图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRF3710ZPBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRF3710ZPBF产品简介:

ICGOO电子元器件商城为您提供IRF3710ZPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF3710ZPBF价格参考。International RectifierIRF3710ZPBF封装/规格:晶体管 - FET,MOSFET - 单, 通孔 N 沟道 100V 59A(Tc) 160W(Tc) TO-220AB。您可以下载IRF3710ZPBF参考资料、Datasheet数据手册功能说明书,资料中有IRF3710ZPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET N-CH 100V 59A TO-220ABMOSFET MOSFT 100V 59A 18mOhm 82nC Qg

产品分类

FET - 单分离式半导体

FET功能

标准

FET类型

MOSFET N 通道,金属氧化物

Id-ContinuousDrainCurrent

59 A

Id-连续漏极电流

59 A

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

晶体管,MOSFET,International Rectifier IRF3710ZPBFHEXFET®

数据手册

点击此处下载产品Datasheet

产品型号

IRF3710ZPBF

PCN组件/产地

点击此处下载产品Datasheet

Pd-PowerDissipation

160 W

Pd-功率耗散

160 W

Qg-GateCharge

82 nC

Qg-栅极电荷

82 nC

RdsOn-Drain-SourceResistance

18 mOhms

RdsOn-漏源导通电阻

18 mOhms

Vds-Drain-SourceBreakdownVoltage

100 V

Vds-漏源极击穿电压

100 V

Vgs-Gate-SourceBreakdownVoltage

20 V

Vgs-栅源极击穿电压

20 V

不同Id时的Vgs(th)(最大值)

4V @ 250µA

不同Vds时的输入电容(Ciss)

2900pF @ 25V

不同Vgs时的栅极电荷(Qg)

120nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

18 毫欧 @ 35A,10V

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品目录页面

点击此处下载产品Datasheet

产品种类

MOSFET

供应商器件封装

TO-220AB

其它名称

*IRF3710ZPBF

功率-最大值

160W

包装

管件

商标

International Rectifier

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

TO-220-3

封装/箱体

TO-220-3

工厂包装数量

50

晶体管极性

N-Channel

标准包装

50

漏源极电压(Vdss)

100V

电流-连续漏极(Id)(25°C时)

59A (Tc)

设计资源

http://www.irf.com/product-info/models/saber/irf3710z_s_l.sinhttp://www.irf.com/product-info/models/spice/irf3710z_s_l.spi

推荐商品

型号:2SK3018T106

品牌:Rohm Semiconductor

产品名称:分立半导体产品

获取报价

型号:FDY300NZ

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IPB042N10N3GATMA1

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:FQB2NA90TM

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IRFH7188TRPBF

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:DMG4407SSS-13

品牌:Diodes Incorporated

产品名称:分立半导体产品

获取报价

型号:FDB3682

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IRFZ48NSTRLPBF

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IRF3710ZPBF 相关产品

STD5406NT4G

品牌:ON Semiconductor

价格:

IRFR15N20DPBF

品牌:Infineon Technologies

价格:

SIHB33N60E-GE3

品牌:Vishay Siliconix

价格:¥19.97-¥19.97

IRLR014NPBF

品牌:Infineon Technologies

价格:

IRLZ14PBF

品牌:Vishay Siliconix

价格:¥3.17-¥4.01

IRL620SPBF

品牌:Vishay Siliconix

价格:¥6.01-¥6.01

FDB390N15A

品牌:ON Semiconductor

价格:

IRF610S

品牌:Vishay Siliconix

价格:

