图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRF2907ZPBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRF2907ZPBF产品简介:

ICGOO电子元器件商城为您提供IRF2907ZPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF2907ZPBF价格参考¥9.60-¥28.93。International RectifierIRF2907ZPBF封装/规格:晶体管 - FET,MOSFET - 单, 通孔 N 沟道 75V 160A(Tc) 300W(Tc) TO-220AB。您可以下载IRF2907ZPBF参考资料、Datasheet数据手册功能说明书,资料中有IRF2907ZPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET N-CH 75V 75A TO-220ABMOSFET MOSFT 75V 170A 4.5mOhm 180nC

产品分类

FET - 单分离式半导体

FET功能

标准

FET类型

MOSFET N 通道,金属氧化物

Id-ContinuousDrainCurrent

170 A

Id-连续漏极电流

170 A

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

晶体管,MOSFET,International Rectifier IRF2907ZPBFHEXFET®

数据手册

点击此处下载产品Datasheet

产品型号

IRF2907ZPBF

PCN组件/产地

点击此处下载产品Datasheet

Pd-PowerDissipation

330 W

Pd-功率耗散

330 W

Qg-GateCharge

180 nC

Qg-栅极电荷

180 nC

RdsOn-Drain-SourceResistance

4.5 mOhms

RdsOn-漏源导通电阻

4.5 mOhms

Vds-Drain-SourceBreakdownVoltage

75 V

Vds-漏源极击穿电压

75 V

Vgs-Gate-SourceBreakdownVoltage

20 V

Vgs-栅源极击穿电压

20 V

不同Id时的Vgs(th)(最大值)

4V @ 250µA

不同Vds时的输入电容(Ciss)

7500pF @ 25V

不同Vgs时的栅极电荷(Qg)

270nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

4.5 毫欧 @ 75A,10V

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品目录页面

点击此处下载产品Datasheet

产品种类

MOSFET

供应商器件封装

TO-220AB

其它名称

*IRF2907ZPBF

功率-最大值

300W

功率耗散

330 W

包装

管件

商标

International Rectifier

安装类型

通孔

安装风格

Through Hole

导通电阻

4.5 mOhms

封装

Tube

封装/外壳

TO-220-3

封装/箱体

TO-220-3

工厂包装数量

50

晶体管极性

N-Channel

栅极电荷Qg

180 nC

标准包装

50

汲极/源极击穿电压

75 V

漏极连续电流

170 A

漏源极电压(Vdss)

75V

电流-连续漏极(Id)(25°C时)

160A (Tc)

设计资源

http://www.irf.com/product-info/models/saber/irf2907z_s_l.sinhttp://www.irf.com/product-info/models/spice/irf2907z_s_l.spi

闸/源击穿电压

20 V

推荐商品

型号:IRF820

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:FCPF600N60Z

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:FCP190N65F

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:FQP6P25

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:IRFHM830DTRPBF

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:ATP207-TL-H

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:HUFA75321D3ST

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:APT106N60B2C6

品牌:Microsemi Corporation

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IRF2907ZPBF 相关产品

SI4864DY-T1-E3

品牌:Vishay Siliconix

价格:

NTP6411ANG

品牌:ON Semiconductor

价格:

STB13N60M2

品牌:STMicroelectronics

价格:¥14.29-¥27.20

STP12NM50N

品牌:STMicroelectronics

价格:

IXTA230N075T2

品牌:IXYS

价格:

AUIRFN7107TR

品牌:Infineon Technologies

价格:

IRF9640STRR

品牌:Vishay Siliconix

价格:

FQPF9N50CF

品牌:ON Semiconductor

价格:

