图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRF6655TRPBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRF6655TRPBF产品简介:

ICGOO电子元器件商城为您提供IRF6655TRPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF6655TRPBF价格参考。International RectifierIRF6655TRPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 100V 4.2A(Ta),19A(Tc) 2.2W(Ta),42W(Tc) DIRECTFET™ SH。您可以下载IRF6655TRPBF参考资料、Datasheet数据手册功能说明书,资料中有IRF6655TRPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET N-CH 100V 4.2A DIRECTFET

产品分类

FET - 单

FET功能

标准

FET类型

MOSFET N 通道,金属氧化物

品牌

International Rectifier

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

IRF6655TRPBF

PCN其它

点击此处下载产品Datasheet

PCN组件/产地

点击此处下载产品Datasheet

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

HEXFET®

不同Id时的Vgs(th)(最大值)

4.8V @ 25µA

不同Vds时的输入电容(Ciss)

530pF @ 25V

不同Vgs时的栅极电荷(Qg)

11.7nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

62 毫欧 @ 5A,10V

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品目录绘图

产品目录页面

点击此处下载产品Datasheet

供应商器件封装

DIRECTFET™ SH

其它名称

IRF6655TRPBFDKR

功率-最大值

2.2W

包装

Digi-Reel®

安装类型

表面贴装

封装/外壳

DirectFET™ 等容 SH

标准包装

1

漏源极电压(Vdss)

100V

电流-连续漏极(Id)(25°C时)

4.2A (Ta), 19A (Tc)

设计资源

http://www.irf.com/product-info/models/saber/irf6665.sinhttp://www.irf.com/product-info/models/spice/irf6665.spi

推荐商品

型号:FQPF3N90_NL

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:NVMFS4C05NWFT1G

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IRFIZ24GPBF

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:IRFP240

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:TK100E06N1,S1X

品牌:Toshiba Semiconductor and Storage

产品名称:分立半导体产品

获取报价

型号:CPH3351-TL-H

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:FCH043N60

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IXFB70N60Q2

品牌:IXYS

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IRF6655TRPBF 相关产品

IRF7413GTRPBF

品牌:Infineon Technologies

价格:

SI7804DN-T1-E3

品牌:Vishay Siliconix

价格:

APT40N60JCU2

品牌:Microsemi Corporation

价格:

IRFH3707TR2PBF

品牌:Infineon Technologies

价格:

HAT1072H-EL-E

品牌:Renesas Electronics America

价格:

ATP212-S-TL-H

品牌:ON Semiconductor

价格:

IRF1405ZTRR

品牌:Vishay Siliconix

价格:

IPW90R800C3FKSA1

品牌:Infineon Technologies

价格:

