ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRF3808PBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRF3808PBF产品简介:
ICGOO电子元器件商城为您提供IRF3808PBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF3808PBF价格参考¥6.59-¥13.42。International RectifierIRF3808PBF封装/规格:晶体管 - FET,MOSFET - 单, 通孔 N 沟道 75V 140A(Tc) 330W(Tc) TO-220AB。您可以下载IRF3808PBF参考资料、Datasheet数据手册功能说明书,资料中有IRF3808PBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N-CH 75V 140A TO-220ABMOSFET MOSFT 75V 140A 7mOhm 150nC |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 140 A |
Id-连续漏极电流 | 140 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRF3808PBFHEXFET® |
数据手册 | |
产品型号 | IRF3808PBF |
Pd-PowerDissipation | 330 W |
Pd-功率耗散 | 330 W |
Qg-GateCharge | 150 nC |
Qg-栅极电荷 | 150 nC |
RdsOn-Drain-SourceResistance | 7 mOhms |
RdsOn-漏源导通电阻 | 7 mOhms |
Vds-Drain-SourceBreakdownVoltage | 75 V |
Vds-漏源极击穿电压 | 75 V |
Vgs-Gate-SourceBreakdownVoltage | 20 V |
Vgs-栅源极击穿电压 | 20 V |
不同Id时的Vgs(th)(最大值) | 4V @ 250µA |
不同Vds时的输入电容(Ciss) | 5310pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 220nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 7 毫欧 @ 82A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品目录页面 | |
产品种类 | MOSFET |
供应商器件封装 | TO-220AB |
其它名称 | *IRF3808PBF |
功率-最大值 | 330W |
功率耗散 | 330 W |
包装 | 管件 |
商标 | International Rectifier |
安装类型 | 通孔 |
安装风格 | Through Hole |
导通电阻 | 7 mOhms |
封装 | Tube |
封装/外壳 | TO-220-3 |
封装/箱体 | TO-220-3 |
工厂包装数量 | 50 |
晶体管极性 | N-Channel |
栅极电荷Qg | 150 nC |
标准包装 | 50 |
汲极/源极击穿电压 | 75 V |
漏极连续电流 | 140 A |
漏源极电压(Vdss) | 75V |
电流-连续漏极(Id)(25°C时) | 140A (Tc) |
设计资源 | http://www.irf.com/product-info/models/SABER/irf3808.sinhttp://www.irf.com/product-info/models/SPICE/irf3808.spi |
闸/源击穿电压 | 20 V |
PD - 94972A IRF3808PbF HEXFET® Power MOSFET Typical Applications (cid:0) Industrial Motor Drive D V = 75V Benefits DSS (cid:0) Advanced Process Technology (cid:0) Ultra Low On-Resistance RDS(on) = 0.007Ω (cid:0) Dynamic dv/dt Rating G (cid:0) 175°C Operating Temperature I = 140A(cid:1) D (cid:0) Fast Switching S (cid:0) Repetitive Avalanche Allowed up to Tjmax (cid:0) Lead-Free Description This Advanced Planar Stripe HEXFET ® Power MOSFET utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, low RθJC, fast switching speed and improved repetitive avalanche rating. This combination makes the design an extremely efficient and reliable choice for use in a wide variety of applications. TO-220AB Absolute Maximum Ratings Parameter Max. Units I @ T = 25°C Continuous Drain Current, V @ 10V 140(cid:1) D C GS I @ T = 100°C Continuous Drain Current, V @ 10V 97(cid:1) A D C GS I Pulsed Drain Current(cid:1)(cid:2) 550 DM P @T = 25°C Power Dissipation 330 W D C Linear Derating Factor 2.2 W/°C V Gate-to-Source Voltage ± 20 V GS E Single Pulse Avalanche Energy(cid:3) 430 mJ AS I Avalanche Current(cid:2) 82 A AR E Repetitive Avalanche Energy(cid:4) See Fig.12a, 12b, 15, 16 mJ AR dv/dt Peak Diode Recovery dv/dt (cid:5) 5.5 V/ns T Operating Junction and -55 to + 175 J TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case ––– 0.45 RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W RθJA Junction-to-Ambient ––– 62 HEXFET(R) is a registered trademark of International Rectifier. www.irf.com 1 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:7)(cid:2)
