图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IRF2807ZSTRLPBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IRF2807ZSTRLPBF产品简介:

ICGOO电子元器件商城为您提供IRF2807ZSTRLPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF2807ZSTRLPBF价格参考。International RectifierIRF2807ZSTRLPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 75V 75A(Tc) 170W(Tc) D2PAK。您可以下载IRF2807ZSTRLPBF参考资料、Datasheet数据手册功能说明书,资料中有IRF2807ZSTRLPBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET N-CH 75V 75A D2PAKMOSFET MOSFT 75V 89A 9.4mOhm 71nC

产品分类

FET - 单分离式半导体

FET功能

标准

FET类型

MOSFET N 通道,金属氧化物

Id-ContinuousDrainCurrent

89 A

Id-连续漏极电流

89 A

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

晶体管,MOSFET,International Rectifier IRF2807ZSTRLPBFHEXFET®

数据手册

点击此处下载产品Datasheet

产品型号

IRF2807ZSTRLPBF

PCN组件/产地

点击此处下载产品Datasheet点击此处下载产品Datasheet

Pd-PowerDissipation

170 W

Pd-功率耗散

170 W

Qg-GateCharge

110 nC

Qg-栅极电荷

110 nC

RdsOn-Drain-SourceResistance

9.4 mOhms

RdsOn-漏源导通电阻

9.4 mOhms

Vds-Drain-SourceBreakdownVoltage

75 V

Vds-漏源极击穿电压

75 V

Vgsth-Gate-SourceThresholdVoltage

4 V

Vgsth-栅源极阈值电压

4 V

上升时间

79 ns

下降时间

45 ns

不同Id时的Vgs(th)(最大值)

4V @ 250µA

不同Vds时的输入电容(Ciss)

3270pF @ 25V

不同Vgs时的栅极电荷(Qg)

110nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

9.4 毫欧 @ 53A,10V

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品种类

MOSFET

供应商器件封装

D2PAK

其它名称

IRF2807ZSTRLPBFDKR

功率-最大值

170W

功率耗散

170 W

包装

Digi-Reel®

商标

International Rectifier

安装类型

表面贴装

安装风格

SMD/SMT

导通电阻

9.4 mOhms

封装

Reel

封装/外壳

TO-263-3,D²Pak(2 引线+接片),TO-263AB

封装/箱体

D2PAK-2

工厂包装数量

800

晶体管极性

N-Channel

最大工作温度

+ 175 C

栅极电荷Qg

110 nC

标准包装

1

正向跨导-最小值

67 S

汲极/源极击穿电压

75 V

漏极连续电流

89 A

漏源极电压(Vdss)

75V

电流-连续漏极(Id)(25°C时)

75A (Tc)

配置

Single

推荐商品

型号:IRLZ34NSPBF

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:PH7030AL,115

品牌:Nexperia USA Inc.

产品名称:分立半导体产品

获取报价

型号:SI1443EDH-T1-GE3

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:IXFP7N80P

品牌:IXYS

产品名称:分立半导体产品

获取报价

型号:SI1012X-T1-GE3

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:STP75NF75

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:SIR846DP-T1-GE3

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:IRFR9214TRL

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
IRF2807ZSTRLPBF 相关产品

MCP87130T-U/LC

品牌:Microchip Technology

价格:

SIB452DK-T1-GE3

品牌:Vishay Siliconix

价格:¥5.15-¥5.15

NTMFS5C646NLT1G

品牌:ON Semiconductor

价格:

SI3475DV-T1-GE3

品牌:Vishay Siliconix

价格:

IRF3706

品牌:Infineon Technologies

价格:

IRF7811AVTR

品牌:Infineon Technologies

价格:¥14.56-¥16.05

BSB015N04NX3GXUMA1

品牌:Infineon Technologies

价格:¥8.85-¥9.26

IRF1010EZSPBF

品牌:Infineon Technologies

价格:

