ICGOO在线商城 > IRF1405LPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRF1405LPBF产品简介:
ICGOO电子元器件商城为您提供IRF1405LPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 提供IRF1405LPBF价格参考以及International RectifierIRF1405LPBF封装/规格参数等产品信息。 你可以下载IRF1405LPBF参考资料、Datasheet数据手册功能说明书, 资料中有IRF1405LPBF详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOSFET N-CH 55V 131A TO-262MOSFET MOSFT 55V 131A 5.3mOhm 170nC |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 131 A |
Id-连续漏极电流 | 131 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRF1405LPBFHEXFET® |
数据手册 | |
产品型号 | IRF1405LPBF |
PCN过时产品 | |
Pd-PowerDissipation | 200 W |
Pd-功率耗散 | 200 W |
Qg-GateCharge | 170 nC |
Qg-栅极电荷 | 170 nC |
RdsOn-Drain-SourceResistance | 5.3 mOhms |
RdsOn-漏源导通电阻 | 5.3 mOhms |
Vds-Drain-SourceBreakdownVoltage | 55 V |
Vds-漏源极击穿电压 | 55 V |
Vgs-Gate-SourceBreakdownVoltage | 20 V |
Vgs-栅源极击穿电压 | 20 V |
不同Id时的Vgs(th)(最大值) | 4V @ 250µA |
不同Vds时的输入电容(Ciss) | 5480pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 260nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 5.3 毫欧 @ 101A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品目录页面 | |
产品种类 | MOSFET |
供应商器件封装 | TO-262 |
其它名称 | *IRF1405LPBF |
功率-最大值 | 200W |
包装 | 管件 |
商标 | International Rectifier |
安装类型 | 通孔 |
安装风格 | Through Hole |
封装 | Tube |
封装/外壳 | TO-262-3,长引线,I²Pak,TO-262AA |
封装/箱体 | I2PAK-3 |
工厂包装数量 | 50 |
晶体管极性 | N-Channel |
标准包装 | 50 |
漏源极电压(Vdss) | 55V |
电流-连续漏极(Id)(25°C时) | 131A (Tc) |
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:6)(cid:7)(cid:8) IRF1405SPbF IRF1405LPbF Typical Applications HEXFET® Power MOSFET (cid:0) Industrial Motor Drive D V = 55V DSS Benefits (cid:0) Advanced Process Technology R = 5.3mΩ DS(on) (cid:0) Ultra Low On-Resistance G (cid:0) Dynamic dv/dt Rating I = 131A(cid:1) (cid:0) 175°C Operating Temperature D S (cid:0) Fast Switching (cid:0) Repetitive Avalanche Allowed up to Tjmax Description Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed TO-262 and improved repetitive avalanche rating. These D2Pak IRF1405LPbF benefits combine to make this design an extremely IRF1405SPbF efficient and reliable device for use in a wide variety of applications. Absolute Maximum Ratings Parameter Max. Units I @ T = 25°C Continuous Drain Current, V @ 10V 131(cid:1) D C GS I @ T = 100°C Continuous Drain Current, V @ 10V 93(cid:1) A D C GS I Pulsed Drain Current(cid:1)(cid:2) 680 DM P @T = 25°C Power Dissipation 200 W D C Linear Derating Factor 1.3 W/°C V Gate-to-Source Voltage ± 20 V GS E Single Pulse Avalanche Energy(cid:3) 590 mJ AS I Avalanche Current See Fig.12a, 12b, 15, 16 A AR E Repetitive Avalanche Energy(cid:4) mJ AR dv/dt Peak Diode Recovery dv/dt (cid:5) 5.0 V/ns T Operating Junction and -55 to + 175 J TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case ––– 0.75 °C/W RθJA Junction-to-Ambient (PCB mount)(cid:1) ––– 40 www.irf.com 1 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:5)(cid:2)
