ICGOO在线商城 > 开发板,套件,编程器 > 评估板 - 音频放大器 > IRAUDAMP11
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IRAUDAMP11产品简介:
ICGOO电子元器件商城为您提供IRAUDAMP11由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IRAUDAMP11价格参考。International RectifierIRAUDAMP11封装/规格:评估板 - 音频放大器, IRF6665, IRS2053M - 3-Channel Output Class D Audio Amplifier Evaluation Board。您可以下载IRAUDAMP11参考资料、Datasheet数据手册功能说明书,资料中有IRAUDAMP11 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 编程器,开发系统嵌入式解决方案 |
描述 | BOARD REF DESIGN 3CH AUDIO AMP音频 IC 开发工具 120W x 3 Ch Class D IRS2053 IRF6665 BRD |
产品分类 | |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 否含铅 / 不符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 模拟与数字IC开发工具,音频 IC 开发工具,International Rectifier IRAUDAMP11- |
数据手册 | |
产品型号 | IRAUDAMP11 |
不同负载时的最大输出功率x通道数 | 170W x 3 @ 4 欧姆 |
产品 | Development Tools |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品种类 | 音频 IC 开发工具 |
使用的IC/零件 | IRF6665,IRS2053M |
商标 | International Rectifier |
封装 | Bulk |
工作温度 | - |
工作电源电压 | 25 V to 35 V |
工作电源电流 | 75 mA |
工具用于评估 | IRS2053M |
工厂包装数量 | 1 |
所含物品 | 板 |
描述/功能 | 3 Channel Class D Audio Power Amplifier |
放大器类型 | D 类 |
板类型 | 完全填充 |
标准包装 | 1 |
电压-电源 | ±25 V ~ 35 V |
输出类型 | 3 通道 |
IRAUDAMP11 120W x 3 Channel Class D Audio Power Amplifier Using the IRS2053M and IRF6665 By Jun Honda, Liwei Zheng CAUTION: International Rectifier suggests the following guidelines for safe operation and handling of IRAUDAMP11 Demo board; Always wear safety glasses whenever operating Demo Board Avoid personal contact with exposed metal surfaces when operating Demo Board Turn off Demo Board when placing or removing measurement probes www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 1 of 35
TABLE OF CONTENTS PAGE INTRODUCTION...............................................................................................................................................3 SPECIFICATIONS............................................................................................................................................3 CONNECTION SETUP.....................................................................................................................................5 CONNECTOR DESCRIPTION.........................................................................................................................5 TEST PROCEDURES.......................................................................................................................................6 PERFORMANCE AND TEST GRAPHS..........................................................................................................7 CLIPPING CHARACTERISTICS....................................................................................................................10 SOFT CLIPPING.............................................................................................................................................10 EFFICIENCY...................................................................................................................................................12 THERMAL CONSIDERATIONS.....................................................................................................................12 THERMAL INTERFACE MATERIAL’S PRESSURE CONTROL.................................................................................13 POWER SUPPLY REJECTION RATIO (PSRR)............................................................................................15 SHORT CIRCUIT PROTECTION RESPONSE..............................................................................................16 IRAUDAMP11 OVERVIEW............................................................................................................................17 FUNCTIONAL DESCRIPTIONS.....................................................................................................................19 IRS2053 GATE DRIVER IC............................................................................................................................19 SELF-OSCILLATING FREQUENCY....................................................................................................................20 ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY.........................................................................................20 SELECTABLE DEAD-TIME................................................................................................................................21 PROTECTION SYSTEM OVERVIEW............................................................................................................22 CLICK AND POP NOISE REDUCTION.........................................................................................................24 BUS PUMPING...............................................................................................................................................24 INPUT SIGNAL AND GAIN SETTING...........................................................................................................26 GAIN SETTING...............................................................................................................................................26 IRAUDAMP11 FABRICATION MATERIALS.................................................................................................28 IRAUDAMP11 HARDWARE..........................................................................................................................31 IRAUDAMP11 PCB SPECIFICATIONS.........................................................................................................32 REVISION CHANGES DESCRIPTIONS........................................................................................................35 www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 2 of 35