PDF Datasheet 数据手册内容提取

PD - 95488A IRF2807ZPbF IRF2807ZSPbF Features IRF2807ZLPbF (cid:0) Advanced Process Technology HEXFET® Power MOSFET (cid:0) Ultra Low On-Resistance (cid:0) Dynamic dv/dt Rating D (cid:0) 175°C Operating Temperature V = 75V (cid:0) Fast Switching DSS (cid:0) Repetitive Avalanche Allowed up to Tjmax (cid:0) Lead-Free RDS(on) = 9.4mΩ G Description ID = 75A S This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. TO-220AB D2Pak TO-262 IRF2807ZPbF IRF2807ZSPbF IRF2807ZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 89 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 63 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 75 IDM Pulsed Drain Current (cid:0) 350 PD @TC = 25°C Maximum Power Dissipation 170 W Linear Derating Factor 1.1 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy (Thermally Limited) (cid:1) 160 mJ EAS (tested) Single Pulse Avalanche Energy Tested Value (cid:2) 200 IAR Avalanche Current (cid:0) See Fig.12a,12b,15,16 A EAR Repetitive Avalanche Energy (cid:3) mJ TJ Operating Junction and -55 to + 175 °C TSTG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case ––– 0.90 °C/W RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 RθJA Junction-to-Ambient (PCB Mount, steady state)(cid:4) ––– 40 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:3)(cid:5)(cid:1)

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 75 ––– ––– V VGS = 0V, ID = 250µA ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.073 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 7.5 9.4 mΩ VGS = 10V, ID = 53A (cid:2) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 67 ––– ––– S V = 25V, I = 53A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 75V, VGS = 0V ––– ––– 250 V = 75V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 V = -20V GS Qg Total Gate Charge ––– 71 110 nC ID = 53A Qgs Gate-to-Source Charge ––– 19 29 VDS = 60V Qgd Gate-to-Drain ("Miller") Charge ––– 28 42 VGS = 10V (cid:2) td(on) Turn-On Delay Time ––– 18 ––– ns VDD = 38V tr Rise Time ––– 79 ––– ID = 53A td(off) Turn-Off Delay Time ––– 40 ––– RG = 6.2Ω tf Fall Time ––– 45 ––– VGS = 10V (cid:2) LD Internal Drain Inductance ––– 4.5 ––– nH Between lead, D 6mm (0.25in.) LS Internal Source Inductance ––– 7.5 ––– from package G and center of die contact S Ciss Input Capacitance ––– 3270 ––– pF VGS = 0V Coss Output Capacitance ––– 420 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 240 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 1590 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 280 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 440 ––– VGS = 0V, VDS = 0V to 60V Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 89 MOSFET symbol D (Body Diode) A showing the ISM Pulsed Source Current ––– ––– 350 integral reverse G (Body Diode)(cid:0)(cid:1) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 53A, VGS = 0V (cid:2) trr Reverse Recovery Time ––– 46 69 ns TJ = 25°C, IF = 53A, VDD = 25V Qrr Reverse Recovery Charge ––– 80 120 nC di/dt = 100A/µs (cid:2) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1) Repetitive rating; pulse width limited by (cid:5)Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . (cid:2) (cid:6)Limited by TJmax, starting TJ = 25°C, L = 0.12mH, (cid:6)Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 53A, VGS =10V. Part not avalanche performance. recommended for use above this value. (cid:7)This value determined from sample failure population. 