PDF Datasheet 数据手册内容提取

(cid:1)(cid:2)(cid:3)(cid:4)(cid:3)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9) IRF6655PbF IRF6655TRPbF DirectFET(cid:1)(cid:1)Power MOSFET (cid:1) (cid:1) RoHs Compliant (cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:6)(cid:7)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:14)(cid:7)(cid:11)(cid:12)(cid:12)(cid:8)(cid:15)(cid:16)(cid:17)(cid:11)(cid:18)(cid:19)(cid:4)(cid:12)(cid:11)(cid:8)(cid:12)(cid:3)(cid:11)(cid:5)(cid:4)(cid:20)(cid:4)(cid:11)(cid:21)(cid:22) (cid:1) Lead-Free (Qualified up to 260°C Reflow) VDSS VGS RDS(on) (cid:1) Application Specific MOSFETs 100V max ±20V max 53mΩ@ 10V (cid:1)Ideal for High Performance Isolated Converter Q Q Q Q Q V g tot gd gs2 rr oss gs(th) Primary Switch Socket 8.7nC 2.8nC 0.58nC 37nC 4.5nC 4.0V (cid:1) Ideal for Control FET sockets in 36V-75V in Synchronous Buck applications (cid:1) Low Conduction Losses (cid:1) High Cdv/dt Immunity (cid:1) Low Profile (<0.7mm) (cid:1) Dual Sided Cooling Compatible (cid:1) (cid:1) Compatible with existing Surface Mount Techniques (cid:1) (cid:23)(cid:24) DirectFET(cid:1) ISOMETRIC Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)(cid:1) SQ SX ST SH MQ MX MT MN Description The IRF6655PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest combined on-state resistance and gate charge in a package that has a footprint similar to that of a micro-8, and only 0.7mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra- red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6655PbF is optimized for low power primary side bridge topologies in isolated DC-DC applications, and for high side control FET sockets in non-isolated synchronous buck DC-DC applications for use in wide range universal Telecom systems (36V – 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal perfor- mance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter Max. Units V Drain-to-Source Voltage 100 V DS V Gate-to-Source Voltage ±20 GS I @ T = 25°C Continuous Drain Current, V @ 10V (cid:0) 4.2 D A GS I @ T = 70°C Continuous Drain Current, V @ 10V (cid:0) 3.4 A D A GS I @ T = 25°C Continuous Drain Current, V @ 10V (cid:1) 19 D C GS I Pulsed Drain Current (cid:2) 34 DM E Single Pulse Avalanche Energy (cid:3) 11 mJ AS I Avalanche Current(cid:4)(cid:2) 5.0 A AR 200 V) 12.0 180 ID = 5.0A e( ID= 5.0A VDS= 80V )m( ΩSon() 111102460000 TJ = 125°C Vueoagcr tl 1068...000 VVDDSS== 5200VV Rac lD 6800 Soeo--t 4.0 pi 40 at Ty 20 TJ = 25°C G, S 2.0 0 G 0.0 V 4 6 8 10 12 14 16 18 0 2 4 6 8 10 VGS, Gate -to -Source Voltage (V) QG Total Gate Charge (nC) Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Typical On-Resistance Vs. Gate Voltage (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) (cid:1) Click on this section to link to the appropriate technical paper. (cid:4) TC measured with thermocouple mounted to top (Drain) of part. (cid:2) Click on this section to link to the DirectFET Website. (cid:5)(cid:1)Repetitive rating; pulse width limited by max. junction temperature. (cid:3)(cid:1)Surface mounted on 1 in. square Cu board, steady state. (cid:6) Starting TJ = 25°C, L = 0.89mH, RG = 25Ω, IAS = 5.0A. www.irf.com 1 08/25/06