PDF Datasheet 数据手册内容提取

PD - 95489D IRF2907ZPbF IRF2907ZSPbF IRF2907ZLPbF Features HEXFET® Power MOSFET (cid:1) Advanced Process Technology (cid:1) Ultra Low On-Resistance (cid:1) 175°C Operating Temperature D VDSS = 75V (cid:1) Fast Switching (cid:1) Repetitive Avalanche Allowed up to Tjmax R = 4.5mΩ DS(on) (cid:1) Lead-Free G ∗ Description S ID = 160A This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of TO-220AB D2Pak TO-262 applications. IRF2907ZPbF IRF2907ZSPbF IRF2907ZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 170 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 120 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wirebond Limited) 160 * IDM Pulsed Drain Current (cid:0) 680 PD @TC = 25°C Maximum Power Dissipation 300 W Linear Derating Factor 2.0 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy (Thermally Limited) (cid:1) 270 mJ EAS (tested) Single Pulse Avalanche Energy Tested Value (cid:2) 690 IAR Avalanche Current (cid:0) See Fig.12a,12b,15,16 A EAR Repetitive Avalanche Energy (cid:3) mJ TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case (cid:4) ––– 0.50(cid:5) RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W RθJA Junction-to-Ambient ––– 62 RθJA Junction-to-Ambient (PCB Mount, steady state)(cid:6) ––– 40 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:3)(cid:5)(cid:1)

