ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRF6644TR1PBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRF6644TR1PBF产品简介:
ICGOO电子元器件商城为您提供IRF6644TR1PBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF6644TR1PBF价格参考。International RectifierIRF6644TR1PBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 100V 10.3A(Ta),60A(Tc) 2.8W(Ta),89W(Tc) DIRECTFET™ MN。您可以下载IRF6644TR1PBF参考资料、Datasheet数据手册功能说明书,资料中有IRF6644TR1PBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N-CH 100V 10.3A DIRECTFETMOSFET MOSFT 100V 60A 13mOhm 35nC Qg |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 10.3 A |
Id-连续漏极电流 | 10.3 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRF6644TR1PBFHEXFET® |
数据手册 | |
产品型号 | IRF6644TR1PBF |
PCN其它 | |
PCN组件/产地 | |
PCN过时产品 | |
Pd-PowerDissipation | 89 W |
Pd-功率耗散 | 89 W |
Qg-GateCharge | 35 nC |
Qg-栅极电荷 | 35 nC |
RdsOn-Drain-SourceResistance | 10.3 mOhms |
RdsOn-漏源导通电阻 | 10.3 mOhms |
Vds-Drain-SourceBreakdownVoltage | 100 V |
Vds-漏源极击穿电压 | 100 V |
Vgs-Gate-SourceBreakdownVoltage | 20 V |
Vgs-栅源极击穿电压 | 20 V |
Vgsth-Gate-SourceThresholdVoltage | 4.8 V |
Vgsth-栅源极阈值电压 | 4.8 V |
上升时间 | 26 ns |
下降时间 | 16 ns |
不同Id时的Vgs(th)(最大值) | 4.8V @ 150µA |
不同Vds时的输入电容(Ciss) | 2210pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 47nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 13 毫欧 @ 10.3A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品目录绘图 | |
产品目录页面 | |
产品种类 | MOSFET |
供应商器件封装 | DIRECTFET™ MN |
其它名称 | IRF6644TR1PBFCT |
功率-最大值 | 2.8W |
功率耗散 | 89 W |
包装 | 剪切带 (CT) |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
导通电阻 | 10.3 mOhms |
封装 | Reel |
封装/外壳 | DirectFET™ 等容 MN |
封装/箱体 | DirectFET-7 MN |
工厂包装数量 | 1000 |
晶体管极性 | N-Channel |
最大工作温度 | + 150 C |
栅极电荷Qg | 35 nC |
标准包装 | 1 |
正向跨导-最小值 | 15 S |
汲极/源极击穿电压 | 100 V |
漏极连续电流 | 10.3 A |
漏源极电压(Vdss) | 100V |
电流-连续漏极(Id)(25°C时) | 10.3A (Ta), 60A (Tc) |
设计资源 | http://www.irf.com/product-info/models/saber/irf6644.sinhttp://www.irf.com/product-info/models/spice/irf6644.spi |
配置 | Single |
闸/源击穿电压 | 20 V |
IRF6644PbF IR MOSFET DirectFET™ Power MOSFET Typical values (unless otherwise specified) Quality Requirement Category: Consumer V V R (typ) DSS GS DS(on) . 100V min. ± 20V max 10.3m@ 10V Applications Q Q V g tot gd gs(th) RoHS Compliant 28nC 9.0nC 3.7V Lead-Free (Qualified up to 260°C Reflow) Application Specifies MOSFETs Ideal for High Performance Isolated Converter S Primary Switch Socket D G D S Optimized for Synchronous Rectification Low Conduction Losses DirectFET™ ISOMETRIC MN Low Profile (< 0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques Applicable DirectFET® Outline and Substrate Outline (see pg. 13, 14 for details) SH SJ SP MZ MN Description The IRF6644PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has a footprint of a SO-8 and only 0.7 mm profile. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering tech- niques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in power systems improving previous best thermal resistance by 80%. The IRF6644PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications (36V-75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliabil- ity improvements, and makes the device ideal for high performance isolated DC-DC converters. 60 80 ) ) mce( 5505 ID = 34A m( ce 70 VVGGSS == 78..00VV n n at 45 at 60 VGS = 10V s s is si VGS = 12V e 40 e R R n n 50 O 35 O e e ucr 30 cru 40 o o oS- 25 TJ = 125°C S -o 30 tn- 20 nt- ai ia rD 15 TJ = 25°C Dr 20 , n) 10 n), Ro(DS 5 Ro(DS 10 0 0 2 4 6 8 10 12 14 16 18 20 0 20 40 60 80 100 120 140 160 VGS, Gate -to -Source Voltage (V) ID, Drain Current (A) Figure 1 Typical On-Resistance vs. Gate Voltage Figure 2 Typical On-Resistance vs. Drain Current Final Datasheet Please read the important Notice and Warnings at the end of this document V2.0 www.infineon.com 2017-03-28