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions BVDSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.12 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 53 62 mΩ VGS = 10V, ID = 5.0A (cid:10) VGS(th) Gate Threshold Voltage 2.8 4.0 4.8 V VDS = VGS, ID = 25µA ∆V /∆T Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C GS(th) J IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 100V, VGS = 0V ––– ––– 250 VDS = 80V, VGS = 0V, TJ = 125°C IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V gfs Forward Transconductance 6.6 ––– ––– S VDS = 10V, ID = 5.0A Q Total Gate Charge ––– 8.7 11.7 g Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.1 ––– VDS = 50V Qgs2 Post-Vth Gate-to-Source Charge ––– 0.58 ––– nC VGS = 10V Qgd Gate-to-Drain Charge ––– 2.8 4.2 ID = 5.0A Q Gate Charge Overdrive ––– 3.2 ––– See Fig. 15 godr Q Switch Charge (Q + Q ) ––– 3.4 ––– sw gs2 gd Qoss Output Charge ––– 4.5 ––– nC VDS = 16V, VGS = 0V RG Gate Resistance ––– 1.9 2.9 Ω td(on) Turn-On Delay Time ––– 7.4 ––– VDD = 50V, VGS = 10V(cid:8)(cid:10) tr Rise Time ––– 2.8 ––– ID = 5.0A t Turn-Off Delay Time ––– 14 ––– ns R =6.0Ω d(off) G t Fall Time ––– 4.3 ––– See Fig. 16 & 17 f Ciss Input Capacitance ––– 530 ––– VGS = 0V Coss Output Capacitance ––– 110 ––– pF VDS = 25V C Reverse Transfer Capacitance ––– 29 ––– ƒ = 1.0MHz rss Coss Output Capacitance ––– 510 ––– VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 67 ––– VGS = 0V, VDS = 80V, f=1.0MHz Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 38 MOSFET symbol D (Body Diode) A showing the I Pulsed Source Current ––– ––– 34 integral reverse G SM (Body Diode)(cid:8)(cid:9) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 5.0A, VGS = 0V (cid:10) trr Reverse Recovery Time ––– 31 47 ns TJ = 25°C, IF = 5.0A, VDD = 25V Q Reverse Recovery Charge ––– 37 56 nC di/dt = 100A/µs (cid:10)(cid:8)See Fig. 18 rr (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:5)(cid:1)Repetitive rating; pulse width limited by max. junction temperature. (cid:7) Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) Absolute Maximum Ratings Parameter Max. Units P @T = 25°C Power Dissipation (cid:0) 2.2 W D A P @T = 70°C Power Dissipation (cid:0) 1.4 D A P @T = 25°C Power Dissipation (cid:1) 42 D C T Peak Soldering Temperature 270 °C P T Operating Junction and -40 to + 150 J T Storage Temperature Range STG Thermal Resistance Parameter Typ. Max. Units R Junction-to-Ambient (cid:0)(cid:2) ––– 58 θJA R Junction-to-Ambient (cid:3)(cid:2) 12.5 ––– θJA R Junction-to-Ambient (cid:4)(cid:2) 20 ––– °C/W θJA R Junction-to-Case (cid:1)(cid:2) ––– 3.0 θJC R Junction-to-PCB Mounted 1.4 ––– θJ-PCB Linear Derating Factor (cid:0) 0.017 W/°C 100 D = 0.50 )A 10 0.20 J h t 0.10 Z e( 0.05 Ri (°C/W) τi (sec) nos 1 0.02 R1R1 R2R2 R3R3 R4R4 R5R5 1.6195 0.000126 Raeps l 0.01 τJτJτ1τ1 τ2τ2 τ3τ3 τ4τ4 τ5τ5 τAτA 22.21.420868 7 00..307051835504 m 20.0457 7.410000 her 0.1 SINGLE PULSE CiC= iτ=i /τRi/iRi 11.9144 99 T ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t , Rectangular Pulse Duration (sec) 1 Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:11) Used double sided cooling , mounting pad. (cid:13) Rθ is measured at (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:2)(cid:5)(cid:6)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:10)(cid:5)(cid:11)(cid:12)(cid:13)(cid:14)(cid:2)(cid:15)(cid:16)(cid:17)(cid:18)(cid:19) (cid:12) Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (cid:3)(cid:2) Surface mounted on 1 in. square Cu (cid:3)(cid:3)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:3)(cid:14)(cid:11)(cid:3)(cid:17)(cid:3)(cid:1)(cid:18)(cid:19)(cid:3)with (cid:3)(cid:4) Mounted on minimum (still air). small clip heatsink (still air) footprint full size board with metalized back and with small clip heatsink (still air) www.irf.com 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) 100 100 VGS VGS TOP 15V TOP 15V 10V 10V A) 98..00VV A) 98..00VV uenrr(t 10 BOTTOM 76..00VV uenrr(t 10 BOTTOM 76..00VV Ce Ce 6.0V c c ur ur o o S 6.0V S o- o- n-t 1 n-t 1 ai ai Dr Dr , D , D I ≤60µs PULSE WIDTH I ≤60µs PULSE WIDTH Tj = 25°C Tj = 150°C 0.1 0.1 0.1 1 10 100 1000 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 100 2.0 ID = 5.0A VGS = 10V )Α d) ( e Cunerrt 10 moazrli 1.5 e N( oucr TJ = -40°C no), So- TJ = 25°C DS( an-ti 1 TJ = 150°C Ra l 1.0 DrI, D VDS = 25V Tpcyi ≤60µs PULSE WIDTH 0.1 0.5 2 4 6 8 10 12 -60 -40 -20 0 20 40 60 80 100120140160 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature 10000 )Ω 120 VGS = 0V, f = 1 MHZ m Ciss = Cgs + Cgd, Cds SHORTED e( Crss = Cgd nc a Coss = Cds + Cgd st 100 TJ = 125°C si F) 1000 Re nepc( Ciss One acti ucr 80 ap Coss So Ca o- C, 100 Crss Dnan)r-, ti 60 TJ = 25°C o Vgs = 10V (S D 10 R 40 1 10 100 0 2 4 6 8 10 VDS, Drain-to-Source Voltage (V) ID, Drain Current (A) Fig 9. Normalized Typical On-Resistance vs. Fig 8. Typical Capacitance vs. Drain-to-Source Voltage Drain Current and Gate Voltage 4 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) 100 1000 Tc = 25°C Tj = 175°C An()t An()t 100 Single Pulse OLIPMEITREADT IBOYN R IND TSH(oInS) AREA e e urr urr C C 10 100µsec n e Dari 10 oucr eesvr TTJJ == -2450°°CC Sno--t 1 100msec 1msec Re, DS TJ = 150°C Dar, iD0.1 10msec I I VGS = 0V 1 0.01 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area 5 5.5 V) e( 5 g 4 atlo V 4.5 A) d uenrr(t 3 hoslher 4 DCanr ,iD 2 Geat t h)tS( 3.53 IIDD == 2255µ0AµA I G 1 V lac 2.5 IIDD == 11..00mAA pi y T 0 2 25 50 75 100 125 150 -75 -50 -25 0 25 50 75 100 125 150 175 TA , Ambient Temperature (°C) TJ , Temperature ( °C ) Fig 12. Maximum Drain Current vs. Ambient Temperature Fig 13. Threshold Voltage vs. Temperature 50 mJ) ID (y TOP 0.86A egr 40 1.3A n BOTTOM5.0A E e h nc 30 a al v A e s 20 ul P e gl n Si 10 , S A E 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs 12V .2µF .3µF + D.U.T. -VDS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform V(BR)DSS 15V tp L DRIVER VDS RG D.U.T + - VDD IAS A 2(cid:22)0(cid:1)V(cid:2) tp 0.01Ω IAS Fig 16a. Unclamped Inductive Test Circuit Fig 16b. Unclamped Inductive Waveforms (cid:9) (cid:1) (cid:8) V (cid:1)(cid:2) DS 90% (cid:8) (cid:21)(cid:2) (cid:10)(cid:11)(cid:12)(cid:11)(cid:13)(cid:11) (cid:9) (cid:21) +-(cid:8)(cid:1)(cid:1) 10% V GS (cid:14)(cid:15)(cid:8) t