Introduction The IRAUDAMP11 Demo board is a reference design which uses only one IC (IRS2053M) to derive appropriate input signals, amplify the audio input, and achieve a three-channel 120 W/ch (4Ω, THD+N=1%) half-bridge Class D audio power amplifier. The reference design demonstrates how to use the IRS2053M Class D audio controller and gate driver IC, implement protection circuits, and design an optimum PCB layout using IRF6665 DirectFET MOSFETs. The reference design contains all the required housekeeping power supplies for ease of use. The three-channel design is scalable, for power and number of channels. Applications AV receivers Home theater systems Mini component stereos Powered speakers Sub-woofers Musical Instrument amplifiers Automotive after market amplifiers Features Output Power: 120W x 3 channels (4Ω, THD+N=1%) or 170W x 3 channels (4Ω, THD+N=10%) Residual Noise: 220V, IHF-A weighted, AES-17 filter Distortion: 0.02% THD+N @ 60W, 4Ω Efficiency: 90% @ 120W, 4Ω, single-channel driven, Class D stage Multiple Protection Features: Over-current protection (OCP), high side and low side Over-voltage protection (OVP), Under-voltage protection (UVP), high side and low side Over-temperature protection (OTP) PWM Modulator: Self-oscillating half-bridge topology with optional clock synchronization Specifications General Test Conditions (unless otherwise noted) Notes / Conditions Supply Voltages ±35V Load Impedance 4Ω Self-Oscillating Frequency 400kHz No input signal, Adjustable Gain Setting 28dB 1Vrms input yields rated power Electrical Data Typical Notes / Conditions IR Devices Used IRS2053M Audio Controller and Gate-Driver, IRF6665 DirectFET MOSFETs Modulator Self-oscillating, second order sigma-delta modulation, analog input Power Supply Range ± 25V to ±35V Bipolar power supply Output Power CH1-3: (1% THD+N) 120W 1kHz, ±35V Output Power CH1-3: (10% THD+N) 170W 1kHz, ±35V www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 3 of 35
Rated Load Impedance 8-4Ω Resistive load Standby Supply Current +75/-95mA No input signal Total Idle Power Consumption 6W No input signal Channel Efficiency 90% Single-channel driven, 120W, Class D stage . Audio Performance Class D Notes / Conditions Output THD+N, 1W 0.015% THD+N, 10W 0.01% 1kHz, Single-channel driven THD+N, 60W 0.02% THD+N, 100W 0.03% A-weighted, AES-17 filter, Dynamic Range 101dB Single-channel operation Residual Noise, 22Hz - 20kHzAES17 220V Self-oscillating – 400kHz Damping Factor 67 1kHz, relative to 4Ω load Channel Separation 75dB 100Hz 75dB 1kHz 70dB 10kHz Frequency Response : 20Hz-20kHz ±1dB 1W, 4Ω - 8Ω Load : 20Hz-35kHz ±3dB Physical Specifications Dimensions 3.94”(L) x 2.83”(W) x 0.85”(H) 100 mm (L) x 72 mm (W) x 21.5 mm(H) Weight 0.130kgm www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 4 of 35
Connection Setup Audio Signal Generator CH1 CH2 C H3 Input Frequency adjustor DS1 VCC INDICATOR VR1 IRS2053M IRF6665 Output Output CH2 CH1 +B GND -B CH3 250W, 4Ω, G Non-inductive Resistors 35 V, 5 A DC supply 35 V, 5 A DC supply Fig 1 Typical Test Setup Connector Description CH1 IN CN1 Analog input for CH1 CH2 IN CN1 Analog input for CH2 CH3 IN CN1 Analog input for CH3 SUPPLY P1 Positive and negative supply (+B / -B) CH1 OUT P2 Output for CH1 CH2 OUT P2 Output for CH2 CH3 OUT P3 Output for CH3 www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 5 of 35
Test Procedures Test Setup: 1. Connect 4-200 W dummy loads to 3 output connectors (P2 and P3 as shown on Fig 1) and an Audio Precision analyzer (AP). 2. Connect the Audio Signal Generator to CN1 for CH1~CH3 respectively (AP). 3. Set up the dual power supply with voltages of ±35V; current limit to 5A. 4. TURN OFF the dual power supply before connecting to On of the unit under test (UUT). 5. Connect the dual power supply to P1. as shown on Fig 1 Power up: 6. Turn ON the dual power supply. The ±B supplies must be applied and removed at the same time. 7. The Blue LED should turn ON immediately and stay ON 8. Quiescent current for the positive supply should be 75mA 10mA at +35V. 9. Quiescent current for the negative supply should be 95mA 10mA at –35V. Switching Frequency test 10. With an Oscilloscope, monitor the switching waveform at test points VS1~VS3. Adjust VR1 to set the self oscillating frequency to 400 kHz 25 kHz when DUT in clock synchronize mode. Functionality Audio Tests: 11. Set the signal generator to 1kHz, 20 mV output. RMS 12. Connect the audio signal generator to CN1(Input of CH1,CH2,CH3) 13. Sweep the audio signal voltage from 15 mV to 1 V . RMS RMS 14. Monitor the output signals at P2/P3 with an oscilloscope. The waveform must be a non distorted sinusoidal signal. 15. Observe that a 1 V input generates an output voltage of 25.52 V (CH1/CH2). The RMS RMS ratio, R4x/(R3x) and R30x/(R31x), determines the voltage gain of IRAUDAMP11. Test Setup using Audio Precision (Ap): 16. Use an unbalanced-floating signal from the generator outputs. 17. Use balanced inputs taken across output terminals, P2 and P3. 18. Connect Ap frame ground to GND at terminal P1. 19. Select the AES-17 filter(pull-down menu) for all the testing except frequency response. 20. Use a signal voltage sweep range from 15 mV to 1 V . RMS RMS 21. Run Ap test programs for all subsequent tests as shown in Fig 2- Fig 7below. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 6 of 35