IR MOSFET IRF6644PbF Table of Contents Table of Contents Applications …..………………………………………………………………………...……………..……………1 Description ….……………………………………………………………………………………………………1 Table of Contents ….………………………………………………………………………………………………...2 1 Parameters ………………………………………………………………………………………………3 2 Maximum ratings, Thermal, and Avalanche characteristics ………………………………………4 3 Electrical characteristics ………………………………………………………………………………5 4 Electrical characteristic diagrams ……………………………………………………………………6 Package Information ………………………………………………………………………………………………13 Qualification Information ……………………………………………………………………………………………16 Revision History …………………………………………………………………………………………..…………17 Final Datasheet 2 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Parameters 1 Parameters Table1 Key performance parameters Parameter Values Units V 100 V DS RDS(on) max 13 m I @ T @ 25°C 57 A D C I @ T @ 25°C 10 A D A Final Datasheet 3 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Maximum ratings and thermal characteristics 2 Maximum ratings and thermal characteristics Table 2 Maximum ratings (at T =25°C, unless otherwise specified) J Parameter Symbol Conditions Values Unit Continuous Drain Current (Silicon Limited) I T = 25°C, V @ 10V 57 D C GS Continuous Drain Current (Silicon Limited) I T = 70°C, V @ 10V 46 D C GS A Continuous Drain Current (Silicon Limited) I T = 25°C, V @ 10V 10 D A GS Pulsed Drain Current I T = 25°C 228 DM C Maximum Power Dissipation P T = 25°C 89 D C Maximum Power Dissipation P T = 70°C 57 W D C Maximum Power Dissipation P T = 25°C 2.8 D A Gate-to-Source Voltage V - ± 20 V GS Peak Soldering Temperature T - 270 P °C Operating and Storage Temperature T T - -40 ... 150 J, STG Table 3 Thermal characteristics Parameter Symbol Conditions Min. Typ. Max. Unit Junction-to-Ambient R - - - 45 JA Junction-to-Ambient R - - 12.5 - JA Junction-to-Ambient R - - 20 - °C/W JA Junction-to-Case R - - - 1.4 JC Junction-to-PCB Mounted R - - 1.0 - JA-PCB Table 4 Avalanche characteristics Parameter Symbol Values Unit Single Pulse Avalanche Energy E 86 mJ AS Avalanche Current I 34 A AR Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET™ Website. Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. (Starting T = 25°C, L = 0.15mH, R = 50, I = 34A. J G AS Pulse width ≤ 400µs; duty cycle ≤ 2%. Used double sided cooling, mounting pad with large heat sink. Mounted on minimum footprint full size board with metalized back and with small clip heat sink. R is measured at T of approximately 90°C. J Final Datasheet 4 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristics 3 Electrical characteristics Table 5 Static characteristics Values Parameter Symbol Conditions Unit Min. Typ. Max. Drain-to-Source Breakdown Voltage V V = 0V, I = 250µA 100 - - V (BR)DSS GS D Breakdown Voltage Temp. Coefficient V(BR)DSS/TJ Reference to 25°C, ID = 1mA - 0.1 - V/°C Static Drain-to-Source On-Resistance RDS(on) VGS = 10V, ID = 34A - 10.3 13 m Gate Threshold Voltage V 2.8 3.7 4.8 V GS(th) V = V , I = 150µA DS GS D Gate Threshold Voltage Temp. Coefficient V /T - -11 - mV°/C GS(th) J V = 100V, V = 0V - - 20 Drain-to-Source Leakage Current I DS GS µA DSS V = 80V, V = 0V, T = 125°C 250 DS GS J I V = 20V - - 100 Gate-to-Source Forward Leakage GSS GS nA I V = -20V - - -100 GSS GS Gate Resistance R - - 1.6 - G Table 6 Dynamic characteristics Values Parameter Symbol Conditions Unit Min. Typ. Max. Forward Trans conductance gfs V = 10V, I = 34A 65 - - S DS D Total Gate Charge Q - 28 42 g Pre-Vth Gate-to-Source Charge Q - 7.0 - gs1 I = 34A D Post-Vth Gate-to-Source Charge Q V = 50V - 3.0 - gs2 DS nC V = 10V Gate-to-Drain Charge Q GS - 9.0 - gd See Fig.8 Gate Charge Overdrive Q - 9.0 - godr Switch Charge (Qgs2 + Qgd) Q - 16 - sw Output Charge Q V = 16V ,V = 0V - 18 - nC oss DS GS Turn-On Delay Time t V = 50V - 9.5 - d(on) DD Rise Time t I = 34A - 16 - r D ns Turn-Off Delay Time td(off) RG = 1.8 - 15 - Fall Time t V = 10V - 5.7 - f GS Input Capacitance C V = 0V - 1770 - iss GS Output Capacitance C V = 50V - 280 - oss DS Reverse Transfer Capacitance Crss ƒ = 1.0MHz - 60 - pF Output Capacitance C V = 0V, V = 1.0V, ƒ = 1.0MHz - 2025 - oss GS DS Output Capacitance C V = 0V, V = 80V, ƒ = 1.0MHz - 245 - oss GS DS Table 7 Reverse Diode Values Parameter Symbol Conditions Unit