100% (cid:3) ISD ≤ 53A, di/dt ≤ 420A/µs, VDD ≤ V(BR)DSS, tested to this value in production. TJ ≤ 175°C. (cid:8)This is applied to D2Pak, when mounted on 1" square PCB (cid:4) Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V Aen()t 100 8765....0005VVVV Aen()t 8765....0005VVVV Curr 10 BOTTOM 54..05VV Curr 100 BOTTOM 54..05VV e e c c ur ur o o S S o- 1 o- an-ti 4.5V an-ti 10 4.5V Dr Dr ,D 0.1 ,D I I 20µs PULSE WIDTH 20µs PULSE WIDTH Tj = 25°C Tj = 175°C 0.01 1 0.1 1 10 100 1000 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 150 Α()uenrrt 100 TJ = 175°C Saneucc()t 110205 TJ = 25°C C d e on c c ur 10 ns 75 o a Sano--ti TJ = 25°C wTadrr 50 TJ = 175°C Dr 1 or I, D VDS = 25V GF, sf 25 20µs PULSE WIDTH 0.1 0 4 6 8 10 12 0 25 50 75 100 125 150 VGS, Gate-to-Source Voltage (V) ID,Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 100000 12.0 VGS = 0V, f = 1 MHZ I = 53A C = C + C , C SHORTED D iss gs gd ds Crss = Cgd V) 10.0 VDS= 60V 10000 Coss = Cds + Cgd ge( VDS= 38V Fpaanepcc()ti1000 CCCrosisssss VSooaouec-rt l 68..00 VDS= 15V CCa, Gae-tt 4.0 100 , S G V 2.0 10 0.0 1 10 100 0 10 20 30 40 50 60 70 80 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Fig 6. Typical Gate Charge vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000 10000 OPERATION IN THIS AREA LIMITED BY R (on) A) A)1000 DS n(t 100 TJ = 175°C n( t e e urr urr C C100 n e Dari 10 oucr 100µsec e S evsr no--t 10 Re ,DS 1 TJ = 25°C Dar, iD 1 Tc = 25°C 1msec I I Tj = 175°C 10msec VGS = 0V Single Pulse 0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 100 2.5 90 Limited By Package nec ID = 53A 80 assti VGS = 10V e 2.0 R A) 70 n CDnuenarr(r t iI,D 123456000000 ODSanoouecr--rt , iRDSon() mNoedaz(r) li 11..05 0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Fig 10. Normalized On-Resistance Case Temperature vs. Temperature 10 )C 1 J h t D = 0.50 Z e( 0.20 s n o 0.1 0.10 p es 0.05 R a l 0.02 m 0.01 er 0.01 h T SINGLE PULSE Notes: ( THERMAL RESPONSE ) 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 15V 300 mJ) ID y( 250 TOP 22A VDS L DRIVER egr 38A En BOTTOM53A e 200 RG D.U.T + hc IAS - VDDA aanl 2V0GVS tp 0.01Ω Aev 150 s ul P 100 e Fig 12a. Unclamped Inductive Test Circuit gl n Si V(BR)DSS ,S 50 tp EA 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 5.0 V G V) e( ag 4.0 Charge Votl d ol I = 250µA Fig 13a. Basic Gate Charge Waveform ehs 3.0 D hr SaCmuerreTnytpeReagsulDat.oUr.T. Geat t h) 2.0 50KΩ S(t 12V .2µF G .3µF V + D.U.T. -VDS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 VGS T , Temperature ( °C ) J 3mA IG ID CurrentSamplingResistors Fig 14. Threshold Voltage vs. Temperature Fig 13b. Gate Charge Test Circuit 6 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs Aen()t 0.01 aavsasulamncinhge ∆pTuj l=se 2w5id°Cth , dueta vto urr avalanche losses C 10 0.05 e h 0.10 c n a al v A 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 200 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 10% Duty Cycle 1. Avalanche failures assumption: J) ID = 53A Purely a thermal phenomenon and failure occurs at a my( 150 etevmerpye praatrut rtey pfaer. in excess of Tjmax. This is validated for g er 2. Safe operation in Avalanche is allowed as long asTjmax is n E not exceeded. e 3. Equation below based on circuit and waveforms shown in h 100 nc Figures 12a, 12b. aal 4. PD (ave) = Average power dissipation per single Av avalanche pulse. , R 50 5. BV = Rated breakdown voltage (1.3 factor accounts for A voltage increase during avalanche). E 6. I = Allowable avalanche current. av 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = t ·f av Starting TJ , Junction Temperature (°C) ZthJC(D, tav) = Transient thermal resistance, see figure 11) P = 1/2 ( 1.3·BV·I ) =(cid:7)(cid:1)T/ Z D (ave) av thJC I =2(cid:1)T/ [1.3·BV·Z ] av th E = P ·t Fig 16. Maximum Avalanche Energy AS (AR) D (ave) av vs. Temperature www.irf.com 7