Performance and test graphs 10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 100m 200m 500m 1 2 5 10 20 50 100 200 W Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Red Solid 2 Anlr.THD+N Ratio Left CH1 1 3 Blue Solid 2 Anlr.THD+N Ratio Left CH2 2 3 Green Solid 2 Anlr.THD+N Ratio Left ±B Supply = ±35V, 4 Ω Resistive Load Fig 2 IRAUDAMP11, THD+N versus Power, Stereo, 4 Ω . +4 T +3 +2 +1 -0 -1 d -2 B r -3 A -4 -5 -6 -7 -8 -9 -10 20 50 100 200 500 1k 2k 5k 10k 20k 50k 100k200k Hz CH1-Blue; CH2-Yellow; CH3-Red ±B Supply = ±35V, 4 Ω Resistive Load Fig 3 IRAUDAMP11, Frequency response www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 7 of 35
Red CH1, 10W Output Blue CH1, 50W Output Fig 4 THD+N Ratio vs. Frequency +0 -20 -40 d B -60 V -80 -100 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Yellow Solid 2 Fft.Ch.1 Ampl Left CH2 1 2 Blue Solid 2 Fft.Ch.2 Ampl Left CH3 2 1 Red Solid 2 Fft.Ch.1 Ampl Left CH1 Fig 5, 1V output Frequency Spectrum www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 8 of 35
+0 -25 d -50 B -75 V -100 -125 -150 10 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Red Solid 2 Fft.Ch.1 Ampl Left CH1 1 2 Blue Solid 2 Fft.Ch.2 Ampl Left CH3 2 1 Yellow Solid 2 Fft.Ch.1 Ampl Left CH2 No signal, Self Oscillator @ 400kHz Fig 6, IRAUDAMP11 Noise Floor . +0 -10 -20 -30 d -40 B r -50 A -60 -70 -80 -90 -100 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Cyan Solid 2 Anlr.Ampl Left CH3_on;CH1_off 3 1 Yellow Solid 2 Anlr.Ampl Left CH1_on;CH3_off 4 1 Red Solid 2 Anlr.Ampl Left CH2_on;CH3_off 5 1 Magenta Solid 2 Anlr.Ampl Left CH3_on;CH2_off 6 1 Blue Solid 1 Anlr.Ampl Left CH2_on;CH1_off 7 1 Cyan Solid 1 Anlr.Ampl Left Ch1_on;CH2_off Fig 7, Channel separation vs. frequency www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 9 of 35
Clipping characteristics Red Trace: Total Distortion + Noise Voltage Green Trace: Output Voltage 60W / 4, 1kHz, THD+N=0.02% 174W / 4, 1kHz, THD+N=10% Measured Output and Distortion Waveforms(CH1/CH2) Fig 8 Clipping Characteristics . Soft Clipping IRS2053M has Clipping detection function, it monitors error voltage in COMP pin with a window comparator and pull an open drain nmos referenced to GND. Threshold to detect is at 10% and 90% of VAA-VSS. Each channel has independent CLIP outputs. Once IRS2053M detects Clipping, the CLIP pin will generate pulses to trigger soft clipping circuit as Fig 9, which limits output’s maximum power. Fig10 shows 20Hz and 20 kHz THD+N versus Power graph in CH3; it shows limitation of output’s power with different frequency. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 10 of 35
Soft Clipping R28A Q5 VAA 1K DTA144EKA C15A R7A C6A 10uF, 16V 470K 1uF,50V R5A R29A GND 47K 220K Audio signal INPUT D3A C0A R27A 1N4148 R6A 47K CLIP Detection 10uF,50V3.3K D G R3A 1K IN- S Q6 C5A MMBFJ112 10uF, 50V VSS GND Fig 9 Soft Clipping Circuit 10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 100m 200m 500m 1 2 5 10 20 50 100 300 W Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Red Solid 2 Anlr.THD+N Ratio Left 20Hz 2 1 Blue Solid 2 Anlr.THD+N Ratio Left 20kHz ±B Supply = ±35V, 4 Ω Resistive Load Fig 10 IRAUDAMP11/CH3, THD+N versus Power, Stereo, 4 Ω www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 11 of 35
Efficiency Fig 11 shows efficiency characteristics of the IRAUDAMP11. The high efficiency is achieved by following major factors: 1) Low conduction loss due to the DirectFETs offering low R DS(ON) 2) Low switching loss due to the DirectFETs offering low input capacitance for fast rise and fall times Secure dead-time provided by the IRS2053M, avoiding cross-conduction. Efficiency (%) 100% 90% 80% ) % 70% ( y 60% c AMP11 35V 4ohms n 50% e ci 40% i ff 30% E 20% 10% 0% 0 50 100 150 Output power (W) Fig 11, IRAUDAMP11 4 ohms load Stereo, ±B supply = ±35V Thermal Considerations With this high efficiency, the IRAUDAMP11 design can handle one-eighth of the continuous rated power, which is generally considered to be a normal operating condition for safety standards, without additional heatsinks or forced air-cooling. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 12 of 35
Thermal Interface Material’s Pressure Control The pressure between DirectFET & TIM (Thermal Interface Material) is controlled by depth of Heat Spreader’s groove. Choose TIM which is recommended by IR. (Refer to AN-1035 for more details). TIM’s manufacturer thickness, conductivity, & etc. determine pressure requirement. Below shows selection options recommended: Fig 12 TIM Information www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 13 of 35
Check the TIM’s compression deflection with constant rate of strain (example as Fig.13) base on manufacturer’s datasheet. According to the stress requirement, find strain range for the TIM. Then, calculate heat spreader groove depth as below: Groove Depth=DirectFET’s Height +TIM’s Thickness*strain **DirectFET’s height should be measured from PCB to the top of DirectFET after reflow. The average height of IRF6665 is 0.6mm. Fig 13 compression deflection with constant rate of strain www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 14 of 35
Power Supply Rejection Ratio (PSRR) The IRAUDAMP11 obtains good power supply rejection ratio of -68 dB at 1kHz shown in Fig 14. With this high PSRR, IRAUDAMP11 accepts any power supply topology when the supply voltages fit between the min and max range. +0 -10 -20 -30 d -40 B V -50 -60 -70 -80 -90 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Magenta Solid 2 Anlr.Ampl Left Fig 14 Power Supply Rejection Ratio (PSRR) www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 15 of 35