Min. Typ. Max. Continuous Source Current MOSFET symbol D I - - 57 (Body Diode) S showing the A Pulsed Source Current integral reverse G I - - 228 (Body Diode) SM p-n junction diode. S Diode Forward Voltage V T = 25°C, I = 34A,V = 0V - - 1.3 V SD J S GS Reverse Recovery Time t T = 25°C, I = 34A, V = 50V - 53 80 ns rr J F DD Reverse Recovery Charge Q di/dt = 100A/µs - 97 146 nC rr Final Datasheet 5 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams 4 Electrical characteristic diagrams 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A) 8.0V A) 8.0V nt ( 100 76..00VV nt ( 76..00VV urre BOTTOM 5.0V urre 100 BOTTOM 5.0V C C e e c c ur 10 ur o o S S o- o- 5.0V ain-t 5.0V ain-t 10 , DrD 1 , DrD I I 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 25°C Tj = 150°C 0.1 1 0.1 1 10 100 0.1 1 10 100 V , Drain-to-Source Voltage (V) V , Drain-to-Source Voltage (V) DS DS Figure 3 Typical Output Characteristics Figure 4 Typical Output Characteristics 1000 2.4 I = 34A e D c an VGS = 10V A) st 2.0 t ( esi n R re 100 n ur O C e 1.6 I, Drain-to-Source D 10 TJ = 150°C VTD 6JS0 = µ= 2s 5 5P0°UVCLSE WIDTH R, Drain-to-SourcDS(on) (Normalized) 01..82 1 0.4 2 3 4 5 6 7 8 9 -60 -40 -20 0 20 40 60 80 100 120 140 160 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Figure 5 Typical Transfer Characteristics Figure 6 Normalized On-Resistance vs. Temperature Final Datasheet 6 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams 100000 14 VGS = 0V, f = 1 MHZ I = 34A C = C + C , C SHORTED D iss gs gd ds C = C 12 VDS= 80V rss gd V) V = 50V 10000 Coss = Cds + Cgd e ( DS g 10 VDS= 20V a pF) olt (nce Ciss rce V 8 a u cti 1000 Coss So ap o- 6 Ca e-t C, Gat 4 100 Crss , GS V 2 10 0 0.1 1 10 100 0 5 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Figure 7 Typical Capacitance vs. Drain-to-Source Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage Voltage 1000 100 nt (A) 100 )A(t n 100µsec e e rr rr 1msec u u C C n TJ = 150°C TJ = 25°C e 10 e Drai 10 crouS OLIPMEITREADT IBOYN R IND ST(HoInS) AREA rs -o eve tn- R ai , D 1 Dr 1 IS , D Tc = 25°C 10msec I V = 0V Tj = 150°C DC GS Single Pulse 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 0.1 1 10 100 V , Source-to-Drain Voltage (V) SD V , Drain-to-Source Voltage (V) DS Figure 9 Typical Source-Drain Diode Forward Figure 10 Maximum Safe Operating Area Voltage Final Datasheet 7 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams 60 5.0 4.5 50 V) e ( g A) 40 olta 4.0 nt ( d V rre hol 3.5 u s C 30 e n hr I,DraiD 20 ,Gate th) 23..50 ID = 150µA S(t ID = 250µA G 10 V 2.0 ID = 1.0mA I = 1.0A D 0 1.5 25 50 75 100 125 150 -75 -50 -25 0 25 50 75 100 125 150 T , Case Temperature (°C) T , Temperature ( °C ) C J Figure 11 Maximum Drain Current vs. Case Figure 12 Typical Threshold Voltage vs. Junction Temperature Temperature 400 I )mJ 350 TOP 4D.2A (y 8.9A g r 300 e BOTTOM 34A n E e h 250 c n a val 200 A e s ul 150 P e gl n 100 Si , S A 50 E 0 25 50 75 100 125 150 Starting T , Junction Temperature (°C) J Figure 13 Maximum Avalanche Energy vs. Drain Current Final Datasheet 8 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams 100 Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming DTj = 125°C and Tstart =25°C (Single Pulse) 0.01 )A(t 10 n e r 0.05 r u C e 0.10 h c n a la 1 v A Allowed avalanche Current vs avalanche pulsewidth, tav, assuming DTj = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Figure 14 Typical Avalanche Current vs. Pulse Width 10 W / C 1 ° D = 0.50 ) C J h 0.20 t Z e( 0.10 s 0.1 n 0.05 o p se 0.02 R al 0.01 m r 0.01 e h T SINGLE PULSE Notes: ( THERMAL RESPONSE ) 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t , Rectangular Pulse Duration (sec) 1 Figure 15 Maximum Effective Transient Thermal Impedance, Junction-to-Case Final Datasheet 9 V 2 . 0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams Surface mounted on 1 in. square Mounted to PCB with Mounted on minimum Cu board (still air). Small clip heatsink (still air). footprint full size board with metalized back and with small clip heatsink (still air). Figure 16 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs Final Datasheet 10 V2.0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams Figure 17a Gate Charge Test Circuit Figure 17b Gate Charge Waveform Figure 18a Unclamped Inductive Test Circuit Figure 18b Unclamped Inductive Waveforms Final Datasheet 11 V2.0 2017-03-28
