ICGOO在线商城 > 分立半导体产品 > 晶体管 - FET,MOSFET - 单 > IRF1010EZSPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRF1010EZSPBF产品简介:
ICGOO电子元器件商城为您提供IRF1010EZSPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRF1010EZSPBF价格参考。International RectifierIRF1010EZSPBF封装/规格:晶体管 - FET,MOSFET - 单, 表面贴装 N 沟道 60V 75A(Tc) 140W(Tc) D2PAK。您可以下载IRF1010EZSPBF参考资料、Datasheet数据手册功能说明书,资料中有IRF1010EZSPBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
ChannelMode | Enhancement |
描述 | MOSFET N-CH 60V 75A D2PAKMOSFET 60V 1 N-CH HEXFET 8.5mOhms 58nC |
产品分类 | FET - 单分离式半导体 |
FET功能 | 标准 |
FET类型 | MOSFET N 通道,金属氧化物 |
Id-ContinuousDrainCurrent | 84 A |
Id-连续漏极电流 | 84 A |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 晶体管,MOSFET,International Rectifier IRF1010EZSPBFHEXFET® |
数据手册 | |
产品型号 | IRF1010EZSPBF |
PCN组件/产地 | |
Pd-PowerDissipation | 140 W |
Pd-功率耗散 | 140 W |
Qg-GateCharge | 58 nC |
Qg-栅极电荷 | 58 nC |
RdsOn-Drain-SourceResistance | 8.5 mOhms |
RdsOn-漏源导通电阻 | 8.5 mOhms |
Vds-Drain-SourceBreakdownVoltage | 60 V |
Vds-漏源极击穿电压 | 60 V |
Vgs-Gate-SourceBreakdownVoltage | 20 V |
Vgs-栅源极击穿电压 | 20 V |
Vgsth-Gate-SourceThresholdVoltage | 2 V to 4 V |
Vgsth-栅源极阈值电压 | 2 V to 4 V |
上升时间 | 90 ns |
下降时间 | 54 ns |
不同Id时的Vgs(th)(最大值) | 4V @ 100µA |
不同Vds时的输入电容(Ciss) | 2810pF @ 25V |
不同Vgs时的栅极电荷(Qg) | 86nC @ 10V |
不同 Id、Vgs时的 RdsOn(最大值) | 8.5 毫欧 @ 51A,10V |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品目录页面 | |
产品种类 | MOSFET |
供应商器件封装 | D2PAK |
其它名称 | *IRF1010EZSPBF |
典型关闭延迟时间 | 38 ns |
功率-最大值 | 140W |
功率耗散 | 140 W |
包装 | 管件 |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
导通电阻 | 8.5 mOhms |
封装 | Tube |
封装/外壳 | TO-263-3,D²Pak(2 引线+接片),TO-263AB |
封装/箱体 | D2PAK-2 |
工厂包装数量 | 800 |
晶体管极性 | N-Channel |
最大工作温度 | + 175 C |
最小工作温度 | - 55 C |
栅极电荷Qg | 58 nC |
标准包装 | 50 |
正向跨导-最小值 | 200 S |
汲极/源极击穿电压 | 60 V |
漏极连续电流 | 84 A |
漏源极电压(Vdss) | 60V |
电流-连续漏极(Id)(25°C时) | 75A (Tc) |
通道模式 | Enhancement |
配置 | Single |
闸/源击穿电压 | 20 V |
PD - 95483C IRF1010EZPbF IRF1010EZSPbF IRF1010EZLPbF Features (cid:0) Advanced Process Technology HEXFET® Power MOSFET (cid:0) Ultra Low On-Resistance (cid:0) Dynamic dv/dt Rating D (cid:0) 175°C Operating Temperature VDSS = 60V (cid:0) Fast Switching (cid:0) Repetitive Avalanche Allowed up to Tjmax R = 8.5mΩ DS(on) (cid:0) Lead-Free G I = 75A Description D S This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating.These features combine to make this design an extremely efficient and reliable device for use in a wide variety of TO-220AB D2Pak TO-262 applications. IRF1010EZPbF IRF1010EZSPbF IRF1010EZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 84 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 60 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 75 IDM Pulsed Drain Current (cid:0) 340 PD @TC = 25°C Maximum Power Dissipation 140 W Linear Derating Factor 0.90 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy (Thermally Limited) (cid:1) 99 mJ EAS (tested) Single Pulse Avalanche Energy Tested Value (cid:2) 180 IAR Avalanche Current (cid:0) See Fig.12a,12b,15,16 A EAR Repetitive Avalanche Energy (cid:3) mJ TJ Operating Junction and -55 to + 175 °C TSTG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter Typ. Max. Units RθJC Junction-to-Case ––– 1.11 °C/W RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 RθJA Junction-to-Ambient (PCB Mount, steady state)(cid:4) ––– 40 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:3)(cid:5)(cid:1)