Short Circuit Protection Response Figs 15-16 show over current protection reaction time of the IRAUDAMP11 in a short circuit event. As soon as the IRS2053M detects an over current condition, it shuts down PWM. After one second, the IRS2053M tries to resume the PWM. If the short circuit persists, the IRS2053M repeats try and fail sequences until the short circuit is removed. Short Circuit in Positive and Negative Load Current CSD pin CSD pin VS pin VS pin Load current Load current Positive OCP Negative OCP Fig 15 Positive and Negative OCP Waveforms . OCP Waveforms Showing CSD Trip and Hiccup CSD pin CSD pin VVSS ppiinn VVSS ppiinn LLooaadd ccuurrrreenntt LLooaadd ccuurrrreenntt Fig 16 OCP Response with Continuous Short Circuit www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 16 of 35
IRAUDAMP11 Overview The IRAUDAMP11 features a 3CH self-oscillating type PWM modulator for the smallest space, highest performance and robust design. This topology represents an analog version of a second- order sigma-delta modulation having a Class D switching stage inside the loop. The benefit of the sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its operation. Also, sigma-delta modulation allows a designer to apply a sufficient amount of error correction. The IRAUDAMP11 self-oscillating topology consists of following essential functional blocks. Front-end integrator PWM comparator Level shifters Gate drivers and MOSFETs Output LPF Integrator Referring to Fig 17 below, the input operational amplifier of the IRS2053M forms a front-end second-order integrator with R3x, C2x, C3x, and R2x. The integrator that receives a rectangular feedback signal from the PWM output via R4x and audio input signal via R3x generates a quadratic carrier signal at the COMP pin. The analog input signal shifts the average value of the quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the analog input signal. PWM Comparator The carrier signal at the COMP pin is converted to a PWM signal by an internal comparator that has a threshold at middle point between VAA and VSS. The comparator has no hysteresis in its input threshold. Level Shifters The internal input level-shifter transfers the PWM signal down to the low-side gate driver section. The gate driver section has another level-shifter that level shifts up the high-side gate signal to the high-side gate driver section. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 17 of 35
Gate Drivers and DirectFETs The received PWM signal is sent to the dead-time generation block where a programmable amount of dead time is added into the PWM signal between the two gate output signals of LO and HO to prevent potential cross conduction across the output power DirectFETs. The high-side level- shifter shifts up the high-side gate drive signal out of the dead-time block. Each channel of the IRS2053M’s drives two DirectFETs, high- and low-sides, in the power stage providing the amplified PWM waveform. Output LPF The amplified PWM output is reconstructed back to an analog signal by the output LC LPF. Demodulation LC low-pass filter (LPF) formed by L1 and C13, filters out the Class D switching carrier signal leaving the audio output at the speaker load. A single stage output filter can be used with switching frequencies of 400 kHz and greater; a design with a lower switching frequency may require an additional stage of LPF. Fig 17 Simplified Block Diagram of IRAUDAMP11 Class D Amplifier www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 18 of 35
Functional Descriptions IRS2053M Gate Driver IC The IRAUDAMP11 uses the IRS2053M, a 3 Channel high-voltage (up to 200 V), high-speed power MOSFET driver with internal dead-time and protection functions specifically designed for Class D audio amplifier applications. These functions include OCP and UVP. The IRS2053M integrates bi-directional over current protection for both high-side and low-side MOSFETs. The dead-time can be selected for optimized performance according to the size of the MOSFET, minimizing dead-time while preventing shoot-through. As a result, there is no gate-timing adjustment required externally. Selectable dead-time through the DT pin voltage is an easy and reliable function which requires only two external resistors, R12 and R13 as shown on Fig 18 or Fig 24 below. The IRS2053M offers the following functions. PWM modulator Dead-time insertion Over current protection Under voltage protection Level shifters Refer to IRS2053M datasheet and AN-1158 for more details. L1A CGCGCGCHNHNHNNDDD1231123456C2C222110022ppACGFFGNNDDRR1R100333KK111C2ABC21GG02NNpB1DDF0KGGNNDDRRR15333K000ACB1105CKR1K1010R412345674.7ITuCLF111V2223C,OIIIIOD1NNNN0UU0D8-++-VTT4GND3443GOO43R3IINUIUINN.4NN23DTT++.7--K7AuF,18119111C0342011VR11G01NR5DR22C209HKA3 ICCNR0HHPR4Q6MMBFJ112U210RSDC1 T 0IIo01NN1Rru4R5 PP0NF7AUU7 ,0/oA ATTK1r 6NV/AG11RuNCF2D46,81A35A4A081VKR4R4767K5AKA CCCCCCG111555NABCABCDQ5RRRRR1R11111000000311313000uuuDBBCAACpppFFFTFFF,,,A ,,,111 15556664000VVV4VVVE1K5221250..22K2A066KKKKRKK 41B%2.CR1R12CC00n2440022FAACKKCB,52 2011.2.V%%2nRnFR1R1RR2F,22225A76,500BC00RRV111V2000RRR11nnCCFF63C2,,CC2A553.C8.C20043B2n42VVCC7nCF..F72,4D1,5un5AN10uF, 16VC404FF0.1V4,,47V15n1BuC00F4FVVSS,8,5DD100D3VVVVSAS444334444434A1N4148810793574682R102R2CGGDIVCCIICVNNNSNNSAOOOS321SDDDAMMMPPPR26A10K136213CLIP3NCR118.2KR102.2KR26B10K235DCLIP2VREFSAVA334R26C10KDACLIP1OCSETSB433R10410KDR12NCFAULTDTSCC9100uF,4V532PR131KDCPVCCROTC9A631NCCOMIRS10uF,16VC16AIC2307001OTP3CSH2-B0.01uF53829C16B-BVB2OTP20.01uFC0.11289C16C0uOTP1HO2BF0.01uF,502710VNCVS2RRRR1333R4222R12611ABCA201VS3NC2K5B4B.111725120001RRRR0HO3VS1KDCVCC2OVHVCLSSLLRBNNMOHHOBOOBC11RRR3CC21131332126N.ppp9B4ABCK141122122211118C10A999673251408349555CCC0.1uF,50VC10C0.1uF,50VR101K7BDR12R30A1R.1K1D1R591061NAR4K115KAN.3RB481C74.11B611R91N4CRD70K48A4K12181C17C040CKR498u.B17FR44R4R,..1B1177868RRAVCD1C1N4148D1A1N4148 R22C10KR22A10K R2R2R2R2R2R2222222229992RRRRR0R0ABC0CAB QIQIQIQIQIQIRRRRRR122121FFFFFFAACBBC666666666666666666555555 C19AR19AR19CC19C1R1R0.1uF,100V0.1uF,100VR19BC19B1R0.1uF,100V RN1/A2ARNRN1/1/AA22BC 