t t t (cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:8)≤ 1 (cid:14)(cid:6) d(on) r d(off) f (cid:1)(cid:4)(cid:12)(cid:15)(cid:8)(cid:16)(cid:17)(cid:18)(cid:12)(cid:19)(cid:20)(cid:8)≤ 0.1 % Fig 17a. Switching Time Test Circuit Fig 17b. Switching Time Waveforms 6 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) Driver Gate Drive (cid:7)(cid:8)(cid:9)(cid:8)(cid:10) P.W. Period D = + P.W. Period (cid:28) (cid:3) (cid:25)(cid:10)(cid:20)(cid:18)(cid:4)(cid:10)(cid:12)(cid:8)(cid:26)(cid:17)(cid:15)(cid:19)(cid:4)(cid:12)(cid:8)(cid:25)(cid:19)(cid:24)(cid:6)(cid:10)(cid:11)(cid:7)(cid:20)(cid:17)(cid:12)(cid:10)(cid:19)(cid:24)(cid:6) VGS=10V • (cid:8)(cid:26)(cid:19)(cid:27)(cid:8)(cid:2)(cid:12)(cid:20)(cid:17)(cid:15)(cid:8)(cid:23)(cid:24)(cid:11)(cid:4)(cid:18)(cid:12)(cid:17)(cid:24)(cid:18)(cid:7) (cid:8)(cid:8) • (cid:21)(cid:20)(cid:19)(cid:4)(cid:24)(cid:11)(cid:8)(cid:3)(cid:5)(cid:17)(cid:24)(cid:7) - (cid:8)(cid:8) • (cid:26)(cid:19)(cid:27)(cid:8)(cid:26)(cid:7)(cid:17)(cid:28)(cid:17)(cid:29)(cid:7)(cid:8)(cid:23)(cid:24)(cid:11)(cid:4)(cid:18)(cid:12)(cid:17)(cid:24)(cid:18)(cid:7) (cid:8)(cid:8)(cid:8)(cid:8)(cid:8)(cid:8)(cid:25)(cid:4)(cid:20)(cid:20)(cid:7)(cid:24)(cid:12)(cid:8)(cid:30)(cid:20)(cid:17)(cid:24)(cid:6)(cid:31)(cid:19)(cid:20) (cid:7)(cid:20) D.U.T. ISDWaveform + (cid:2) Reverse (cid:4) Recovery Body Diode Forward - + Current Current - di/dt D.U.T. VDSWaveform Diode Recovery (cid:1) dv/dt VDD (cid:8) (cid:9)(cid:21) • (cid:11)(cid:10)!(cid:11)(cid:12)(cid:8)(cid:18)(cid:19)(cid:24)(cid:12)(cid:20)(cid:19)(cid:5)(cid:5)(cid:7)(cid:11)(cid:8)"(cid:15)(cid:8)#(cid:1) (cid:1)(cid:1) Re-Applied • (cid:1)(cid:20)(cid:10)$(cid:7)(cid:20)(cid:8)(cid:6)(cid:17) (cid:7)(cid:8)(cid:12)(cid:15)%(cid:7)(cid:8)(cid:17)(cid:6)(cid:8)(cid:1)&’&(cid:30)& + Voltage Body Diode Forward Drop • (cid:23)(cid:2)(cid:3)(cid:8)(cid:18)(cid:19)(cid:24)(cid:12)(cid:20)(cid:19)(cid:5)(cid:5)(cid:7)(cid:11)(cid:8)"(cid:15)(cid:8)(cid:1)(cid:4)(cid:12)(cid:15)(cid:8)(cid:16)(cid:17)(cid:18)(cid:12)(cid:19)(cid:20)(cid:8)((cid:1)( - (cid:23)I(cid:24)n(cid:11)d(cid:4)uc(cid:18)t(cid:12)o(cid:19)r(cid:20) (cid:8)C(cid:25)u(cid:4)r(cid:20)e(cid:20)n(cid:7)t(cid:24)(cid:12) • (cid:1)&’&(cid:30)&(cid:8))(cid:8)(cid:1)(cid:7)$(cid:10)(cid:18)(cid:7)(cid:8)’(cid:24)(cid:11)(cid:7)(cid:20)(cid:8)(cid:30)(cid:7)(cid:6)(cid:12) Ripple ≤ 5% ISD (cid:28)(cid:1)(cid:8) (cid:1)(cid:16)(cid:1)(cid:17)(cid:8)(cid:1)(cid:18)(cid:3)(cid:19)(cid:1)(cid:20)(cid:3)(cid:21)(cid:22)(cid:23)(cid:1)(cid:20)(cid:5)(cid:24)(cid:5)(cid:25)(cid:1)(cid:10)(cid:5)(cid:24)(cid:22)(cid:23)(cid:5)(cid:6) (cid:21)(cid:2) Fig 18. (cid:2)(cid:20)(cid:11)(cid:16)(cid:15)(cid:3)(cid:21)(cid:15)(cid:22)(cid:15)(cid:23)(cid:24)(cid:15)(cid:3)(cid:21)(cid:15)(cid:25)(cid:11)(cid:22)(cid:15)(cid:23)(cid:26)(cid:3)(cid:27)(cid:15)(cid:24)(cid:14)(cid:3)(cid:18)(cid:20)(cid:23)(cid:25)(cid:12)(cid:20)(cid:14)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:1) DirectFET™ Substrate and PCB Layout, SH Outline (Small Size Can, H-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G S D D www.irf.com 7