PDF Datasheet 数据手册内容提取

PD - 95466A IRF3710ZPbF IRF3710ZSPbF Features IRF3710ZLPbF (cid:0) Advanced Process Technology (cid:0) Ultra Low On-Resistance HEXFET® Power MOSFET (cid:0) Dynamic dv/dt Rating (cid:0) 175°C Operating Temperature D V = 100V (cid:0) Fast Switching DSS (cid:0) Repetitive Avalanche Allowed up to Tjmax (cid:0) Lead-Free RDS(on) = 18mΩ G Description I = 59A D This HEXFET® Power MOSFET utilizes the latest S processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. TO-220AB D2Pak TO-262 IRF3710ZPbF IRF3710ZSPbF IRF3710ZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 59 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 42 IDM Pulsed Drain Current (cid:0) 240 PD @TC = 25°C Maximum Power Dissipation 160 W Linear Derating Factor 1.1 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy (Thermally Limited) (cid:1) 170 mJ EAS (tested) Single Pulse Avalanche Energy Tested Value (cid:2) 200 IAR Avalanche Current (cid:0) See Fig.12a,12b,15,16 A EAR Repetitive Avalanche Energy (cid:3) mJ TJ Operating Junction and -55 to + 175 °C TSTG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case ––– 0.92 °C/W RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 RθJA Junction-to-Ambient (PCB Mount, steady state)(cid:4) ––– 40 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:6)(cid:1)