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) Driver Gate Drive (cid:8)(cid:9)(cid:10)(cid:9)(cid:11) P.W. Period D = + P.W. Period (cid:24) (cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:2) Reverse (cid:4) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:1) dv/dt VDD (cid:7) (cid:22)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD (cid:24)(cid:6)(cid:7) (cid:6)(cid:8)(cid:6)(cid:9)(cid:7)(cid:6)(cid:10)(cid:11)(cid:12)(cid:6)(cid:13)(cid:11)(cid:14)(cid:15)(cid:16)(cid:6)(cid:13)(cid:17)(cid:18)(cid:17)(cid:19)(cid:6)(cid:20)(cid:17)(cid:18)(cid:15)(cid:16)(cid:17)(cid:21) (cid:19)(cid:17) Fig 17. (cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:12)(cid:6)(cid:3)(cid:13)(cid:6)(cid:14)(cid:11)(cid:15)(cid:6)(cid:16)(cid:17)(cid:3)(cid:12)(cid:15)(cid:18)(cid:12)(cid:19)(cid:3)(cid:20)(cid:6)(cid:21)(cid:19)(cid:3)(cid:22)(cid:10)(cid:16)(cid:14)(cid:23)(cid:10)(cid:19)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:22) (cid:27) (cid:7) (cid:27)(cid:17) (cid:7) (cid:19)(cid:17) (cid:20)(cid:23)(cid:24)(cid:23)(cid:25)(cid:23) (cid:22) (cid:19) +(cid:7) - (cid:27)(cid:27) (cid:5)(cid:1)(cid:7) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:20)(cid:25)(cid:26)(cid:27)(cid:27)(cid:2)(cid:28)(cid:29)(cid:3)(cid:5)(cid:7)(cid:14)(cid:8)(cid:7) (cid:6)(cid:3)(cid:25)(cid:23)(cid:19)$(cid:10)(cid:31)(cid:6)%(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17)(cid:17) (cid:20)(cid:25)(cid:26)(cid:27)(cid:27)(cid:2)(cid:28)(cid:29)(cid:3)(cid:5)(cid:7)(cid:16)(cid:19)(cid:3)(cid:30)(cid:7)(cid:16)(cid:8)(cid:10)(cid:31) (cid:3)!(cid:31)"(cid:11)(cid:16)#(cid:7)(cid:19)(cid:10)(cid:11)(cid:31) EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 INTERNATIONAL PART NUMBER ASSEMBLED ON WW 19, 2000 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 0 = 2000 Note: "P" in assembly line position ASSEMBLY indicates "Lead - Free" LOT CODE WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application. Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:2)(cid:3)(cid:16)(cid:4)(cid:3)(cid:17)(cid:18)(cid:5)(cid:8)(cid:19)(cid:20)(cid:21)(cid:22)(cid:23)(cid:18) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:2)(cid:3)(cid:24)(cid:20)(cid:5)(cid:25)(cid:3)(cid:24)(cid:4)(cid:22)(cid:23)(cid:17)(cid:5)(cid:26)(cid:23)(cid:27)(cid:28)(cid:24)(cid:29)(cid:3)(cid:20)(cid:22)(cid:28)(cid:23) THIS IS AN IRF530S WITH PART NUMBER LOT CODE 8024 INTERNATIONAL ASSEMBLED ON WW 02, 2000 RECTIFIER F530S IN THE ASSEMBLY LINE "L" LOGO DATE CODE YEAR 0 = 2000 ASSEMBLY LOT CODE WEEK 02 LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 PART NUMBER INTERNATIONAL ASSEMBLED ON WW 19, 1997 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 7 = 1997 ASSEMBLY LOT CODE WEEK 19 LINE C OR PART NUMBER INTERNATIONAL RECTIFIER LOGO DATE CODE P = DESIGNATES LEAD-FREE ASSEMBLY LOT CODE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12)(cid:13)(cid:3) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:7)(cid:3)(cid:30)(cid:18)(cid:5)(cid:31)(cid:5) (cid:18)(cid:18)(cid:21)(cid:5)(cid:26)(cid:23)(cid:27)(cid:28)(cid:24)(cid:29)(cid:3)(cid:20)(cid:22)(cid:28)(cid:23) Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 43..1900 ((..116513)) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 1.65 (.065) 11.40 (.449) 24.30 (.957) 15.42 (.609) 23.90 (.941) 15.22 (.601) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 10.70 (.421) 4.72 (.136) 16.10 (.634) 4.52 (.178) 15.90 (.626) FEED DIRECTION 13.50 (.532) 27.40 (1.079) 12.80 (.504) 23.90 (.941) 4 330.00 60.00 (2.362) (14.173) MIN. MAX. 30.40 (1.197) NOTES : MAX. 1. COMFORMS TO EIA-418. 26.40 (1.039) 4 2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961) 3. DIMENSION MEASURED @ HUB. 3 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. (cid:11)(cid:12)(cid:13)(cid:14)(cid:14)(cid:15)(cid:16)(cid:17)(cid:7)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:4)(cid:7)(cid:23)(cid:5)(cid:7)(cid:24)(cid:2)(cid:3)(cid:7)(cid:25)(cid:4)(cid:20)(cid:2)(cid:26)(cid:26)(cid:4)(cid:24)(cid:27)(cid:4)(cid:27)(cid:7)(cid:28)(cid:2)(cid:25)(cid:7)(cid:29)(cid:30)(cid:25)(cid:28)(cid:19)(cid:20)(cid:4)(cid:7)(cid:31)(cid:2)(cid:30)(cid:24)(cid:3)(cid:7)(cid:16)(cid:18)(cid:18) (cid:23)(cid:20)(cid:19)(cid:3)(cid:23)(cid:2)(cid:24)(cid:9) Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 12 www.irf.com

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IRF2807ZSPBF IRF2807ZPBF IRF2807ZSTRLPBF