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) Static @ T = 25°C (unless otherwise specified) J Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– V VGS = 0V, ID = 250µA ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.058 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 6.8 8.5 mΩ VGS = 10V, ID = 51A (cid:2) VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 100µA gfs Forward Transconductance 200 ––– ––– S V = 25V, I = 51A DS D IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 60V, VGS = 0V ––– ––– 250 V = 60V, V = 0V, T = 125°C DS GS J IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 V = -20V GS Qg Total Gate Charge ––– 58 86 nC ID = 51A Qgs Gate-to-Source Charge ––– 19 28 VDS = 48V Qgd Gate-to-Drain ("Miller") Charge ––– 21 32 VGS = 10V (cid:2) td(on) Turn-On Delay Time ––– 19 ––– ns VDD = 30V tr Rise Time ––– 90 ––– ID = 51A td(off) Turn-Off Delay Time ––– 38 ––– RG = 7.95Ω tf Fall Time ––– 54 ––– VGS = 10V (cid:2) LD Internal Drain Inductance ––– 4.5 ––– nH Between lead, D 6mm (0.25in.) LS Internal Source Inductance ––– 7.5 ––– from package G and center of die contact S Ciss Input Capacitance ––– 2810 ––– pF VGS = 0V Coss Output Capacitance ––– 420 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 200 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 1440 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 320 ––– VGS = 0V, VDS = 48V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 510 ––– VGS = 0V, VDS = 0V to 48V Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 84 MOSFET symbol D (Body Diode) A showing the ISM Pulsed Source Current ––– ––– 340 integral reverse G (Body Diode)(cid:0)(cid:1) p-n junction diode. S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 51A, VGS = 0V (cid:2) trr Reverse Recovery Time ––– 41 62 ns TJ = 25°C, IF = 51A, VDD = 30V Qrr Reverse Recovery Charge ––– 54 81 nC di/dt = 100A/µs (cid:2) ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1) Repetitive rating; pulse width limited by (cid:5) Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . (cid:2) (cid:6)Limited by TJmax, starting TJ = 25°C, L = 0.077mH, (cid:6) Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 51A, VGS =10V. Part not avalanche performance. recommended for use above this value. (cid:7) This value determined from sample failure population. 100% (cid:3) ISD ≤ 51A, di/dt ≤ 260A/µs, VDD ≤ V(BR)DSS, tested to this value in production. TJ ≤ 175°C. (cid:8) This is applied to D2Pak, when mounted on 1" square PCB (cid:4) Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) 10000 1000 VGS VGS TOP 15V TOP 15V 10V 10V 8.0V 8.0V A) 1000 76..00VV A) 76..00VV n(t 55..50VV n(t 100 55..50VV e BOTTOM 4.5V e BOTTOM 4.5V urr urr C 100 C e e ucr ucr 10 4.5V o o S S o- 10 o- n-t n-t ai ai Dr Dr 1 , D 1 , D I I 4.5V 20µs PULSE WIDTH 20µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.1 0.1 0.1 1 10 100 0.01 0.1 1 10 100 V , Drain-to-Source Voltage (V) V , Drain-to-Source Voltage (V) DS DS Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 90 S) Α()Cuenerr t 100 TJ = 175°C aneonducc(t 678000 TJ = 25°C c c ur 10 ns 50 T = 175°C o