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.10 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 14 18 mΩ VGS = 10V, ID = 35A (cid:2) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 35 ––– ––– S V = 50V, I = 35A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 100V, VGS = 0V ––– ––– 250 V = 100V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 V = -20V GS Qg Total Gate Charge ––– 82 120 nC ID = 35A Qgs Gate-to-Source Charge ––– 19 28 VDS = 80V Qgd Gate-to-Drain ("Miller") Charge ––– 27 40 VGS = 10V (cid:2) td(on) Turn-On Delay Time ––– 17 ––– ns VDD = 50V tr Rise Time ––– 77 ––– ID = 35A td(off) Turn-Off Delay Time ––– 41 ––– RG = 6.8Ω tf Fall Time ––– 56 ––– VGS = 10V (cid:2) LD Internal Drain Inductance ––– 4.5 ––– nH Between lead, D 6mm (0.25in.) LS Internal Source Inductance ––– 7.5 ––– from package G and center of die contact S Ciss Input Capacitance ––– 2900 ––– pF VGS = 0V Coss Output Capacitance ––– 290 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 150 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 1130 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 170 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 280 ––– VGS = 0V, VDS = 0V to 80V Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 59 MOSFET symbol D (Body Diode) A showing the ISM Pulsed Source Current ––– ––– 240 integral reverse G (Body Diode)(cid:0)(cid:1) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 35A, VGS = 0V (cid:2) trr Reverse Recovery Time ––– 50 75 ns TJ = 25°C, IF = 35A, VDD = 25V Qrr Reverse Recovery Charge ––– 100 160 nC di/dt = 100A/µs (cid:2) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1) Repetitive rating; pulse width limited by (cid:5) Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . (cid:2) (cid:7)Limited by TJmax, starting TJ = 25°C, L = 0.27mH, (cid:6) Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 35A, VGS =10V. Part not avalanche performance. recommended for use above this value. (cid:7) This value determined from sample failure population. 100% (cid:3) ISD ≤ 35A, di/dt ≤ 380A/µs, VDD ≤ V(BR)DSS, tested to this value in production. TJ ≤ 175°C. (cid:8) This is applied to D2Pak, when mounted on 1" square PCB (cid:4) Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A) 100 8.0V A) 8.0V n(t 76..00VV n(t 76..00VV e e Curr 10 55..50VV Curr 100 55..50VV e BOTTOM 4.5V e BOTTOM 4.5V c c ur ur o o S S o- 1 o- n-t 4.5V n-t 10 4.5V ai ai Dr Dr , D 0.1 , D I 20µs PULSE WIDTH I 20µs PULSE WIDTH Tj = 25°C Tj = 175°C 0.01 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 S) Α()Cueenrr t 100 TJ = 175°C onduanecc(t 10800 TTJJ == 2157°5C°C c c ur 10 ns 60 o a Sno--t Tadrr 40 Dari 1 TJ = 25°C wor I,D F, S 20 VDS = 25V GF VDS = 15V 20µs PULSE WIDTH 20µs PULSE WIDTH 0 0 2 4 6 8 10 0 10 20 30 40 50 60 70 VGS, Gate-to-Source Voltage (V) I , Drain-to-Source Current (A) D Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 100000 12.0 VGS = 0V, f = 1 MHZ I = 35A C = C + C , C SHORTED D iss gs gd ds VDS= 80V 10000 CCrossss == CCdgsd + Cgd Ve() 10.0 VDS= 50V Fep() Ciss Vagotl 8.0 VDS= 20V aanccti1000 Souecr 6.0 ap Coss o- CC, Crss ea-tt 4.0 100 G ,S G 2.0 V 10 0.0 1 10 100 0 20 40 60 80 100 V , Drain-to-Source Voltage (V) DS Q Total Gate Charge (nC) G Fig 5. Typical Capacitance vs. Fig 6. Typical Gate Charge vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000.00 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) A) A) Cunenr(rt 100.00 TJ = 175°C Cueenr(r t 100 100µsec Dari 10.00 oucr 10 eevsr TJ = 25°C Sno--t Re, DS 1.00 Dar, iD 1 Tc = 25°C 1msec I I Tj = 175°C 10msec VGS = 0V Single Pulse 0.10 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 60 3.0 e ID = 59A c 50 anst 2.5 VGS = 10V si e CDAunanerr()r t i 3400 ORSnnoouec--r t mNedoaz)rli 12..50 I,D 1200 Dar ,iRDSon() ( 01..50 0 0.0 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Fig 10. Normalized On-Resistance Case Temperature vs. Temperature 10 )C 1 J h Z t D = 0.50 e( 0.20 s n o 0.1 0.10 p es 0.05 R a l 0.02 m 0.01 er 0.01 h SINGLE PULSE T ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t , Rectangular Pulse Duration (sec) 1 Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 15V 300 J) ID m y( 250 TOP 15A VDS L DRIVER egr 25A n BOTTOM35A E e 200 RG D.U.T + hc 2V0GVS tp IAS0.01Ω - VDDA Aaanev l 150 s ul P 100 Fig 12a. Unclamped Inductive Test Circuit ge l n V(BR)DSS S, iS 50 tp EA 0 25 50 75 100 125 150 175 Starting T , Junction Temperature (°C) J IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 5.0 V G V) e( g 4.0 a Charge Votl d ol Fig 13a. Basic Gate Charge Waveform ehs 3.0 ID = 250µA hr CurrentRegulator et SameTypeasD.U.T. Gat h) 2.0 50KΩ S(t 12V .2µF G .3µF V + D.U.T. -VDS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 VGS T , Temperature ( °C ) J 3mA IG ID CurrentSamplingResistors Fig 14. Threshold Voltage vs. Temperature Fig 13b. Gate Charge Test Circuit 6 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs An()t 0.01 aavsasulamncinhge ∆pTujl s=e w2i5d°thC, dutaev to e urr avalanche losses Ce 10 0.05 h c 0.10 n a al v A 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 200 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 10% Duty Cycle 1. Avalanche failures assumption: J) ID = 35A Purely a thermal phenomenon and failure occurs at a m 150 temperature far in excess of Tjmax. This is validated for y( every part type. g er 2. Safe operation in Avalanche is allowed as long asTjmax is En not exceeded. e 3. Equation below based on circuit and waveforms shown in h 100 c Figures 12a, 12b. n a 4. P = Average power dissipation per single al D (ave) v avalanche pulse. A , R 50 5. BV = Rated breakdown voltage (1.3 factor accounts for A voltage increase during avalanche). E 6. I = Allowable avalanche current. av 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = t ·f av Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see figure 11) P = 1/2 ( 1.3·BV·I ) =(cid:7)(cid:1)T/ Z D (ave) av thJC I =2(cid:1)T/ [1.3·BV·Z ] av th E = P ·t Fig 16. Maximum Avalanche Energy AS (AR) D (ave) av vs. Temperature www.irf.com 7