2L2L221212uBuCuHHH 0.47uF, 400VC13B 0.47uF, 400V0.47uF, 400VC13AC13C C0C0..111177uuC14BDCFF,,5500R21BVVC0.1uF, 63V10R,1WH3 OC14AC14CUTGGPR21AR21CNNUDDT10R,1W0.1uF, 63V10R,1W0.1uF, 63VR1R100220033kkABRRRP32221234444ACBC1C10102220170...07A2220uBKKKuFF,3,355VVCCCGGGG+G-BBHHHNNNNNDDDDD321 OOOUUUTTTPPPUUUTTT R0.6011uCCF66,2 15100Vk R223V1k0RK1 0.13212341uFT,CCI5VSG112GC01IL7EABYCCNN8VTWT2DDCC01VO07DCFU2219IFABYCTT9CT-N545678D CNCN4/4/AA01 +-55vv QQ89ZXZX5T59T58Z535Z5.66.356VV R3R3R5R333143444k006k345RR,,11WW R33407R,1WQ3MMBT5551 R475k6OVPR1MZ305R439Mk47V5Bk5TR150Q55k3451 R475Uk7VP R4R4Z1775548kk08V DS1VCCR5.311kC3722uF, 16V R3R1.k43322k0.C031C26u.F32,5n 5LF05,5V0V2R1224001ukH DR70R14.09400C01ku13F04,R 25V1234ILCMSBRR9W5SCT0TNL07RONVV/CSFINCDB 8765 RRRRR22255555ABCC012.313u211111F.00000,2 000kkC5uKKKR103F0VR53ZZ2, 0.978351k60kCCCVHHH3332199F QVVXOOO14UUU9TTT+-1BPPPBZ1UUU25OZ2TTTV14VVPR1R4QM07332MRk87BT5401 CCHH21 OOUUTTGGGPPNNNUU+-DDDBBTT PP211234123CCHH21 0.01uF, 50V R6210k GND GND For EMI Fig 18 System-level View of IRAUDAMP11 www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 19 of 35
Self-Oscillating Frequency Self-oscillating frequency is determined by the total delay time along the control loop of the system; the propagation delay of the IRS2053M, the DirectFETs switching speed, the time- constant of front-end integrator (R2, R3, R4, C2, C3 ). Variations in +B and –B supply voltages also affect the self-oscillating frequency. The self-oscillating frequency changes with the duty ratio. The frequency is highest at idling. It drops as duty cycle varies away from 50%. Adjustments of Self-Oscillating Frequency Use R2 to set different self-oscillating frequencies. The PWM switching frequency in this type of self-oscillating switching scheme greatly impacts the audio performance, both in absolute frequency and frequency relative to the other channels. In absolute terms, at higher frequencies, distortion due to switching-time becomes significant, while at lower frequencies, the bandwidth of the amplifier suffers. In relative terms, interference between channels is most significant if the relative frequency difference is within the audible range. Normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to either match the frequencies accurately, or have them separated by at least 25kHz. Under the normal operating condition with no audio input signal, the switching-frequency is set around 400kHz in the IRAUDAMP11. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 20 of 35
Selectable Dead-time The dead-time of the IRS2053 is set based on the voltage applied to the DT pin. Fig 19 lists the suggested component value for each programmable dead-time between 45 and 105 ns. All the IRAUDAMP11 models use DT1 (45ns) dead-time. Dead-time Mode R1 R2 DT/SD Voltage DT1 <10k Open Vcc DT2 5.6k 4.7k 0.46 x Vcc DT3 8.2k 3.3k 0.29 x Vcc DT4 Open <10k COM Recommended Resistor Values for Dead Time Selection Dead-tim e IRS2053M 45nS >0.5mA Vcc 65nS R1 85nS DT 105nS R2 VDT COM 0.23xVcc 0.36xVcc 0.57xVcc Vcc Fig 19 Dead-time Settings vs. V Voltage DT www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 21 of 35
Protection System Overview The IRS2053M integrates over current protection (OCP) inside the IC. The rest of the protections, such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature protection (OTP), are detected externally to the IRS2053M (Fig 20). The external shutdown circuit will disable the output by pulling down CSD pins, (Fig 21). If the fault condition persists, the protection circuit stays in shutdown until the fault is removed. R60 SD 15k GND Q5 MMBT5551 R54 Z4 10k R57 18V IC6 R51 R56 47k LM26CIM5-XHA 22k 47k 5 1 OS HT R50 2 Z393VR53 47k R59 4 VCCGNVDT 3 22k OTP 10k R52 BT5551 Q4 15k D51 Q3MM MMBT5551 R58 4.7V R55 47k 47k OVP UVP -B Fig 20 DCP, OTP, UVP and OVP Protection Circuits . Fig 21 Simplified Functional Diagram of OCP www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 22 of 35
Over-Current Protection (OCP) Low-Side Current Sensing The low-side current sensing feature protects the low side DirectFET from an overload condition from negative load current by measuring drain-to-source voltage across R during its on state. DS(ON) OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing. When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the IRS2053 turns the outputs off and pulls CSD down to -VSS. High-Side Current Sensing The high-side current sensing protects the high side DirectFET from an overload condition from positive load current by measuring drain-to-source voltage across R during its on state. OCP DS(ON) shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. High-side over-current sensing monitors drain-to-source voltage of the high-side DirectFET during the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference to the VS pin, which is the source of the high-side DirectFET. In contrast to the low-side current sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An external resistive divider R15, R16 and R17 are used to program a threshold as shown in Fig 20. An external reverse blocking diode D1 is required to block high voltage feeding into the CSH pin during low-side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum threshold which can be set for the high-side is 0.6V across the drain-to-source. Over-Voltage Protection (OVP) OVP is provided externally to the IRS2053M. OVP shuts down the amplifier if the bus voltage between GND and -B exceeds 39V. The threshold is determined by a Zener diode Z3. OVP protects the board from harmful excessive supply voltages, such as due to bus pumping at very low frequency-continuous output in stereo mode. Under-Voltage Protection (UVP) UVP is provided externally to the IRS2053M. UVP prevents unwanted audible noise output from unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus voltage between GND and -B falls below a voltage set by Zener diode Z4. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 23 of 35