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) Electrical Characteristics @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.057 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 4.6 5.3 mΩ VGS = 10V, ID = 101A (cid:6) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA gfs Forward Transconductance 69 ––– ––– S VDS = 25V, ID = 110A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 55V, VGS = 0V ––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C I Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V GSS Gate-to-Source Reverse Leakage ––– ––– -200 VGS = -20V Qg Total Gate Charge ––– 170 260 ID = 101A Qgs Gate-to-Source Charge ––– 44 66 nC VDS = 44V Qgd Gate-to-Drain ("Miller") Charge ––– 62 93 VGS = 10V(cid:6) td(on) Turn-On Delay Time ––– 13 ––– VDD = 38V tr Rise Time ––– 190 ––– ns ID = 110A td(off) Turn-Off Delay Time ––– 130 ––– RG = 1.1Ω tf Fall Time ––– 110 ––– VGS = 10V (cid:6) Between lead, D L Internal Drain Inductance ––– 4.5 ––– D 6mm (0.25in.) nH from package G L Internal Source Inductance ––– 7.5 ––– S and center of die contact S Ciss Input Capacitance ––– 5480 ––– VGS = 0V Coss Output Capacitance ––– 1210 ––– pF VDS = 25V Crss Reverse Transfer Capacitance ––– 280 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 5210 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 900 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance (cid:7) ––– 1500 ––– VGS = 0V, VDS = 0V to 44V Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 131(cid:1) MOSFET symbol D (Body Diode) (cid:7) showing the ISM Pulsed Source Current integral reverse G ––– ––– 680 (Body Diode) (cid:2) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 101A, VGS = 0V(cid:8)(cid:6) trr Reverse Recovery Time ––– 88 130 ns TJ = 25°C, IF = 101A Qrr Reverse RecoveryCharge ––– 250 380 nC di/dt = 100A/µs(cid:1)(cid:6) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) 1000 1000 VGS VGS TOP 15V TOP 15V 10V 10V A) 87..00VV A) 87..00VV nt ( 65..05VV nt ( 65..05VV e 5.0V e 5.0V Curr 100 BOTTOM4.5V Curr BOTTOM4.5V e e c c ur ur o o 100 S S o- o- n-t n-t ai 10 ai Dr Dr I , D 4.5V I , D 4.5V 20µs PULSE WIDTH 20µs PULSE WIDTH TJ = 25°C TJ = 175°C 1 10 0.1 1 10 100 0.1 1 10 100 VD S , Drain-to-Source Voltage (V) V D S , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 3.0 TJ = 25 ° C e ID=169A c n nt (A) TJ = 175 ° C sista 2.5 e e Source Curr 100 Source On Rmalized) 12..50 ain-to- 10 ain-to-(Nor 1.0 Dr Dr I , D V20 D µ Ss =P U25LVSE WIDTH R , DS(on) 0.5 VGS=10V 1 0.0 4 6 8 10 12 -60 -40 -20 0 20 40 60 80 100120140160180 VG S , Gate-to-Source Voltage (V) TJ , Junction Temperature ( ° C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) 100000 VGS = 0V, f = 1 MHZ 20 ID=101A Ciss = Cgs + Cgd, Cds SHORTED VDS= 44V CCrossss == CCgdds + Cgd ge (V) 16 VDS= 27V a Fepc()10000 Ciss e Volt 12 n c acti our a S CCap, 1000 Coss ate-to- 8 G Crss V , GS 4 FOR TEST CIRCUIT 100 SEE FIGURE 1 3 0 1 10 100 0 60 120 180 240 300 VDS, Drain-to-Source Voltage (V) Q G , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000 10000 OPERATION IN THIS AREA LIMITED A) BY RDS(on) Current ( 100 TJ = 175 ° C nt (A)nt (A) 1000 10us ain urreurre Dr CC 100 100us se T = 25 ° C ain ain er J DrDr 1ms I , RevSD 10 I , I , D 10 TC= 25 ° C 10ms T = 175 ° C J V G S = 0 V Single Pulse 1 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 10 100 V S D ,Source-to-Drain Voltage (V) V D S , Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) 160 (cid:9) (cid:1) (cid:8) LIMITED BY PACKAGE (cid:1)(cid:2) (cid:8) (cid:21)(cid:2) (cid:10)(cid:11)(cid:12)(cid:11)(cid:13)(cid:11) 120 (cid:9) nt (A) (cid:21) +-(cid:8)(cid:1)(cid:1) e urr (cid:5)(cid:2)(cid:8) ain C 80 (cid:3)(cid:1)(cid:4)(cid:4)(cid:5)(cid:12)(cid:6)(cid:15)(cid:7)(cid:8)(cid:16)(cid:8)(cid:9)(cid:17)(cid:18)(cid:10)(cid:12)(cid:11)(cid:19)(cid:12)(cid:20)(cid:13)(cid:8)(cid:8)≤≤ 01. 1(cid:14) %(cid:6) Dr I , D 40 Fig 10a. Switching Time Test Circuit VDS 90% 0 25 50 75 100 125 150 175 T , Case Temperature ( ° C) C 10% Fig 9. Maximum Drain Current Vs. VGS Case Temperature td(on) tr td(off) tf Fig 10b. Switching Time Waveforms 1 D = 0.50 ) Z thJC 0.20 ( 0.1 0.10 e s n 0.05 o p s 0.02 e R 0.01 al (THESRINMGALLE R PEUSLPSOENSE) PDM m0.01 t1 er h t2 T Notes: 1. Duty factor D = t 1 / t2 2. Peak TJ=PDMx ZthJC+ TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) 1400 15V ) ID J m TOP 41A y (1200 71A VDS L DRIVER erg BOTTOM 101A n E1000 e h RG D.U.T + c - VDD an 800 IAS A al 20V v tp 0.01Ω e A 600 s Fig 12a. Unclamped Inductive Test Circuit Pul e 400 V(BR)DSS gl n tp Si 200 E , AS 0 25 50 75 100 125 150 175 Starting T , Junction Temperature( ° C) J IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Q G (cid:7)(cid:9)(cid:10)(cid:11) Q Q GS GD 4.0 V G 3.5 V) Charge e( ac 3.0 ID = 250µA Fig 13a. Basic Gate Charge Waveform ari V SaCmuerreTnytpeReagsulDat.oUr.T. ,h) 2.5 S(t 50KΩ VG 12V .2µF .3µF 2.0 + D.U.T. -VDS 1.5 VGS -75 -50 -25 0 25 50 75 100 125 150 175 3mA T , Temperature ( °C ) J IG ID CurrentSamplingResistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs A) n(t 0.01 aavssaulamncinhge ∆pTuj l=se 2w5id°Cth , dueta vto e urr 0.05 avalanche losses Ce 10 0.10 h c n a al v A 1 0.1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth Notes on Repetitive Avalanche Curves , Figures 15, 16: 600 (For further info, see AN-1005 at www.irf.com) TOP Single Pulse 1. Avalanche failures assumption: BOTTOM 10% Duty Cycle Purely a thermal phenomenon and failure occurs at a mJ) 500 ID = 101A temperature far in excess of Tjmax. This is validated for y( every part type. egr 400 2 . Snoatf ee xocpeeeradteiodn. in Avalanche is allowed as long asTjmax is n E 3. Equation below based on circuit and waveforms shown in e h 300 Figures 12a, 12b. c n 4. P = Average power dissipation per single a D (ave) al avalanche pulse. v A 200 5. BV = Rated breakdown voltage (1.3 factor accounts for , R voltage increase during avalanche). A 6. I = Allowable avalanche current. E av 100 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax t Average time in avalanche. 