IRF3808PbF Electrical Characteristics @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 75 ––– ––– V VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.086 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 5.9 7.0 mΩ VGS = 10V, ID = 82A (cid:6) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA gfs Forward Transconductance 100 ––– ––– S VDS = 25V, ID = 82A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 75V, VGS = 0V ––– ––– 250 VDS = 60V, VGS = 0V, TJ = 150°C I Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V GSS Gate-to-Source Reverse Leakage ––– ––– -200 VGS = -20V Qg Total Gate Charge ––– 150 220 ID = 82A Qgs Gate-to-Source Charge ––– 31 47 nC VDS = 60V Qgd Gate-to-Drain ("Miller") Charge ––– 50 76 VGS = 10V(cid:6) td(on) Turn-On Delay Time ––– 16 ––– VDD = 38V tr Rise Time ––– 140 ––– ns ID = 82A td(off) Turn-Off Delay Time ––– 68 ––– RG = 2.5Ω tf Fall Time ––– 120 ––– VGS = 10V (cid:6) Between lead, D L Internal Drain Inductance ––– 4.5 ––– D 6mm (0.25in.) nH from package G L Internal Source Inductance ––– 7.5 ––– S and center of die contact S Ciss Input Capacitance ––– 5310 ––– VGS = 0V Coss Output Capacitance ––– 890 ––– pF VDS = 25V Crss Reverse Transfer Capacitance ––– 130 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 6010 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 570 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance (cid:7) ––– 1140 ––– VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 140(cid:1) MOSFET symbol D (Body Diode) showing the (cid:8) ISM Pulsed Source Current ––– ––– 550 integral reverse G (Body Diode) (cid:2) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 82A, VGS = 0V(cid:8)(cid:6) trr Reverse Recovery Time ––– 93 140 ns TJ = 25°C, IF = 82A Qrr Reverse RecoveryCharge ––– 340 510 nC di/dt = 100A/µs(cid:1)(cid:6) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1)(cid:1)Repetitive rating; pulse width limited by (cid:5) Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). (cid:2) (cid:1)Starting T = 25°C, L = 0.130mH as Coss while VDS is rising from 0 to 80% VDSS . J (cid:1)(cid:8)Calculated continuous current based on maximum allowable R = 25Ω, I = 82A. (See Figure 12). G AS (cid:3)I ≤ 82A, di/dt ≤ 310A/µs, V ≤ V , junction temperature. Package limitation current is 75A. TSJD ≤ 175°C DD (BR)DSS (cid:4)(cid:8)Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive (cid:4) Pulse width ≤ 400µs; duty cycle ≤ 2%. avalanche performance. 2 www.irf.com
IRF3808PbF 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V 8.0V 8.0V 7.0V 7.0V 6.0V 6.0V 5.5V 5.5V 5.0V 5.0V A) BOTTOM 4.5V A) BOTTOM 4.5V nt ( 100 nt ( 100 4.5V e e urr urr C C e 4.5V e c c ur ur o o S S o- o- n-t 10 n-t 10 ai ai Dr Dr I , D I , D 20µs PULSE WIDTH 20µs PULSE WIDTH T J = 25 °C T J = 175 °C 1 1 0.1 1 10 100 0.1 1 10 100 V D S , Drain-to-Source Voltage (V) V D S , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 3.0 ID= 137A ) 2.5 Α (ent TJ = 175°C nce CSeunooucrr-r- t100.00 TJ = 25°C o-Source On Resista (Normalized) 112...050 ai n-t Dr, ID V20DµSs =P U15LVSE WIDTH R , DraiDS(on) 0.5 V GS=10V 10.00 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 TJ , Junction Temperature ( °C) V , Gate-to-Source Voltage (V) GS Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3