Offset Null (DC Offset) Adjustment The IRAUDAMP11 requires no output-offset adjustment. DC offsets are tested to be less than ±20 mV. Over-Temperature Protection (OTP) A Preset Thermostat IC, IC6 in Fig 19, is placed in close proximity to the heatsink which has 6 DirectFETs under it; and monitors heatsink temperature. If the heatsink temperature rises above 100 C, the OTP shuts down all 3 channels by pulling down the CSD pins of the IRS2053M. OTP recovers once the temperature has cooled down. Click and POP Noise Reduction Thanks to the click and pop elimination function built into the IRS2053M, the IRAUDAMP11 does not require any additional components for this function. Power Supply Requirements For convenience, the IRAUDAMP11 has all the necessary housekeeping power supplies onboard and only requires a pair of symmetric power supplies. Or use the IRAUDPS1 reference design which is a 12 volt systems Audio Power Supply for automotive applications designed to provide voltage rails (+B and –B) for Class D audio power amplifiers . House Keeping Power Supply The internally-generated housekeeping power supplies include ±5V for analog signal processing, and +12V supply (V ) referred to the negative supply rail -B for DirectFET gate drive. The gate CC driver section of the IRS2053M uses VCC to drive gates of the DirectFETs. V is referenced to – CC B (negative power supply). D2, R18 and C10 form a bootstrap floating supply for the HO gate driver. Bus Pumping When the IRAUDAMP11 is running in stereo mode, the bus pumping effect takes place with low frequency, high output. Since the energy flowing in the Class D switching stage is bi-directional, there is a period where the Class D amplifier feeds energy back to the power supply. The majority of the energy flowing back to the supply is from the energy stored in the inductor in the output LPF. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 24 of 35
Usually, the power supply has no way to absorb the energy coming back from the load. Consequently the bus voltage is pumped up, creating bus voltage fluctuations. Following conditions make bus pumping worse: 1. Lower output frequencies (bus-pumping duration is longer per half cycle) 2. Higher power output voltage and/or lower load impedance (more energy transfers between supplies) 3. Smaller bus capacitance (the same energy will cause a larger voltage increase) The OVP protects IRAUDAMP11 from failure in case of excessive bus pumping. One of the easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration out-of-phase so that one channel consumes the energy flow from the other and does not return it to the power supply. Bus voltage detection monitors only +B supply, assuming the bus pumping on the supplies is symmetric in +B and -B supplies. Blue: VS of CH3;Cyan: VS of CH2;Magenta: Voltage of +B;Green:Current of C13A Fig 22 Auto-phase sync clock’s BUS Pumping when idling www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 25 of 35
Load Impedance Each channel is optimized for a 4 Ω speaker load in half bridge. Input Signal and Gain Setting A proper input signal is an analog signal ranging from 20Hz to 20kHz with up to 3 V amplitude RMS with a source impedance of no more than 600 Ω. Input signal with frequencies from 30kHz to 60kHz may cause LC resonance in the output LPF, causing a large reactive current flowing through the switching stage, especially with greater than 8 Ω load impedances, and the LC resonance can activate OCP. The IRAUDAMP11 has an RC network called a Zobel network (R21 and C14) to damp the resonance and prevent peaking frequency response with light loading impedance. (Fig 23) Fig 23 Output Low Pass Filter and Zobel Network Gain Setting The ratio of resistors R4A~C/R1A~C in Fig 24 sets voltage gain. The IRAUDAMP11 has no on board volume control. To change the voltage gain, change the input resistor term R1A~C. Changing R4A~C affects PWM control loop design and may result poor audio performance. www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 26 of 35
Schematic L1A CH3 OUTPUT R102.2K R12NC C16A0.01uFC16B0.01uF RR1342AA4.170RR RpA95C 22uH R24A2.2K GND CGCGCGCNNNHHHN1D2D3D1123456C2C222110022ppACGFFGNNDDRR1R100333KK111C2ABC21GG02NNpB1DDF0KGGNNDDRRR15333K000ACB1105CR1KK1010R412345674.7ITuCLF111V2223C,OIIIIOD1NNNN0UU0D8-++-VTT4GND3443GOO43R3IINUUIINN.NN423DTT++.7--K7AuF,18119111C0342011VR11G01NR5DR22C209HKA3 ICCNR0HHPR4Q6MMBFJ112U210RSDC1 T 0IIo10NN1Rr4uR5 PP0NF7AUU7 0,/oA ATT1Kr 6NV/AG11RNuCF2D46,81A35A4A081VKR4R4767K5AKA CCCCCCG111555NABCABCDQ5RRRRR1R11111000000311313000uuuDBBCAACpppFFFTFFF,,,A ,,,111 15556664000VVV4VVVE1K5221250.22K2.A066KKKKRKK 41B% 2.CR1R12CC00n2440022FAACKKCB,52 20.112.V%%2nRnFR1R1RR2F,22522A,76500BC00RRV111V2000RRR11nnCCFF63C2,,CC2A553..2C8C0043B2nVV42CC7nFC..F72,4D1,5un5AN10uF, 16VC404FF0.V14,,47V15n1BuC00F4FVVS,8,5D100D3VVVVASS444334444434A1N4148810793574682R102R2CGGDIVCCIICVNNNSNNSAOOOS321DSDDAMMMPPP213136R26A10KCLIP3NCR118.2K235R26B10KDCLIP2VREFSA334R26C10KDCLIP1OCSETSB433R10410KDFAULTDTSC532C9100uF,4VPR131KDCPVCCROTC9A631NCCOMIRS10uF,16VIC2307001OTP3CSH2-B53829-BVB2OTP2C0.11289C16C0uOTP1HO2BF0.01uF,502710VNCVS2RR3322R12611BC01VS3NCK5B11002512RRHO3VS1DCVCC2OVHVCLSSLLRBMNNHHBOBOOOC11RRCC31321113226NppB4BC141122122211118C10A9967325140834955CC0.1uF,50VC10C0.1uF,50VR101K7BDR12R30A1R.1K1DR591016AR4K115KNA.3RB81C74.B1611R91NCRD70K4AK412181C17C040CR4K98u.B17FR44R4R,..B1117786R8RAVCD1C1N4148D1A1N4148 R22C10KR22A10K