IR MOSFET IRF6644PbF Electrical characteristic diagrams Figure 19a Switching Time Test Circuit Figure 19b Switching Time Waveforms Final Datasheet 12 V2.0 2017-03-28
IR MOSFET IRF6644PbF Package Information 5 Package Information DirectFET™ Board Footprint, MN Outline Please see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™. This includes all recommendations for stencil and substrate designs. Note: For the most current drawing please refer to website at : www.irf.com/package/ Final Datasheet 13 V2.0 2017-03-28
IR MOSFET IRF6644PbF Package Information DirectFET™ Outline Dimension, MN Outline (Medium Size Can, N-Designation). Please see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™. This includes all recommendations for stencil and substrate designs. DirectFETTM Part Marking Note: For the most current drawing please refer to website at : www.irf.com/package/ Final Datasheet 14 V2.0 2017-03-28
IR MOSFET IRF6644PbF Tape & Reel Information DirectFETTM Tape & Reel Dimension (Showing component orientation). Note: For the most current drawing please refer to website at : www.irf.com/package/ Final Datasheet 15 V2.0 2017-03-28
IR MOSFET IRF6644PbF Qualification Information 6 Qualification Information Qualification Information Consumer Qualification Level (per JEDEC JESD47F) † MSL1 Moisture Sensitivity Level DirectFET™ Medium Can (per JEDEC J-STD-020D)† RoHS Compliant Yes † Applicable version of JEDEC standard at the time of product release. Final Datasheet 16 V2.0 2017-03-28
IR MOSFET IRF6644PbF Revision History Revision History Major changes since the last revision Page or Reference Revision Date Description of changes All pages 1.0 2006-08-18 First release data sheet. This is Unique datasheet Project with Id Ratings based on RthJC. All page 2.0 2017-03-28 The datasheet is converted in New Infineon Template. Final Datasheet 17 V2.0 2017-03-28
Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. IMPORTANT NOTICE For further information on the product, technology, Edition 2015-05-06 The information given in this document shall in no delivery terms and conditions and prices please Published by event be regarded as a guarantee of conditions or contact your nearest Infineon Technologies office Infineon Technologies AG characteristics (“Beschaffenheitsgarantie”) . (www.infineon.com). 81726 Munich, Germany With respect to any examples, hints or any typical values stated herein and/or any information © 2016 Infineon Technologies AG. regarding the application of the product, Infineon WARNINGS All Rights Reserved. Technologies hereby disclaims any and all Due to technical requirements products may contain warranties and liabilities of any kind, including dangerous substances. For information on the types Do you have a question about this without limitation warranties of non-infringement of in question please contact your nearest Infineon document? intellectual property rights of any third party. Technologies office. Email: erratum@infineon.com In addition, any information given in this document Except as otherwise explicitly approved by Infineon is subject to customer’s compliance with its Technologies in a written document signed by Document reference obligations stated in this document and any authorized representatives of Infineon Technologies, applicable legal requirements, norms and standards Infineon Technologies’ products may not be used in concerning customer’s products and any use of the any applications where a failure of the product or product of Infineon Technologies in customer’s any consequences of the use thereof can reasonably applications. be expected to result in personal injury. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with