IRF3808PbF 100000 12 VGS = 0V, f = 1 MHZ ID=82A VDS = 60V C = C + C , C SHORTED iss gs gd ds VDS = 37V Crss = Cgd 10 VDS = 15V C = C + C oss ds gd Fnepc()10000 Ciss oltage (V) 8 a V cti ce 6 pa our a S CC, 1000 Coss ate-to- 4 G V , GS 2 Crss 100 0 0 40 80 120 160 1 10 100 Q G , Total Gate Charge (nC) V , Drain-to-Source Voltage (V) DS Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000.00 10000 OPERATION IN THIS AREA An(t )100.00 TJ = 175°C An()t 1000 LIMITED BY RDS(on) e e urr urr C C n e Dari 10.00 oucr100 e S 100µsec evsr TJ = 25°C no--t Re, SD 1.00 Dar , iD 10 Tc = 25°C 1msec I I Tj = 175°C VGS = 0V Single Pulse 10msec 0.10 1 0.0 0.5 1.0 1.5 2.0 1 10 100 1000 VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com
IRF3808PbF 140 (cid:10) (cid:1) (cid:9) LIMITED BY PACKAGE (cid:1)(cid:2) 120 (cid:9) (cid:21)(cid:2) (cid:11)(cid:12)(cid:13)(cid:12)(cid:14)(cid:12) (cid:10) 100 (cid:21) +(cid:9) - (cid:1)(cid:1) A) nt ( 80 (cid:7)(cid:2)(cid:9) e urr (cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:8)≤ 1 (cid:14)(cid:6) n C 60 (cid:1)(cid:4)(cid:12)(cid:15)(cid:8)(cid:16)(cid:17)(cid:18)(cid:12)(cid:19)(cid:20)(cid:8)≤ 0.1 % ai Dr I , D 40 Fig 10a. Switching Time Test Circuit 20 VDS 90% 0 25 50 75 100 125 150 175 T , Case Temperature ( °C) C 10% Fig 9. Maximum Drain Current Vs. VGS Case Temperature td(on) tr td(off) tf Fig 10b. Switching Time Waveforms 1 (Z )thJC 0.1 D = 00.5.200 0.10 se 0.05 n espo 00..0012 (THERSMINAGLL ER EPSUPLOSNESE) PDM R mal 0.01 t1 her t2 T Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J=PDM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t 1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
IRF3808PbF 15V 800 ID TOP 34A 58A VDS L DRIVER 640 BOTTOM 82A J) m y ( RG IADS.U.T +- VDDA e Energ 480 20V tp 0.01Ω anch al 320 v A Fig 12a. Unclamped Inductive Test Circuit e s V(BR)DSS Pul tp gle 160 n Si E , AS 0 25 50 75 100 125 150 Starting Tj, Junction Temperature ( ° C) IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 3.5 V) VG e( 3.0 g a otl Charge Vdo l 2.5 ID = 250µA h Fig 13a. Basic Gate Charge Waveform s e hr CurrentRegulator e t 2.0 SameTypeasD.U.T. at G 12V .2µF 50KΩ Sh()t 1.5 .3µF G V + D.U.T. -VDS 1.0 VGS -75 -50 -25 0 25 50 75 100 125 150 175 200 3mA TJ , Temperature ( °C ) IG ID CurrentSamplingResistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com
IRF3808PbF 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs A) n(t 100 0.01 aavssaulamncinhge ∆pTuj l=se 2w5id°Cth , dueta vto e urr avalanche losses C e 0.05 h c n a 0.10 al 10 v A 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 500 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 10% Duty Cycle 1. Avalanche failures assumption: J) 400 ID = 140A Purely a thermal phenomenon and failure occurs at a m temperature far in excess of T . This is validated for jmax y( every part type. g er 2. Safe operation in Avalanche is allowed as long asTjmax is En 300 not exceeded. e 3. Equation below based on circuit and waveforms shown in h c Figures 12a, 12b. n aal 200 4. PD (ave) = Average power dissipation per single v avalanche pulse. A , RA 5 . BvoVl ta=g Rea itnecdr ebarseea kdduorwinng vaovlatalagnec h(1e.)3. factor accounts for E 100 6. I = Allowable avalanche current. av 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = t ·f av Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see figure 11) P = 1/2 ( 1.3·BV·I ) =(cid:7)(cid:1)T/ Z D (ave) av thJC Fig 16. Maximum Avalanche Energy I =2(cid:1)T/ [1.3·BV·Z ] av th Vs. Temperature E = P ·t AS (AR) D (ave) av www.irf.com 7