R2R2R2R2R2R2222222229992RRRRRR00ABC0CAB QIQIQIQIQIQIRRRRRR122121FFFFFFAACBBC666666666666666666555555 C19AR19AR19CC19C1R1R0.1uF,100V0.1uF,100VR19BC19B1R0.1uF,100V RN/1A2ARNRN//11AA22BC L2L21212uuBCHH 0.47uF, 400VC13B 0.47uF, 400V0.47uF, 400VC13AC13C C0C0..111177uuC14BCDFF,,5500R21BVV0.1uF, 63V10R,1WC14AC14CR21AR21C10R,1W0.1uF, 63V10R,1W0.1uF, 63VR1R100220033kkABRR2244CBC1C1010220170..07A220uBKKuFF,3,355VV CCGGG+G-BBNNNNHHDDDD21 OOUUTTPPUUTT SD VAA R22B10K 3.9K 1N4148 GND P312 GND 3 CH3 OUTPUT 4 R51 10kZ7 39V 0.1uF,C501V +5v Q8ZX5T853 R33403R,1W R33407R,1W RR255A2 11000kKZ8 39V+-BBOVP R45 CH3 OUTPUT 33k R25B 100K CH2 OUTPUT R223k IC2 CN/4A0 Z55.6V R25C 100K CH1 OUTPUT LTC1799 V10RK1 132 VSGECNTDCODUITT 54 CN/4A1 Z56.6V R334k6 CH1 OUTGGPNNUDDT P2234CH2 Q9 R44 CH2 OUTPUT 1CH1 12 11ABVC1YC 78 -5v ZX5T953 510R,1W R36 Z2 3 2Y 2B 6 R105k4 R57 Z148V 5.1k 15V R37 R0.6011uCF6, 15100Vk 4TCIGC7N8WD00F2FACT-N5D Q3MMBT5551 R475k6OVPMZ3R439M7V5Bk5TR150Q55k3451 47UkVP R4R47755kk08 DS1VCCR5.311k C3722uF, 16V R3R1.k43322k 0.C031C26u.F32,5n 5LF05,5V0VR12224001kuH DR70R14.09040C01ku13F04,R 25V 1234ILCMSBRR95WSCT0TNL07RONVV/CSFINCDB 8765 C0.313u2F.,2 C5uR103F0V32, 095k0VFQX1491Z214V R14QM0732MRk8BT5401 GN+-DBB P1123 C62 0.01uF, 50V R6210k GND GND For EMI Fig 24 IRAUDAMP11 Schematic www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 27 of 35
IRAUDAMP11 Fabrication Materials Table 1 IRAUDAMP11 Electrical Bill of Materials Quantity Value Description Designator Part Number Vender CAP CER .1UF 50V 10% X7R Murata Electronics 1 0.1uF,50V 0603 C1 490-1519-1-ND North America CAP CERAMIC 100PF 50V NP0 3 100pF, 50V 0603 C1A, C1B, C1C 399-1061-1-ND Kemet C2A, C2B, C2C, CAP CER 2200PF 50V 10% C3A, C3B, Murata Electronics 7 2.2nF,50V X7R 0603 C3C, C35 490-1500-1-ND North America CAP 1000PF 50V 3 1nF,50V CERAMICX7R 0603 C4A, C4B, C4C 399-1082-1-ND Kemet 3 10uF, 16V CAP 10UF 16V HA ELECT SMD C5A, C5B, C5C PCE4179CT-ND Panasonic - ECG CAP CERM 4.7UF 10V Y5V 4 4.7uF,10V 0805 C6, C7, C10, C11 478-1429-1-ND AVX Corporation Murata Electronics 1 1uF,50V CAP CER 1UF 50V X7R 0805 C6A 490-4736-1-ND North America CAP CER 10UF 16V X7R 20% 2 10uF, 16V 1206 C8, C15A 445-1601-1-ND TDK Corporation CAP 100UF 4V ELECT WX 1 100uF,4V SMD C9 493-2079-1-ND Nichicon Murata Electronics 2 10uF,16V CAP CER 10UF 16V Y5V 0805 C9A, C9B 490-3347-1-ND North America CAP .10UF 50V CERAMIC X7R 3 0.1uF,50V 0805 C10A, C10B, C10C 311-1140-1-ND Yageo CAP CER 220PF 50V 10% X7R Murata Electronics 3 220pF 0603 C12A, C12B, C12C 490-1483-1-ND North America CAP .47UF 400V METAL 3 0.47uF, 400V POLYPRO C13A, C13B, C13C 495-1315-ND EPCOS Inc CAP FILM MKP .1UF 63VDC Vishay/BC 3 0.1uF, 63V 2% C14A, C14B, C14C BC2054-ND Components CAP 10000PF 25V CERM X7R C16A, C16B, 4 0.01uF, 25V 0603 C16C,C34 PCC1763CT-ND Panasonic - ECG CAP 1000UF 35V ELECT SMG 2 1000uF,35V RAD C17A, C17B 565-1086-ND United Chemi-Con CAP .10UF 50V CERAMIC X7R 2 0.1uF,50V 1206 C17C, C17D 399-1249-1-ND Kemet CAP CER .10UF 100V X7R 3 0.1uF,100V 10% 0805 C19A, C19B, C19C 445-1418-1-ND TDK Corporation Murata Electronics 1 2.2uF, 50V CAP CER 2.2UF 50V X7R 1206 C32 490-3367-1-ND North America CAP CER .1UF 50V 10% X7R Murata Electronics 1 0.1uF, 50V 0805 C33 490-1666-1-ND North America CAP CER 10000PF 50V 20% Murata Electronics 1 0.01uF, 50V X7R 0603 C36 490-1511-1-ND North America 1 22uF, 16V CAP CER 22UF 16V X7R 1210 C37 445-3945-1-ND TDK Corporation 2 N/A C40, C41 N/A CAP 10000PF 50V CERAMIC 2 0.01uF, 50V X7R 0603 C61, C62 399-1091-1-ND Kemet TERMINAL BLOCK 3.5MM On Shore Technology 1 Header 6 6POS PCB CN1 ED1518-ND Inc D1A, D1B, D1C, DIODE SWITCH 100V 400MW D2A, D2B, D2C, 9 1N4148 SOD-123 D3, D3A, D4 1N4148W-FDICT-ND Diodes Inc DIODE SCHOTTKY 100V 1.5A 1 DIODE1 SMA D7 10MQ100NPBFCT-ND Vishay/Semiconductors LED 468NM BLUE CLEAR 0603 DS1, DSA, DSB, 4 BLUE LED SMD DSC 160-1646-1-ND Lite-On Inc 1 IRS2053 3ch Audio Class D Controller IC1 IR2053MPBF International Rectifier IC OSCILLATOR RES SET LTC1799CS5#TRMPBFCT- 1 LTC1799 TSOT23-5 IC2 ND Linear Technology IC OPAMP GP 10MHZ QUAD 1 TLC084 14SOIC IC3 296-7287-1-ND Texas Instruments www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 28 of 35
TC7W00FFCT- IC GATE NAND DUAL 2INPUT 1 ND 8-SOP IC8 TC7W00FFCT-ND Toshiba National 1 LM5007 IC BUCK ADJ .5A 8LLP IC9 LM5007SDCT-ND Semiconductor 3 22uH Class D inductor, 22uH L1A, L1B, L1C 7G14A-220M-B Inductors,Inc. POWER INDUCTOR 220UH SUMIDA AMERICA 1 220uH 0.49A SMD L5 308-1538-1-ND COMPONENTS INC CONN TERM BLOCK PCB 1 Header 3 5.0MM 3POS P1 281-1415-ND Weidmuller TERMINAL BLOCK 3.5MM On Shore Technology 2 SP OUT 4POS PCB P2, P3 ED1516-ND Inc 1 RED LED LED RED CLEAR 0603 SMD PROT 160-1181-1-ND Lite-On Inc TRANS HP NPN 60V 1000MA 1 FX491 SOT23-3 Q1 FMMT491CT-ND Diodes/Zetex Q1A, Q1B, Q1C, MOSFET N-CH 100V 4.2A Q2A, 6 IRF6665 DIRECTFET Q2B, Q2C IRF6665 International Rectifier TRANS PNP 150V 350MW 1 MMBT5401 SMD SOT23-3 Q2 MMBT5401-FDICT-ND Diodes Inc TRANS NPN 160V 350MW 2 MMBT5551 SMD SOT23-3 Q3, Q4 MMBT5551-FDICT-ND Diodes Inc TRAN DIGITL PNP 50V 30MA 1 DTA144EKA SOT-346 Q5 DTA144EKAT146CT-ND Rohm Semiconductor IC SWITCH ANALOG N-CH Fairchild 1 MMBFJ112 SOT-23 Q6 MMBFJ112CT-ND Semiconductor TRANSISTOR 4.5A 100V SOT- 1 ZX5T853 89 Q8 ZX5T853ZCT-ND Diodes/Zetex TRANSISTOR PNP 3.5A 100V 1 ZX5T953 SOT-89 Q9 ZX5T953ZCT-ND Diodes/Zetex 1 0R0 RES 0.0 OHM 1/10W 0603 SMD R1 P0.0GCT-ND Panasonic - ECG RES 22K OHM 1/10W 5% 0603 4 22K SMD R1A, R1B, R1C, R3 RHM22KGCT-ND Rohm Semiconductor RES 120 OHM 1/10W 5% 0603 3 120R SMD R2A, R2B, R2C RHM120GCT-ND Rohm Semiconductor RES 1.0K OHM 1/10W 5% 0603 3 1K SMD R3A, R13, R32 RHM1.0KGCT-ND Rohm Semiconductor RES 5.6K OHM 1/10W 5% 0603 2 5.6K SMD R3B, R3C RHM5.6KGCT-ND Rohm Semiconductor RES 100K OHM 1/8W 1% 0805 3 100K 1% SMD