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 75 ––– ––– V VGS = 0V, ID = 250µA ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.069 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 3.5 4.5 mΩ VGS = 10V, ID = 75A (cid:2) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 180 ––– ––– S V = 25V, I = 75A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 75V, VGS = 0V ––– ––– 250 V = 75V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 V = -20V GS Qg Total Gate Charge ––– 180 270 ID = 75A Qgs Gate-to-Source Charge ––– 46 ––– nC VDS = 60V Qgd Gate-to-Drain ("Miller") Charge ––– 65 ––– VGS = 10V (cid:2) td(on) Turn-On Delay Time ––– 19 ––– ns VDD = 38V tr Rise Time ––– 140 ––– ID = 75A td(off) Turn-Off Delay Time ––– 97 ––– RG = 2.5Ω tf Fall Time ––– 100 ––– VGS = 10V (cid:2) LD Internal Drain Inductance ––– 5.0 ––– nH Between lead, D 6mm (0.25in.) LS Internal Source Inductance ––– 13 ––– from package G and center of die contact S Ciss Input Capacitance ––– 7500 ––– pF VGS = 0V Coss Output Capacitance ––– 970 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 510 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 3640 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 650 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 1020 ––– VGS = 0V, VDS = 0V to 60V Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current MOSFET symbol D ––– ––– 160* (Body Diode) A showing the ISM Pulsed Source Current integral reverse G ––– ––– 680 (Body Diode)(cid:0)(cid:1) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V (cid:2) trr Reverse Recovery Time ––– 41 61 ns TJ = 25°C, IF = 75A, VDD = 38V Qrr Reverse Recovery Charge ––– 59 89 nC di/dt = 100A/µs (cid:2) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1)(cid:6)Repetitive rating; pulse width limited by (cid:7)This value determined from sample failure population. max. junction temperature. (See fig. 11). 100% tested to this value in production. (cid:2) (cid:6)Limited by TJmax, starting TJ = 25°C,L=0.095mH, (cid:8)This is applied to D2Pak, when mounted on 1" square PCB RG = 25Ω, IAS = 75A, VGS =10V. ( FR-4 or G-10 Material ). For recommended footprint and Part not recommended for use above this value. soldering techniques refer to application note #AN-994. (cid:3) ITSJD ≤ ≤ 17755A°,C d.i/dt ≤ 340A/µs, VDD ≤ V(BR)DSS, (cid:9)(cid:10)RTOθ -is2 2m0e daesvuirceed w aitl l ThJa ovfe aapnp Rrothxi mofa 0te.4l5y °9C0/W°C.. (cid:4) Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ∗ (cid:5)Coss eff. is a fixed capacitance that gives the same Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is charging time as Coss while VDS is rising from 160A.Note that current limitations arising from heating of 0 to 80% VDSS. the device leads may occur with some lead mounting (cid:6) Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical arrangements. (Refer to AN-1140 http://www.irf.com/ repetitive avalanche performance. technical-info/appnotes/an-1140.pdf) 2 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 10000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A) 87..00VV A) 87..00VV ne(t 1000 65..05VV ne(t 65..05VV Curr BOTTOM 54..05VV Curr BOTTOM 54..05VV e e ucr 100 ucr100 o o S S o- o- 4.5V n-t n-t ai 4.5V ai Dr 10 Dr , D , D I ≤60µs PULSE WIDTH I ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 10 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 200 T = 25°C S) J Α()nt 100 TJ = 175°C anec( 150 Cueerr onduct TJ = 175°C c c ur 10 TJ = 25°C ns 100 o a Sno--t Tadrr ai w Dr 1 or 50 I,D VDS = 25V GF, sf VDS = 10V 380µs PULSE WIDTH ≤60µs PULSE WIDTH 0.1 0 2 4 6 8 10 0 25 50 75 100 125 150 VGS, Gate-to-Source Voltage (V) ID,Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 100000 12.0 VGS = 0V, f = 1 MHZ I = 90A C = C + C , C SHORTED D iss gs gd ds Crss = Cgd V) 10.0 VDS= 60V Coss = Cds + Cgd e( VDS= 38V g Fepc()10000 Ciss Voaet l 8.0 VDS= 15V n c acti C our 6.0 a oss S CCap, 1000 Crss oae--tt 4.0 G , S G V 2.0 100 0.0 1 10 100 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Fig 6. Typical Gate Charge vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000 10000 OPERATION IN THIS AREA LIMITED BY RDS(on) An()t TJ = 175°C An()t 1000 uerr 100 uerr 1msec 100µsec C C 100 n e Dari oucr e S Limited by package evsr 10 TJ = 25°C no--t 10 Re ,DS Dar ,iD 1 Tc = 25°C 10msec I I DC Tj = 175°C VGS = 0V Single Pulse 1 0.1 0.0 0.5 1.0 1.5 2.0 2.5 1 10 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 180 2.5 160 Limited By Package nec ID = 90A ast VGS = 10V 140 si e 2.0 R CDAnuenarr()r t iI,D 11022468000000 ODSanoouencr--r t , iRDSon() mNoedaz(r) li 11..05 0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Fig 10. Normalized On-Resistance Case Temperature vs. Temperature 1 D = 0.50 )C 0.1 0.20 J Zh t 0.10 e( 0.05 R1R R2R Ri (°C/W) τi (sec) Rponess 0.01 00..0021 τJτJτ1τ1 1 τ2τ2 2 τCτ 00..227291 00..000003405179 a l Ci= τi/Ri m Ci i/Ri er0.001 SINGLE PULSE h T ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 1200 15V mJ) ID y( 1000 TOP 9.0A egr 13A VDS L DRIVER En BOTTOM75A e 800 h c n RG D.U.T +- VDD aavl 600 IAS A A 2V0GVS tp 0.01Ω eus l P 400 e gl n Fig 12a. Unclamped Inductive Test Circuit Si ,S 200 V(BR)DSS EA tp 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 4.0 V G V) e( 3.5 g a Charge otl V 3.0 d Fig 13a. Basic Gate Charge Waveform ol I = 250µA h D es 2.5 hr e t Gat 2.0 h) S(t G 1.5 L V VCC DUT 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 200 1K TJ , Temperature ( °C ) Fig 14. Threshold Voltage vs. Temperature Fig 13b. Gate Charge Test Circuit 6 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 100 Duty Cycle = Single Pulse 0.01 A) 0.05 Allowed avalanche Current vs en(t 10 0.10 aavsasulamncinhge ∆pTuj ls=e 2w5id°Cth , dueta vto urr avalanche losses C e h c n a al 1 v A 0.1 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 300 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 1% Duty Cycle 1. Avalanche failures assumption: J) 250 ID = 75A Purely a thermal phenomenon and failure occurs at a m temperature far in excess of T . This is validated for jmax y( every part type. g 200 er 2. Safe operation in Avalanche is allowed as long asTjmax is En not exceeded. e 3. Equation below based on circuit and waveforms shown in h 150 c Figures 12a, 12b. n a 4. P = Average power dissipation per single al D (ave) v avalanche pulse. A 100 , R 5 . BvoVl ta=g Rea itnecdr ebarseea kdduorwinng vaovlatalagnec h(1e.)3. factor accounts for A E 50 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = tav ·f Z (D, t ) = Transient thermal resistance, see figure 11) Starting TJ , Junction Temperature (°C) thJC av P = 1/2 ( 1.3·BV·I ) =(cid:7)(cid:1)T/ Z D (ave) av thJC I =2(cid:1)T/ [1.3·BV·Z ] av th E = P ·t Fig 16. Maximum Avalanche Energy AS (AR) D (ave) av vs. Temperature www.irf.com 7