0 av = D = Duty cycle in avalanche = t ·f 25 50 75 100 125 150 175 av Z (D, t ) = Transient thermal resistance, see figure 11) thJC av Starting T , Junction Temperature (°C) J P = 1/2 ( 1.3·BV·I ) =(cid:1)(cid:1)T/ Z D (ave) av thJC Fig 16. Maximum Avalanche Energy I =2(cid:1)T/ [1.3·BV·Z ] av th Vs. Temperature E = P ·t AS (AR) D (ave) av www.irf.com 7
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2)(cid:5)(cid:10)(cid:2)(cid:11)(cid:8)(cid:12)(cid:2)(cid:13)(cid:14)(cid:5)(cid:9)(cid:12)(cid:15)(cid:9)(cid:16)(cid:5)(cid:17)(cid:2)(cid:18)(cid:16)(cid:5)(cid:19)(cid:7)(cid:13)(cid:11)(cid:20)(cid:7)(cid:16) + !(cid:31)(cid:20)(cid:17)(cid:26)(cid:31)(cid:16)(cid:1)"(cid:28)(cid:24)(cid:18)(cid:26)(cid:16)(cid:1)!(cid:18)(cid:19) (cid:31)(cid:14)(cid:22)(cid:20)(cid:28)(cid:16)(cid:31)(cid:18)(cid:19) (cid:2)(cid:3)(cid:4)(cid:3)(cid:5)(cid:12) • (cid:1)"(cid:18)#(cid:1)$(cid:16)(cid:20)(cid:28)(cid:24)(cid:1)(cid:25)(cid:19)(cid:14)(cid:26)(cid:17)(cid:16)(cid:28)(cid:19)(cid:17)(cid:22) (cid:1)(cid:1) • %(cid:20)(cid:18)(cid:26)(cid:19)(cid:14)(cid:1)&(cid:21)(cid:28)(cid:19)(cid:22) (cid:2) (cid:1)(cid:1) • "(cid:18)#(cid:1)"(cid:22)(cid:28)’(cid:28)((cid:22)(cid:1)(cid:25)(cid:19)(cid:14)(cid:26)(cid:17)(cid:16)(cid:28)(cid:19)(cid:17)(cid:22) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)!(cid:26)(cid:20)(cid:20)(cid:22)(cid:19)(cid:16)(cid:1)(cid:13)(cid:20)(cid:28)(cid:19) )(cid:18)(cid:20)*(cid:22)(cid:20) - + (cid:4) (cid:3) - + - (cid:5) (cid:9)(cid:21) • (cid:14)(cid:15)(cid:4)(cid:14)(cid:16)(cid:1)(cid:17)(cid:18)(cid:19)(cid:16)(cid:20)(cid:18)(cid:21)(cid:21)(cid:22)(cid:14)(cid:1)(cid:23)(cid:24)(cid:1)(cid:9)(cid:21) + • (cid:25) (cid:1)(cid:17)(cid:18)(cid:19)(cid:16)(cid:20)(cid:18)(cid:21)(cid:21)(cid:22)(cid:14)(cid:1)(cid:23)(cid:24)(cid:1)(cid:10)(cid:26)(cid:16)(cid:24)(cid:1)(cid:27)(cid:28)(cid:17)(cid:16)(cid:18)(cid:20)(cid:1)(cid:29)(cid:10)(cid:29) (cid:8) • (cid:10)(cid:2)(cid:11)(cid:1)(cid:12)(cid:11)(cid:13)(cid:11)(cid:1)(cid:30)(cid:1)(cid:10)(cid:22)(cid:15)(cid:31)(cid:17)(cid:22)(cid:1)(cid:12)(cid:19)(cid:14)(cid:22)(cid:20)(cid:1)(cid:13)(cid:22) (cid:16) - (cid:1)(cid:1) (cid:8) (cid:21)(cid:2) (cid:12)(cid:1)(cid:1)(cid:9)(cid:22)(cid:15)(cid:22)(cid:20) (cid:22)(cid:1)&(cid:18)(cid:21)(cid:28)(cid:20)(cid:31)(cid:16)(cid:24)(cid:1)(cid:18))(cid:1)(cid:10)(cid:11)(cid:12)(cid:11)(cid:13)(cid:1))(cid:18)(cid:20)(cid:1)&(cid:30)!+(cid:28)(cid:19)(cid:19)(cid:22)(cid:21) Driver Gate Drive P.W. Period D = P.W. Period (cid:1)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:3)(cid:2)(cid:4)(cid:4)(cid:4) V =10V GS D.U.T. I Waveform SD Reverse Recovery Body Diode Forward Current Current di/dt D.U.T. V Waveform DS Diode Recovery dv/dt (cid:1)(cid:2)V(cid:2)(cid:2)(cid:2)(cid:3) DD Re-Applied Voltage Body Diode Forward Drop Inductor Curent (cid:13)(cid:10)(cid:10)(cid:10)(cid:10)(cid:14) Ripple ≤ 5% ISD (cid:12)(cid:12)(cid:12)(cid:1)(cid:8) (cid:1),(cid:1)-(cid:11)(cid:2)(cid:8)(cid:1))(cid:18)(cid:20)(cid:1)"(cid:18)((cid:31)(cid:17)(cid:1)"(cid:22)(cid:15)(cid:22)(cid:21)(cid:1)(cid:28)(cid:19)(cid:14)(cid:1).