms 100 ) (Z thJC 10 D = 00..2500 e s n 0.10 o p s 0.05 e R al 0.02 PDM m 1 r 0.01 t1 e h t2 T SINGLE PULSE Notes: (THERMAL RESPONSE) 1. Duty factor D =t 1 / t2 2. Peak TJ=PDMx ZthJC+ TC 0.1 0.0001 0.001 0.01 0.1 1 10 100 1000 t , Rectangular Pulse Duration (sec) 1 Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) )e ( Ω 0.085 )e( Ω0.120 c c n n a 0.083 a st st esi esi 0.105 R VGS = 10V R n 0.080 n O O e e ID = 2.2A c c our 0.078 our 0.090 S S Dano, r-t-in) 00..007735 Dnoa-r- t,in)0.075 o o S ( DS( D R R 0.070 0.060 0 2 4 6 8 10 12 14 16 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 ID , Drain Current ( A ) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance Vs. Drain Current Fig 13. On-Resistance Vs. Gate Voltage CurrentRegulator SameTypeasD.U.T. (cid:2) QG 50KΩ (cid:1)(cid:2) 12V .2µF .3µF QGS QGD D.U.T. +-VDS VG mJ) 500 ID VGS y ( TOP 1.6A 3mA Charge rg 2.9A e 400 BOTTOM 3.6A CurrentIGSamplingReIDsistors En e h c Fig 13a&b. Basic Gate Charge Test Circuit n 300 a and Waveform al v A e s 200 ul P 15V e gl n 100 V(BR)DSS Si tp RGVDS IADS.UL.T DRIV+E-RVDDA E , AS 025 50 75 100 125 150 IAS 20V tp 0.01Ω Starting T J , Junction Temperature ( ° C) Fig 14c. Maximum Avalanche Energy Fig 14a&b. Unclamped Inductive Test circuit Vs. Drain Current and Waveforms 6 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) SO-8 Package Outline Dimensions are shown in millimeters (inches) INCHES MILLIMETERS DIM D B MIN MAX MIN MAX A 5 A .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 8 7 6 5 c .0075 .0098 0.19 0.25 6 H D .189 .1968 4.80 5.00 E 0.25 [.010] A E .1497 .1574 3.80 4.00 1 2 3 4 e .050 BASIC 1.27 BASIC e1 .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 6X e L .016 .050 0.40 1.27 y 0° 8° 0° 8° e1 K x 45° A C y 0.10 [.004] 8X b A1 8X L 8X c 0.25 [.010] C A B 7 FOOTPRINT NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 8X 0.72 [.028] 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6.46 [.255] 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: THIS IS AN IRF7101 (MOSFET) DATE CODE (YWW) P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) Y = LAST DIGIT OF THE YEAR XXXX WW = WEEK INTERNATIONAL F7101 A = ASSEMBLY SITE CODE RECTIFIER LOT CODE LOGO PART NUMBER www.irf.com 7
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3) SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:2)(cid:10)Repetitive rating; pulse width limited by (cid:5) Pulse width ≤ 400µs; duty cycle ≤ 2%. max. junction temperature. (cid:4) (cid:10)Starting T = 25°C, L = 33mH, (cid:6) Coss eff. is a fixed capacitance that gives the same charging time J as Coss while VDS is rising from 0 to 80% VDSS. RG = 25Ω, IAS = 3.6A. (cid:1) When mounted on 1 inch square copper board. (cid:3)ISD ≤ 2.2A, di/dt ≤ 180A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04 8 www.irf.com
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRF7451TRPBF