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) Driver Gate Drive (cid:8)(cid:9)(cid:10)(cid:9)(cid:11) P.W. Period D = + P.W. Period (cid:24) (cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:2) Reverse (cid:4) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:1) dv/dt VDD (cid:7) (cid:22)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD (cid:24)(cid:6)(cid:7) (cid:6)(cid:8)(cid:6)(cid:9)(cid:7)(cid:6)(cid:10)(cid:11)(cid:12)(cid:6)(cid:13)(cid:11)(cid:14)(cid:15)(cid:16)(cid:6)(cid:13)(cid:17)(cid:18)(cid:17)(cid:19)(cid:6)(cid:20)(cid:17)(cid:18)(cid:15)(cid:16)(cid:17)(cid:21) (cid:19)(cid:17) Fig 17. (cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:12)(cid:6)(cid:3)(cid:13)(cid:6)(cid:14)(cid:11)(cid:15)(cid:6)(cid:16)(cid:17)(cid:3)(cid:12)(cid:15)(cid:18)(cid:12)(cid:19)(cid:3)(cid:20)(cid:6)(cid:21)(cid:19)(cid:3)(cid:22)(cid:10)(cid:16)(cid:14)(cid:23)(cid:10)(cid:19)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:22) (cid:27) (cid:7) (cid:27)(cid:17) (cid:7) (cid:19)(cid:17) (cid:20)(cid:23)(cid:24)(cid:23)(cid:25)(cid:23) (cid:22) (cid:19) +(cid:7) - (cid:27)(cid:27) (cid:5)(cid:1)(cid:7) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 INTERNATIONAL PART NUMBER ASSEMBLED ON WW 19, 2000 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 0 = 2000 Note: "P" in assembly line position ASSEMBLY indicates "Lead - Free" LOT CODE WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:27)(cid:1)(cid:2)(cid:3)(cid:4)(cid:28)(cid:29)(cid:6)(cid:7)(cid:30)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:27)(cid:1)(cid:2)(cid:3)(cid:4)(cid:28)(cid:29)(cid:6)(cid:7)(cid:30)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) THIS IS AN IRF530S WITH PART NUMBER LOT CODE 8024 INTERNATIONAL ASSEMBLED ON WW 02, 2000 RECTIFIER F530S IN THE ASSEMBLY LINE "L" LOGO DATE CODE YEAR 0 = 2000 ASSEMBLY LOT CODE WEEK 02 LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE Notes: 1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2.For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 PART NUMBER INTERNATIONAL ASSEMBLED ON WW 19, 1997 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE ASSEMBLY YEAR 7 = 1997 LOT CODE WEEK 19 LINE C OR PART NUMBER INTERNATIONAL RECTIFIER LOGO DATE CODE P = DESIGNATES LEAD-FREE ASSEMBLY LOT CODE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:1)(cid:10)(cid:31)(cid:23)(cid:8) (cid:8)!(cid:23)(cid:23)(cid:25)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 4.10 (.161) 3.90 (.153) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 1.65 (.065) 11.40 (.449) 24.30 (.957) 15.42 (.609) 23.90 (.941) 15.22 (.601) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 10.70 (.421) 4.72 (.136) 16.10 (.634) 4.52 (.178) 15.90 (.626) FEED DIRECTION 13.50 (.532) 27.40 (1.079) 12.80 (.504) 23.90 (.941) 4 330.00 60.00 (2.362) (14.173) MIN. MAX. 30.40 (1.197) NOTES : MAX. 1. COMFORMS TO EIA-418. 26.40 (1.039) 4 2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961) 3. DIMENSION MEASURED @ HUB. 3 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 12 www.irf.com

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRF2907ZSPBF IRF2907ZPBF IRF2907ZSTRLPBF