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:1)(cid:10)(cid:11)(cid:12)(cid:6)(cid:13)(cid:2)(cid:14)(cid:4)(cid:10)(cid:1)(cid:2)(cid:15)(cid:4)(cid:14)(cid:16)(cid:2)(cid:17)(cid:14)(cid:18)(cid:10)(cid:19)(cid:20)(cid:10)(cid:11)(cid:12)(cid:6)(cid:13)(cid:2)(cid:14)(cid:4) (cid:1) (cid:21)(cid:19)(cid:15)(cid:22)(cid:13)(cid:13)(cid:10)(cid:19)(cid:2)(cid:23)(cid:4)(cid:10)(cid:24)(cid:22)(cid:14)(cid:18)(cid:10)(cid:20)(cid:25)(cid:1)(cid:4)(cid:16)(cid:2)(cid:26)(cid:14)(cid:22)(cid:6)(cid:2)(cid:17)(cid:14)(cid:27)(cid:28) Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC IMPERIAL CODE MIN MAX MIN (cid:0)MAX A 4.75 4.85 0.187 0.191 B 3.70 3.95 0.146 0.156 C 2.75 2.85 0.108 0.112 D 0.35 0.45 0.014 0.018 E 0.58 0.62 0.023 0.024 F 0.58 0.62 0.023 0.024 G 0.63 0.67 0.025 0.026 H 0.83 0.87 0.033 0.034 K 0.99 1.03 0.039 0.041 L 2.29 2.33 0.090 0.092 M 0.616 0.676 0.0235 0.0274 R 0.020 0.080 0.0008 0.0031 P 0.08 0.17 0.003 0.007 (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:1)(cid:10)(cid:29)(cid:22)(cid:3)(cid:6)(cid:10)(cid:30)(cid:22)(cid:3)(cid:31)(cid:2)(cid:14)(cid:26) (cid:1) 8 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:3) (cid:1) DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6655TRPBF). For 1000 parts on 7" reel, order IRF6655TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) METRIC IMPERIAL METRIC IMPERIAL CODE MIN MAX MIN MAX MIN MAX MIN MAX A 330.0 N.C 12.992 N.C 177.77 N.C 6.9 N.C B 20.2 N.C 0.795 N.C 19.06 N.C 0.75 N.C C 12.8 13.2 0.504 0.520 13.5 12.8 0.53 0.50 D 1.5 N.C 0.059 N.C 1.5 N.C 0.059 N.C E 100.0 N.C 3.937 N.C 58.72 N.C 2.31 N.C F N.C 18.4 N.C 0.724 N.C 13.50 N.C 0.53 G 12.4 14.4 0.488 0.567 11.9 12.01 0.47 N.C H 11.9 15.4 0.469 0.606 11.9 12.01 0.47 N.C Loaded Tape Feed Direction DIMENSIONS METRIC IMPERIAL CODE MIN MAX MIN MAX A 7.90 8.10 0.311 0.319 B 3.90 4.10 0.154 0.161 C 11.90 12.30 0.469 0.484 D 5.45 5.55 0.215 0.219 E 4.00 4.20 0.158 0.165 F 5.00 5.20 0.197 0.205 G 1.50 N.C 0.059 N.C H 1.50 1.60 0.059 0.063 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/06 www.irf.com 9

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRF6655TRPBF