a J Sno--t Tadrr 40 Dari 1 TJ = 25°C wor 30 I, D VDS = 25V GF, sf 20 ≤60µs PULSE WIDTH 10 0.1 0 4 5 6 7 8 9 10 0 20 40 60 80 100 120 140 VGS, Gate-to-Source Voltage (V) ID,Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) 100000 12.0 VGS = 0V, f = 1 MHZ I = 51A C = C + C , C SHORTED D iss gs gd ds Crss = Cgd V) 10.0 VDS= 48V Coss = Cds + Cgd e( VDS= 30V g Fp)10000 aotl 8.0 VDS= 12V ec( Ve n c aacti Ciss Sour 6.0 CCap, 1000 aeo--tt 4.0 G Coss , S G V 2.0 C rss 100 0.0 1 10 100 0 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Fig 6. Typical Gate Charge vs. Drain-to-Source Voltage Gate-to-Source Voltage 1000.00 10000 OPERATION IN THIS AREA A) A)1000 LIMITED BY RDS(on) n(t 100.00 n( t e e Curr Curr100 100µsec n T = 175°C e Dari 10.00 J oucr 1msec e S evsr no--t 10 Re ,DS 1.00 TJ = 25°C Dar, iD 1 Tc = 25°C 10msec I I Tj = 175°C VGS = 0V Single Pulse 0.10 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1 10 100 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 4 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) 100 2.5 8900 Limited By Package anessc ti IVDG =S 8=4 1A0V e 2.0 R A) 70 n DCuanen(rrr tiI,D 123456000000 ODSanoouecr--r, t iRDSon() mNoaedz)(r i l 11..05 0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Fig 10. Normalized On-Resistance Case Temperature vs. Temperature 10 )C 1 J h t D = 0.50 Z e( 0.20 mRaeponss l 0.1 0000....01002015 τJτJτ1τ1 R1R1 τ2τR22R2 Rτ33Rτ33 τCτR00i (..44°C1150/W ) 00τ..i 00(00se00c28)4968 her 0.01 CiC= iτi /Ri/iRi 0.285 0.009546 T SINGLE PULSE Notes: ( THERMAL RESPONSE ) 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) 15V 400 mJ) ID y( 350 TOP 5.7A VDS L DRIVER egr 9.1A En 300 BOTTOM51A e RG D.U.T + hc 250 IAS - VDDA aanl 2V0GVS tp 0.01Ω Aev 200 s ul 150 P Fig 12a. Unclamped Inductive Test Circuit eg l 100 n Si V(BR)DSS ,S 50 tp EA 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) IAS Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms vs. Drain Current Q G (cid:1)(cid:2)(cid:3)(cid:4) Q Q GS GD 4.5 V G V) 4.0 e( g a Charge Votl 3.5 d ID = 250µA ol 3.0 Fig 13a. Basic Gate Charge Waveform hs e SaCmuerreTnytpeReagsulDat.oUr.T. Gehar tt 2.5 h) 2.0 50KΩ S(t 12V .2µF G 1.5 .3µF V + D.U.T. -VDS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 VGS TJ , Temperature ( °C ) 3mA IG ID CurrentSamplingResistors Fig 14. Threshold Voltage vs. Temperature Fig 13b. Gate Charge Test Circuit 6 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs A) en(t 0.01 aavsasulamncinhge ∆pTuj l=se 2w5id°Cth , dueta vto urr avalanche losses C 10 0.05 e h 0.10 c n a al v A 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 100 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse (For further info, see AN-1005 at www.irf.com) BOTTOM 1% Duty Cycle 1. Avalanche failures assumption: J) ID = 51A Purely a thermal phenomenon and failure occurs at a my( 75 etevmerpye praatrut rtey pfaer. in excess of Tjmax. This is validated for g er 2. Safe operation in Avalanche is allowed as long asTjmax is n E not exceeded. e 3. Equation below based on circuit and waveforms shown in h 50 nc Figures 12a, 12b. aal 4. PD (ave) = Average power dissipation per single Av avalanche pulse. , RA 25 5 . BvoVlt a=g Rea intecdre barseea kdduoriwnng vaovlatalagnec h(1e.)3. factor accounts for E 6. I = Allowable avalanche current. av 7. ∆T = Allowable rise in junction temperature, not to exceed T (assumed as 25°C in Figure 15, 16). jmax 0 t Average time in avalanche. av = 25 50 75 100 125 150 175 D = Duty cycle in avalanche = t ·f av Z (D, t ) = Transient thermal resistance, see figure 11) Starting TJ , Junction Temperature (°C) thJC av P = 1/2 ( 1.3·BV·I ) =(cid:7)(cid:1)T/ Z D (ave) av thJC I =2(cid:1)T/ [1.3·BV·Z ] av th E = P ·t Fig 16. Maximum Avalanche Energy AS (AR) D (ave) av vs. Temperature www.irf.com 7
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) Driver Gate Drive (cid:8)(cid:9)(cid:10)(cid:9)(cid:11) P.W. Period D = + P.W. Period (cid:24) (cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:5)(cid:6)(cid:7)(cid:1)(cid:11)(cid:12)(cid:13)(cid:2)(cid:14)(cid:15)(cid:3)(cid:9)(cid:6)(cid:2)(cid:11)(cid:12)(cid:13) VGS=10V • (cid:7)(cid:8)(cid:11)(cid:16)(cid:7)(cid:17)(cid:6)(cid:3)(cid:9)(cid:10)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7) • (cid:19)(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:7)(cid:20)(cid:21)(cid:9)(cid:12)(cid:15) - (cid:7)(cid:7) • (cid:8)(cid:11)(cid:16)(cid:7)(cid:8)(cid:15)(cid:9)(cid:22)(cid:9)(cid:23)(cid:15)(cid:7)(cid:18)(cid:12)(cid:14)(cid:5)(cid:4)(cid:6)(cid:9)(cid:12)(cid:4)(cid:15) (cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:7)(cid:1)(cid:5)(cid:3)(cid:3)(cid:15)(cid:12)(cid:6)(cid:7)(cid:24)(cid:3)(cid:9)(cid:12)(cid:13)(cid:25)(cid:11)(cid:3)(cid:26)(cid:15)(cid:3) D.U.T. ISDWaveform + (cid:2) Reverse (cid:4) Recovery Body Diode Forward - - + Current Currentdi/dt D.U.T. VDSWaveform Diode Recovery (cid:1) dv/dt VDD (cid:7) (cid:22)(cid:19) • (cid:14)(cid:28)(cid:29)(cid:14)(cid:6)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:31)(cid:1) (cid:27)(cid:27) Re-Applied • (cid:27)(cid:3)(cid:2)(cid:28)(cid:15)(cid:3)(cid:7)(cid:13)(cid:9)(cid:26)(cid:15)(cid:7)(cid:6)(cid:10) (cid:15)(cid:7)(cid:9)(cid:13)(cid:7)(cid:27)!"!(cid:24)! + Voltage Body Diode Forward Drop • (cid:18)(cid:2)(cid:3)(cid:7)(cid:4)(cid:11)(cid:12)(cid:6)(cid:3)(cid:11)(cid:21)(cid:21)(cid:15)(cid:14)(cid:7)(cid:30)(cid:10)(cid:7)(cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)$(cid:27)$ - Inductor Curent • (cid:27)!"!(cid:24)!(cid:7)%(cid:7)(cid:27)(cid:15)(cid:28)(cid:2)(cid:4)(cid:15)(cid:7)"(cid:12)(cid:14)(cid:15)(cid:3)(cid:7)(cid:24)(cid:15)(cid:13)(cid:6) Ripple ≤ 5% ISD (cid:24)(cid:6)(cid:7) (cid:6)(cid:8)(cid:6)(cid:9)(cid:7)(cid:6)(cid:10)(cid:11)(cid:12)(cid:6)(cid:13)(cid:11)(cid:14)(cid:15)(cid:16)(cid:6)(cid:13)(cid:17)(cid:18)(cid:17)(cid:19)(cid:6)(cid:20)(cid:17)(cid:18)(cid:15)(cid:16)(cid:17)(cid:21) (cid:19)(cid:17) Fig 17. (cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:12)(cid:6)(cid:3)(cid:13)(cid:6)(cid:14)(cid:11)(cid:15)(cid:6)(cid:16)(cid:17)(cid:3)(cid:12)(cid:15)(cid:18)(cid:12)(cid:19)(cid:3)(cid:20)(cid:6)(cid:21)(cid:19)(cid:3)(cid:22)(cid:10)(cid:16)(cid:14)(cid:23)(cid:10)(cid:19)(cid:3)for N-Channel HEXFET(cid:1)(cid:3)Power MOSFETs (cid:22) (cid:27) (cid:7) (cid:27)(cid:17) (cid:7) (cid:19)(cid:17) (cid:20)(cid:23)(cid:24)(cid:23)(cid:25)(cid:23) (cid:22) (cid:19) +(cid:7) - (cid:27)(cid:27) (cid:5)(cid:1)(cid:7) (cid:20)(cid:5)(cid:21)(cid:13)(cid:15)(cid:7)&(cid:2)(cid:14)(cid:6)’(cid:7)≤ 1 ((cid:13) (cid:27)(cid:5)(cid:6)(cid:10)(cid:7)#(cid:9)(cid:4)(cid:6)(cid:11)(cid:3)(cid:7)≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:1)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 INTERNATIONAL PART NUMBER ASSEMBLED ON WW 19, 2000 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 0 = 2000 Note: "P" in assembly line position ASSEMBLY indicates "Lead - Free" LOT CODE WEEK 19 LINE C Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:27)(cid:1)(cid:2)(cid:3)(cid:4)(cid:28)(cid:29)(cid:6)(cid:7)(cid:30)(cid:8)(cid:9)(cid:10)(cid:22)(cid:14)(cid:10)(cid:17)(cid:23)(cid:8)(cid:2)(cid:24)(cid:12)(cid:25)(cid:15)(cid:16)(cid:23) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:7)(cid:5)(cid:6)(cid:8)(cid:9)(cid:10)(cid:4)(cid:8)(cid:6)(cid:11)(cid:7)(cid:12)(cid:5)(cid:8)(cid:2)(cid:5)(cid:8)(cid:3)(cid:2)(cid:13)(cid:13)(cid:2)(cid:3)(cid:4)(cid:14)(cid:4)(cid:10)(cid:6)(cid:8)(cid:15)(cid:2)(cid:5)(cid:16)(cid:11)(cid:4)(cid:6)(cid:17) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:27)(cid:1)(cid:2)(cid:3)(cid:4)(cid:28)(cid:29)(cid:6)(cid:7)(cid:30)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:8)(cid:13)(cid:10)(cid:11)(cid:14)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) THIS IS AN IRF530S WITH PART NUMBER LOT CODE 8024 INTERNATIONAL ASSEMBLED ON WW 02, 2000 RECTIFIER F530S IN THE ASSEMBLY LINE "L" LOGO DATE CODE YEAR 0 = 2000 ASSEMBLY LOT CODE WEEK 02 LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) ASSEMBLY YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 PART NUMBER INTERNATIONAL ASSEMBLED ON WW 19, 1997 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO DATE CODE YEAR 7 = 1997 ASSEMBLY LOT CODE WEEK 19 LINE C OR PART NUMBER INTERNATIONAL RECTIFIER LOGO DATE CODE P = DESIGNATES LEAD-FREE ASSEMBLY LOT CODE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:3) (cid:26)(cid:1)(cid:9)(cid:10)(cid:14)(cid:8)(cid:1)(cid:10)(cid:31)(cid:23)(cid:8) (cid:8)!(cid:23)(cid:23)(cid:25)(cid:8)(cid:18)(cid:16)(cid:19)(cid:20)(cid:11)(cid:21)(cid:10)(cid:12)(cid:15)(cid:20)(cid:16) Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 43..1900 ((..116513)) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 1.65 (.065) 11.40 (.449) 24.30 (.957) 15.42 (.609) 23.90 (.941) 15.22 (.601) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 10.70 (.421) 4.72 (.136) 16.10 (.634) 4.52 (.178) 15.90 (.626) FEED DIRECTION 13.50 (.532) 27.40 (1.079) 12.80 (.504) 23.90 (.941) 4 330.00 60.00 (2.362) (14.173) MIN. MAX. 30.40 (1.197) NOTES : MAX. 1. COMFORMS TO EIA-418. 26.40 (1.039) 4 2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961) 3. DIMENSION MEASURED @ HUB. 3 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. (cid:11)(cid:12)(cid:13)(cid:14)(cid:14)(cid:15)(cid:16)(cid:17)(cid:7)(cid:7)(cid:18)(cid:19)(cid:20)(cid:21)(cid:19)(cid:22)(cid:4)(cid:7)(cid:23)(cid:5)(cid:7)(cid:24)(cid:2)(cid:3)(cid:7)(cid:25)(cid:4)(cid:20)(cid:2)(cid:26)(cid:26)(cid:4)(cid:24)(cid:27)(cid:4)(cid:27)(cid:7)(cid:28)(cid:2)(cid:25)(cid:7)(cid:29)(cid:30)(cid:25)(cid:28)(cid:19)(cid:20)(cid:4)(cid:7)(cid:31)(cid:2)(cid:30)(cid:24)(cid:3)(cid:7)(cid:16)(cid:18)(cid:18) (cid:23)(cid:20)(cid:19)(cid:3)(cid:23)(cid:2)(cid:24)(cid:9) Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 12 www.irf.com