(cid:8)(cid:1)(cid:10)(cid:20)(cid:31)(cid:15)(cid:22)(cid:1)(cid:10)(cid:22)(cid:15)(cid:31)(cid:17)(cid:22) (cid:21)(cid:2) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:4)For N-channel(cid:10)HEXFET® power MOSFETs 8 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:2)(cid:3)(cid:26)(cid:4)(cid:3)(cid:21)(cid:27)(cid:5)(cid:8)(cid:28)(cid:17)(cid:29)(cid:19)(cid:20)(cid:27) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:2)(cid:3)(cid:16)(cid:17)(cid:5)(cid:18)(cid:3)(cid:16)(cid:4)(cid:19)(cid:20)(cid:21)(cid:5)(cid:22)(cid:20)(cid:23)(cid:24)(cid:16)(cid:25)(cid:3)(cid:17)(cid:19)(cid:24)(cid:20) THIS IS AN IRF530S WITH PART NUMBER LOT CODE 8024 INTERNATIONAL ASSEMBLED ON WW 02, 2000 RECTIFIER F530S IN THE ASSEMBLY LINE "L" LOGO DATE CODE ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 PART NUMBER INTERNATIONAL ASSEMBLED ON WW 19, 1997 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE ASSEMBLY YEAR 7 = 1997 LOT CODE WEEK 19 LINE C OR PART NUMBER INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY P = DESIGNATES LEAD-FREE LOT CODE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:3) (cid:1)(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:7)(cid:3)(cid:30)(cid:27)(cid:5)(cid:31)(cid:5) (cid:27)(cid:27)(cid:29)(cid:5)(cid:22)(cid:20)(cid:23)(cid:24)(cid:16)(cid:25)(cid:3)(cid:17)(cid:19)(cid:24)(cid:20) Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 43..1900 ((..116513)) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 1.65 (.065) 11.40 (.449) 1155..4222 ((..660091)) 2243..3900 ((..995471)) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 10.70 (.421) 4.72 (.136) 16.10 (.634) 4.52 (.178) 15.90 (.626) FEED DIRECTION 13.50 (.532) 27.40 (1.079) 12.80 (.504) 23.90 (.941) 4 330.00 60.00 (2.362) (14.173) MIN. MAX. 30.40 (1.197) NOTES : MAX. 1. COMFORMS TO EIA-418. 26.40 (1.039) 4 2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961) 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 3 (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) (cid:5)(cid:1)Repetitive rating; pulse width limited by (cid:6) Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). (cid:4) (cid:1)Starting T = 25°C, L = 0.11mH as Coss while VDS is rising from 0 to 80% VDSS . J (cid:1)(cid:8)Calculated continuous current based on maximum allowable R = 25Ω, I = 101A. (See Figure 12). G AS (cid:2)I ≤ 101A, di/dt ≤ 210A/µs, V ≤ V , junction temperature. Package limitation current is 75A. TSJD ≤ 175°C DD (BR)DSS (cid:4)(cid:8)Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive (cid:3) Pulse width ≤ 400µs; duty cycle ≤ 2%. avalanche performance. (cid:1)(cid:1)This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 www.irf.com 11