R4A, R4B, R4C RHM100KCRCT-ND Rohm Semiconductor R5A, R6A, R37, RES 47K OHM 1/10W 5% 0603 R50, R55, R56, 8 47K SMD R57, R58 RHM47KGCT-ND Rohm Semiconductor R6, R7, R14, R15, R22, RES 10 OHM 1/10W 5% 0603 R32A, R32B, 10 10R SMD R32C, R38, R49 RHM10GCT-ND Rohm Semiconductor RES 470K OHM 1/10W 5% 1 470K 0603 SMD R7A RHM470KGCT-ND Rohm Semiconductor R9A, R9B, R9C, RES 22 OHM 1/10W 5% 0603 R20A, 6 22R SMD R20B, R20C RHM22GCT-ND Rohm Semiconductor RES 2.2K OHM 1/10W 5% 0603 1 2.2K SMD R10 RHM2.2KGCT-ND Rohm Semiconductor RES 8.2K OHM 1/10W 5% 0603 1 8.2K SMD R11 RHM8.2KGCT-ND Rohm Semiconductor 1 NC R12 N/A 3 N/A R12A, R12B, R12C N/A RES 4.7 OHM 1/10W 5% 0603 R14A, R14B, R18A, 5 4.7R SMD R18B, R18C RHM4.7GCT-ND Rohm Semiconductor R15A, R15B, R15C, R17A, R17B, R17C,R22A, R22B, R22C, R28A, R29A, RES 10K OHM 1/10W 5% 0603 R30A,R31A, R31B, 25 10K SMD R31C, R51, R52, RHM10KGCT-ND Rohm Semiconductor www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 29 of 35
R53, R54,R61, R62, R104, R26A, R26B, R26C RES 3.9K OHM 1/10W 5% 0603 3 3.9K SMD R16A, R16B, R16C RHM3.9KGCT-ND Rohm Semiconductor RES 1.0 OHM 1/8W 5% 0805 3 1R SMD R19A, R19B, R19C RHM1.0ARCT-ND Rohm Semiconductor RES 10 OHM 1W 1% 2512 3 10R,1W SMD R21A, R21B, R21C PT10AECT-ND Panasonic - ECG R23A, R23B, R25A, RES 100K OHM 1/10W 5% R25B, R25C, R39, 7 100k 0603 SMD R40 RHM100KGCT-ND Rohm Semiconductor RES 2.2K OHM 1/8W 5% 0805 3 2.2K SMD R24A, R24B, R24C RHM2.2KARCT-ND Rohm Semiconductor RES 3.3K OHM 1/10W 5% 0603 2 3.3K SMD R27A, R42 RHM3.3KGCT-ND Rohm Semiconductor RES 15K OHM 1/10W 5% 0603 2 15K SMD R30B, R30C RHM15KGCT-ND Rohm Semiconductor RES 5.1K OHM 1/8W 5% 0805 1 5.1k SMD R31 RHM5.1KARCT-ND Rohm Semiconductor RES 5.1K OHM 1/10W 5% 0603 1 5.1k SMD R36 RHM5.1KGCT-ND Rohm Semiconductor RES 120K OHM 1/10W 5% 1 120k 0603 SMD R41 RHM120KGCT-ND Rohm Semiconductor RES 330 OHM 1W 5% 2512 2 330R,1W SMD R43, R47 PT330XCT-ND Panasonic - ECG RES 510 OHM 1W 5% 2512 1 510R,1W SMD R44 PT510XCT-ND Panasonic - ECG RES 33K OHM 1/10W 5% 0603 2 33k SMD R45, R46 RHM33KGCT-ND Rohm Semiconductor THERMISTOR PTC 470 OHM Murata Electronics 3 95C 95C SMD RpA, RpB, RpC 490-2465-1-ND North America Vishay/BC 1 10K TRIM POT ST-32TB 10 KOHMS VR1 ST32ETB103CT-ND Components DIODE ZENER 24V 500MW 1 24V SOD-123 Z1 BZT52C24-FDICT-ND Diodes Inc DIODE ZENER 15V 500MW 1 15V SOD-123 Z2 BZT52C15-FDICT-ND Diodes Inc DIODE ZENER 39V 500MW 3 39V SOD-123 Z3, Z7, Z8 BZT52C39-FDICT-ND Diodes Inc DIODE ZENER 18V 500MW 1 18V SOD-123 Z4 BZT52C18-FDICT-ND Diodes Inc DIODE ZENER 5.6V 500MW 2 5.6V SOD-123 Z5, Z6 MMSZ5V6T1GOSCT-ND ON Semiconductor Table 2 IRAUDAMP11 Mechanical Bill of Materials Quantity Value Description Designator Digikey P/N Vendor Lock washer 1, Lock washer 2, WASHER LOCK INTERNAL Lock washer 3, Lock washer 4, Building 7 Washer #4 SS H729-ND #4 SS Lock washer 5, Lock washer 6 Fasteners Lock washer 7 Print Circuit Board 1 PCB PCB 1 Custom IRAUDAM11 Rev 3.0 .PCB Screw 1, Screw 2, Screw 3, Screw 4- SCREW MACHINE PHILLIPS Building 7 Screw 4, Screw 5, Screw 6, H343-ND 40X5/16 4-40X5/16 Fasteners Screw 7, Keystone STANDOFF HEX 4- Stand Off 1, Stand Off 2, Stand 4 Stand off 0.5" 1893K-ND Electro- 40THR .500"L ALUM Off 3, Stand Off 4 nics THERMAL PAD .080" 4X4" Therm- 1/16 AAVID 4880G thermal pad under heatsink BER164-ND GAPPAD alloy www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 30 of 35
IRAUDAMP11 Hardware IRAUDAMP11 Heat Spreader Note: All dimensions are in millimeters All thread holes are 4-40 X 8mm dip ,minimum Tolerances are ±0.1mm Material:ALUMINUM 4.5 3 3 4.5 16 10.5 6 1.6 12 14 12 6 8 27 27 10 Fig 25 Heat Spreader . Screw Screw H343-ND H343-ND Lock washer Thermal Pad Lock washer Th l d Screw Screw H343-ND Stand Off 3 H343-ND Stand Off 2 1893K-ND 1893K-ND Lock washer Lock washer Lock washer Lock washer Screw Screw Screw Stand Off 4 Lock washers Stand Off 1 1893K-ND H729-ND 1893K-ND Screws H343-ND Fig 26 Hardware Assemblies www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 31 of 35
IRAUDAMP11 PCB Specifications PCB: 1. Two Layers SMT PCB with through holes 2. 1/16 thickness 3. 2/0 OZ Cu 4. FR4 material 5. 10 mil lines and spaces 6. Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate DSR-3241or equivalent. 7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard. 8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick. 9. Tolerance of PCB size shall be 0.010 –0.000 inches 10. Tolerance of all Holes is -.000 + 0.003” 11. PCB acceptance criteria as defined for class II PCB’S standards. Gerber Files Apertures Description: All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer Altium Designer 6. Each file name extension means the following: 1. .gtl Top copper, top side 2. .gbl Bottom copper, bottom side 3. .gto Top silk screen 4. .gbo Bottom silk screen 5. .gts Top Solder Mask 6. .gbs Bottom Solder Mask 7. .gko Keep Out, 8. .gm1 Mechanical1 9. .gd1 Drill Drawing 10. .gg1 Drill locations 11. .txt CNC data 12. .apr Apertures data Additional files for assembly that may not be related with Gerber files: 13. .pcb PCB file 14. .bom Bill of materials 15. .cpl Components locations 16. .sch Schematic 17. .csv Pick and Place Components 18. .net Net List 19. .bak Back up files 20. .lib PCB libraries www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 32 of 35
Fig 27 IRAUDAMP11 PCB Top Overlay (Top View) www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 33 of 35
Fig 28 IRAUDAMP11 PCB Bottom Layer (Top View) www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 34 of 35
Revision changes descriptions Revision Changes description Date Rev 1.0 Released Oct, 08 2010 WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 01/29/2009 www.irf.com I R A U D A M P 1 1 R E V 1 . 0 Page 35 of 35