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) Driver Gate Drive (cid:8)(cid:9)(cid:10)(cid:9)(cid:11) P.W. Period D = + P.W. Period (cid:24) (cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:2) Reverse (cid:4) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:1) dv/dt VDD (cid:8) (cid:23)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD (cid:24)(cid:7)(cid:8) (cid:7)(cid:9)(cid:7)(cid:10)(cid:8)(cid:7)(cid:11)(cid:12)(cid:13)(cid:7)(cid:14)(cid:12)(cid:15)(cid:16)(cid:17)(cid:7)(cid:14)(cid:18)(cid:19)(cid:18)(cid:20)(cid:7)(cid:21)(cid:18)(cid:19)(cid:16)(cid:17)(cid:18)(cid:22) (cid:19)(cid:17) Fig 17. (cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:12)(cid:6)(cid:3)(cid:13)(cid:6)(cid:14)(cid:11)(cid:15)(cid:6)(cid:16)(cid:17)(cid:3)(cid:12)(cid:15)(cid:18)(cid:12)(cid:19)(cid:3)(cid:20)(cid:6)(cid:21)(cid:19)(cid:3)(cid:22)(cid:10)(cid:16)(cid:14)(cid:23)(cid:10)(cid:19)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:23) (cid:27) (cid:8) (cid:27)(cid:17) (cid:8) (cid:19)(cid:17) (cid:21)(cid:24)(cid:25)(cid:24)(cid:26)(cid:24) (cid:23) (cid:19) +(cid:8) - (cid:27)(cid:27) (cid:6)(cid:1)(cid:8) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 INTERNATIONAL PART NUMBER ASSEMBLED ON WW 19, 2000 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 0 = 2000 Note: "P" in assembly line position ASSEMBLY indicates "Lead - Free" LOT CODE WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:2)(cid:3)(cid:26)(cid:4)(cid:3)(cid:21)(cid:27)(cid:5)(cid:8)(cid:28)(cid:17)(cid:29)(cid:19)(cid:20)(cid:27) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:2)(cid:3)(cid:16)(cid:17)(cid:5)(cid:18)(cid:3)(cid:16)(cid:4)(cid:19)(cid:20)(cid:21)(cid:5)(cid:22)(cid:20)(cid:23)(cid:24)(cid:16)(cid:25)(cid:3)(cid:17)(cid:19)(cid:24)(cid:20) THIS IS AN IRF530S WITH PART NUMBER LOT CODE 8024 INTERNATIONAL ASSEMBLED ON WW 02, 2000 RECTIFIER F530S IN THE ASSEMBLY LINE "L" LOGO DATE CODE ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 PART NUMBER INTERNATIONAL ASSEMBLED ON WW 19, 1997 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO Note: "P" in assembly line DATE CODE position indicates "Lead-Free" ASSEMBLY YEAR 7 = 1997 LOT CODE WEEK 19 LINE C OR PART NUMBER INTERNATIONAL RECTIFIER LOGO DATE CODE P = DESIGNATES LEAD-FREE ASSEMBLY PRODUCT (OPTIONAL) LOT CODE YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) D2Pak Tape & Reel Infomation Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 43..1900 ((..116513)) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 1.65 (.065) 11.40 (.449) 24.30 (.957) 15.42 (.609) 23.90 (.941) 15.22 (.601) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 10.70 (.421) 4.72 (.136) 16.10 (.634) 4.52 (.178) 15.90 (.626) FEED DIRECTION 13.50 (.532) 27.40 (1.079) 12.80 (.504) 23.90 (.941) 4 330.00 60.00 (2.362) (14.173) MIN. MAX. 30.40 (1.197) NOTES : MAX. 1. COMFORMS TO EIA-418. 26.40 (1.039) 4 2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961) 3. DIMENSION MEASURED @ HUB. 3 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. (cid:11)(cid:12)(cid:13)(cid:14)(cid:14)(cid:15)(cid:16)(cid:17)(cid:7)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:4)(cid:7)(cid:23)(cid:5)(cid:7)(cid:24)(cid:2)(cid:3)(cid:7)(cid:25)(cid:4)(cid:20)(cid:2)(cid:26)(cid:26)(cid:4)(cid:24)(cid:27)(cid:4)(cid:27)(cid:7)(cid:28)(cid:2)(cid:25)(cid:7)(cid:29)(cid:30)(cid:25)(cid:28)(cid:19)(cid:20)(cid:4)(cid:7)(cid:31)(cid:2)(cid:30)(cid:24)(cid:3)(cid:7)(cid:16)(cid:18)(cid:18) (cid:23)(cid:20)(cid:19)(cid:3)(cid:23)(cid:2)(cid:24)(cid:9) Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 12 www.irf.com

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRF3710ZSPBF IRF3710ZLPBF IRF3710ZPBF IRF3710ZSTRLPBF