IRF3808PbF (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:5)(cid:10)(cid:2)(cid:11)(cid:8)(cid:12)(cid:2)(cid:13)(cid:14)(cid:5)(cid:9)(cid:12)(cid:15)(cid:9)(cid:16)(cid:5)(cid:17)(cid:2)(cid:18)(cid:16)(cid:5)(cid:19)(cid:7)(cid:13)(cid:11)(cid:20)(cid:7)(cid:16) + " (cid:21)(cid:18)(cid:27) (cid:17)(cid:1)#(cid:29)(cid:25)(cid:19)(cid:27)(cid:17)(cid:1)"(cid:19)(cid:20)! (cid:15)(cid:23)(cid:21)(cid:29)(cid:17) (cid:19)(cid:20)! (cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:5) • (cid:1)#(cid:19)$(cid:1)%(cid:17)(cid:21)(cid:29)(cid:25)(cid:1)(cid:26)(cid:20)(cid:15)(cid:27)(cid:18)(cid:17)(cid:29)(cid:20)(cid:18)(cid:23) (cid:1)(cid:1) • &(cid:21)(cid:19)(cid:27)(cid:20)(cid:15)(cid:1)’(cid:22)(cid:29)(cid:20)(cid:23) (cid:3) (cid:1)(cid:1) • #(cid:19)$(cid:1)#(cid:23)(cid:29)((cid:29))(cid:23)(cid:1)(cid:26)(cid:20)(cid:15)(cid:27)(cid:18)(cid:17)(cid:29)(cid:20)(cid:18)(cid:23) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)"(cid:27)(cid:21)(cid:21)(cid:23)(cid:20)(cid:17)(cid:1)(cid:14)(cid:21)(cid:29)(cid:20)!*(cid:19)(cid:21)+(cid:23)(cid:21) - + (cid:2) (cid:4) - + - (cid:1) (cid:10)(cid:21) • (cid:15)(cid:16)(cid:4)(cid:15)(cid:17)(cid:1)(cid:18)(cid:19)(cid:20)(cid:17)(cid:21)(cid:19)(cid:22)(cid:22)(cid:23)(cid:15)(cid:1)(cid:24)(cid:25)(cid:1)(cid:10)(cid:21) + • (cid:26) (cid:1)(cid:18)(cid:19)(cid:20)(cid:17)(cid:21)(cid:19)(cid:22)(cid:22)(cid:23)(cid:15)(cid:1)(cid:24)(cid:25)(cid:1)(cid:11)(cid:27)(cid:17)(cid:25)(cid:1)(cid:28)(cid:29)(cid:18)(cid:17)(cid:19)(cid:21)(cid:1)(cid:30)(cid:11)(cid:30) (cid:9) • (cid:11)(cid:2)(cid:12)(cid:1)(cid:13)(cid:12)(cid:14)(cid:12)(cid:1)(cid:31)(cid:1)(cid:11)(cid:23)(cid:16) (cid:18)(cid:23)(cid:1)(cid:13)(cid:20)(cid:15)(cid:23)(cid:21)(cid:1)(cid:14)(cid:23)!(cid:17) - (cid:1)(cid:1) (cid:9) (cid:21)(cid:2) (cid:5)(cid:1)(cid:1)(cid:10)(cid:23)(cid:16)(cid:23)(cid:21)!(cid:23)(cid:1)’(cid:19)(cid:22)(cid:29)(cid:21) (cid:17)(cid:25)(cid:1)(cid:19)*(cid:1)(cid:11)(cid:12)(cid:13)(cid:12)(cid:14)(cid:1)*(cid:19)(cid:21)(cid:1)’(cid:31)",(cid:29)(cid:20)(cid:20)(cid:23)(cid:22) Driver Gate Drive P.W. Period D = P.W. Period (cid:1)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:3)(cid:2)(cid:4)(cid:4)(cid:4) V =10V GS D.U.T. I Waveform SD Reverse Recovery Body Diode Forward Current Current di/dt D.U.T. V Waveform DS Diode Recovery dv/dt (cid:1)(cid:2)V(cid:2)(cid:2)(cid:2)(cid:3) DD Re-Applied Voltage Body Diode Forward Drop Inductor Curent (cid:6)(cid:3)(cid:3)(cid:3)(cid:3)(cid:7) Ripple ≤ 5% ISD (cid:5)(cid:5)(cid:5)(cid:1)(cid:9) (cid:1)-(cid:1).(cid:12)(cid:2)(cid:9)(cid:1)*(cid:19)(cid:21)(cid:1)#(cid:19)) (cid:18)(cid:1)#(cid:23)(cid:16)(cid:23)(cid:22)(cid:1)(cid:29)(cid:20)(cid:15)(cid:1)(cid:6)(cid:9)(cid:1)(cid:11)(cid:21) (cid:16)(cid:23)(cid:1)(cid:11)(cid:23)(cid:16) (cid:18)(cid:23)! (cid:21)(cid:2) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:4)For N-channel(cid:3)HEXFET® power MOSFETs 8 www.irf.com
IRF3808PbF (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 INTERNATIONAL PART NUMBER ASSEMBLED ON WW 19, 2000 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE Note: "P" in assembly line position ASSEMBLY YEAR 0 = 2000 indicates "Lead - Free" LOT CODE WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 www.irf.com 9
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRF3808PBF